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(Communicated by J. Pečarić)

Abstract. In this paper we introduce quasilinear-type divergences defined by the two-parameter
generalization of the logarithm. Jeffreys and Jensen-Shannon divergence are also extended to
biparametric forms.

1. Preliminaries

The study of natural phenomena that deviate from standard statistical distributions
increased the interest in alternative definitions of the information measures. In 1988,
Tsallis [12] introduced one-parameter extension of Shannon entropy by

Hq(p) ≡−
n

∑
j=1

pq
j lnq p j =

n

∑
j=1

p j lnq
1
p j

, (q � 0,q �= 1) (1)

where p = {p1, p2, · · · , pn} is a probability mass function with p j > 0 for all j =
1,2, · · · ,n .

Here the deformation of the logarithm (q− logarithm) is defined by lnq(x)≡ x1−q−1
1−q

for x > 0, where the parameter q is a measure of non-extensivity of the system. Tsallis
entropy includes Shannon entropy in the limiting sense:

lim
q→1

Hq(p) = H1(p) ≡−
n

∑
j=1

p j log p j. (2)

Throughout the paper we consider p = {p1, p2, · · · , pn} and r = {r1,r2, · · · ,rn}
with p j > 0,r j > 0 for all j = 1,2, · · · ,n to be probability distributions. Tsallis relative
entropy (divergence) is given by

Dq(p||r) ≡
n

∑
j=1

pq
j(lnq p j − lnq r j) = −

n

∑
j=1

p j lnq
r j

p j
. (3)
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It converges to the classic Kullback-Leibler information,

lim
q→1

Dq(p||r) = D1(p||r) ≡
n

∑
j=1

p j(log p j − logr j). (4)

For x > 0 and q � 0 with q �= 1, the q -exponential function represents the inverse
function of the q -logarithm, that is expq(x)≡{1+(1−q)x}1/(1−q) , if 1+(1−q)x> 0
and vanishes if its argument is nonpositive.

The Jeffreys divergence is defined by

J1(p||r) ≡ D1(p||r)+D1(r||p) (5)

and the Jensen-Shannon divergence is defined as

JS1(p||r) ≡ 1
2
D1

(
p||p+ r

2

)
+

1
2
D1

(
r||p+ r

2

)
. (6)

See [4], [10].
For a continuous and strictly monotonic function ψ on (0,∞) and q � 0 with

q �= 1, Tsallis quasilinear entropy (q -quasilinear entropy; see [8]) is defined by

Iψ
q (p) ≡ lnq ψ−1

(
n

∑
j=1

p jψ
(

1
p j

))
. (7)

Obviously I
lnq
q (p) = Hq(p).

The aim of this paper is to extend the quasilinear entropies from Tsallis statistical
viewpoints, providing biparametric generalizations. Additionally, we give such exten-
sions for Jeffreys and Jensen-Shannon divergences. The interested reader is referred to
[9] for the study of the uniparametric case.

2. Main results

Before stating the results we establish the notation. The two-parameter extended
logarithmic function (see [11]) is given by the formula

lnr,q x ≡ lnq explnr x =
exp 1−q

1−r

(
x1−r −1

)−1

1−q
.

This is a decreasing function with respect to indices. Correspondingly, the inverse
function of lnr,q is denoted by

expr,q x ≡ expr logexpq x.

We start from the Tsallis (r,q)-quasilinear entropies and Tsallis (r,q)-quasilinear
divergences as they were defined in [9].
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DEFINITION 2.1. For a continuous and strictly monotonic function ψ on (0,∞)
and r,q � 0 with r,q �= 1, the (r,q)-quasilinear entropy is defined by

Iψ
r,q(p) ≡ lnr,q ψ−1

(
n

∑
j=1

p jψ
(

1
p j

))
. (8)

The above definition generalizes the Tsallis entropy to the context of quasilinear
means. We emphasize here the mathematical significance of our definition. For ψ(x) =
lnr,q (x) we recover the entropic functional used in [11, Section 4]:

Hr,q(p) ≡
n

∑
j=1

p j lnr,q
1
p j

.

This also gives rise to another case of interest

Ix1−r

2r−1
r ,q

(p) = lnq expln 2r−1
r

(
n

∑
j=1

pr
j

) 1
1−r

= lnq exp

⎧⎨
⎩ r

1− r

⎡
⎣( n

∑
j=1

pr
j

) 1
r

−1

⎤
⎦
⎫⎬
⎭ , (9)

which coincides with Arimoto’s entropy for q = 1 and r = 1/β , cf. [2], and with
R-norm information measure, for q = 1 and R = r, cf. [3].

DEFINITION 2.2. For a continuous and strictly monotonic function ψ on (0,∞)
and r,q � 0 with r,q �= 1, the (r,q)-quasilinear divergence is defined by

Dψ
r,q(p||r) ≡− lnr,q ψ−1

(
n

∑
j=1

p jψ
(

r j

p j

))
. (10)

For ψ(x) = lnr,q (x) we obtain the following entropy that extends the usual Tsallis
divergence:

Dr,q(p||r) ≡−
n

∑
j=1

p j lnr,q
r j

p j
.

By analogy to the entropy computation, we find the following Arimoto type divergence:

Dx1−r

2r−1
r ,q

(p||r) = − lnq exp

⎧⎪⎨
⎪⎩− r

1− r

⎡
⎢⎣1−

(
n

∑
j=1

pr
jr

1−r
j

) 1
r

⎤
⎥⎦
⎫⎪⎬
⎪⎭ . (11)

LEMMA 2.3. (Young’s inequality) Let m, n � 0 and p,q ∈ R such that 1
p + 1

q =

1 . If p < 0 (then 0 < q < 1 ) or 0 < p < 1 (then q < 0 ), then one has mp

p + nq

q � mn.

Firstly we obtain an inequality involving the deformation of the logarithm which
is of interest in itself.
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LEMMA 2.4. Let r > 0, r �= 1 . Assume p,q ∈ R satisfy 1
1−p + 1

1−q = 1 . If
1 < p < 2 or if 1 < q < 2 , then

lnr,p x+ lnr,q y � exp(lnr x+ lnr y)−1. (12)

Proof. Using Young’s inequality we obtain

lnp explnr x+ lnq explnr y =
exp((1− p)lnr x)−1

1− p
+

exp((1−q)lnr y)−1
1−q

� exp(lnr x+ lnr y)−1. �

We can see this inequality illustrated in the figure below.
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Figure 1: ln3,1/2 x+ ln3,2 y � exp(ln3 (x)+ ln3 (y))−1

When the parameters approach the value 1, the lemma reduces to the known
inequality logxy � xy−1.

PROPOSITION 2.5. Let r be a real number. Assume p,q ∈ R+ satisfy p = 1
q . If

1 < p < 2 or if 1 < q < 2 , then

Dr,p(p||r)+H2−r,2−q(p) � 1−
n

∑
j=1

p j exp

(
lnr

r j

p j
+ lnr p j

)
. (13)

Proof. We apply Lemma 2.4. Since we have

lnr,q y = − ln2−r,2−q
1
y

(14)

for all y > 0, we get

lnr,p x+ lnr,q y = lnr,p x− ln2−r,2−q
1
y

� exp(lnr x+ lnr y)−1.
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Putting x = r j
p j

and y = p j and multiplying −p j and then taking the sum on both sides,

it follows

−
n

∑
j=1

p j lnr,p
r j

p j
+

n

∑
j=1

p j ln2−r,2−q
1
p j

� 1−
n

∑
j=1

p j exp

(
lnr

r j

p j
+ lnr p j

)

which implies the inequality (13). The proof is completed. �

The case r = 1 reduces to a nicer form and was already proved in [9, Proposition
5.3] using the same technique.

Our next extensions incorporate known entropies and divergences: Jeffreys and
Jensen-Shannon divergences are extended in the context of Tsallis theory to their bi-
parametric forms.

DEFINITION 2.6. Let the Jeffreys (r,q)-divergence be

Jr,q(p||r) ≡ Dr,q(p||r)+Dr,q(r||p) (15)

and the Jensen-Shannon (r,q)-divergence be

JSr,q(p||r) ≡ 1
2
Dr,q

(
p||p+ r

2

)
+

1
2
Dr,q

(
r||p+ r

2

)
. (16)

We find that Jr,q(p||r) = Jr,q(r||p) and JSr,q(p||r) = JSr,q(r||p) . That is, these
divergences are symmetric.

S. Furuichi [7, Theorem 3.5] obtained the following refinement of Young’s in-
equality:

LEMMA 2.7. (Refinement of Young’s inequality) Let a, b � 0 and λ < 0 or λ >
1 . Then one has

λa+(1−λ )b � aλ b1−λ + α
(√

a−
√

b
)2

,

where α = min{λ ,1−λ} .

We can reformulate this in a more convenient way.

LEMMA 2.8. Let m, n � 0 and p,q ∈ R such that 1
p + 1

q = 1 . If p < 0 (then
0 < q < 1 ) or 0 < p < 1 (then q < 0 ), then one has

mp

p
+

nq

q
−mn � α

(
mp/2−nq/2

)2
, (17)

where α = min
{

1
p , 1

q

}
.
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REMARK 2.9. Under the same assumptions, J. M. Aldaz (see [1, Lemma 2.1])
established for p > 1 (then q > 1) that

α
(
mp/2−nq/2

)2
� mp

p
+

nq

q
−mn � (1−α)

(
mp/2−nq/2

)2
. (18)

The double inequality (18) is a direct application of a more general result concern-
ing a refinement and a reverse of the Jensen’s inequality provided in [5]. See also [6]
for other helpful details.

Let the following conditions be fulfilled: r > 0, r �= 1. In what follows α =
min

{
1
p , 1

q

}
. Hence we derive the following result.

LEMMA 2.10. Assume p,q ∈ R satisfy 1
1−p + 1

1−q = 1 . If 1 < p < 2 or if 1 <
q < 2 , then

lnr,p x+ lnr,q y−α
[
exp

(
1− p

2
lnr x

)
− exp

(
1−q

2
lnr y

)]2

� exp(lnr x+ lnr y)−1.

(19)

Proof. Using the above refinement of Young’s inequality we obtain

lnp explnr x+ lnq explnr y =
exp((1− p)lnr x)−1

1− p
+

exp((1−q)lnr y)−1
1−q

� exp(lnr x+ lnr y)

+α
[
exp

(
1− p

2
lnr x

)
− exp

(
1−q

2
lnr y

)]2

−1. �

We are now in a position to state and prove the following:

THEOREM 2.11. Assume p,q ∈ R satisfy 1
1−p + 1

1−q = 1 . If 1 < p < 2 or if
1 < q < 2 , then

Jr,p(p||r)+ Jr,q(p||r) � 2−
n

∑
j=1

[
p j exp

(
2lnr

r j

p j

)
+ r j exp

(
2lnr

p j

r j

)]

−α
n

∑
j=1

[
p jE

(
r j

p j

)
+ r jE

(
p j

r j

)]
, (20)

where E (x) =
[
exp
(

1−p
2 lnr x

)
− exp

(
1−q
2 lnr x

)]2
.

Proof. In Lemma 2.10, we get for x = y

lnr,p x+ lnr,q x � exp(2lnr x)−1+α
[
exp

(
1− p

2
lnr x

)
− exp

(
1−q

2
lnr x

)]2

. (21)
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Putting x = r j
p j

, multiplying −p j and then taking the sum on both sides, it follows

Dr,p(p||r)+Dr,q(p||r) = −
n

∑
j=1

p j lnr,p
r j

p j
−

n

∑
j=1

p j lnr,q
r j

p j

� 1−
n

∑
j=1

p j exp

(
2lnr

r j

p j

)
−α

n

∑
j=1

p jE

(
r j

p j

)
. (22)

Putting x = p j
r j

, multiplying −r j and then taking the sum on both sides, it follows

Dr,p(r||p)+Dr,q(r||p) = −
n

∑
j=1

r j lnr,p
p j

r j
−

n

∑
j=1

r j lnr,q
p j

r j

� 1−
n

∑
j=1

r j exp

(
2lnr

p j

r j

)
−α

n

∑
j=1

r jE

(
p j

r j

)
. (23)

Summing the inequalities (22) and (23) the proof is completed. �

REMARK 2.12. Using (14), under the same assumptions as in Theorem 2.11, we
get analogously

J2−r,2−p(p||r)+ J2−r,2−q(p||r) �
n

∑
j=1

[
p j exp

(
2lnr

p j

r j

)
+ r j exp

(
2lnr

r j

p j

)]
−2

+α
n

∑
j=1

[
p jE

(
p j

r j

)
+ r jE

(
r j

p j

)]
. (24)

We omit the computation. From (20) and (24) we get

Jr,p(p||r)+ Jr,q(p||r)− J2−r,2−p(p||r)− J2−r,2−q(p||r)

� 4−
n

∑
j=1

(p j + r j)
[
exp

(
2lnr

p j

r j

)
+ exp

(
2lnr

r j

p j

)]

−α
n

∑
j=1

(p j + r j)
[
E

(
p j

r j

)
+E

(
r j

p j

)]
. (25)

Our last result reads as follows.

THEOREM 2.13. Assume p,q ∈ R satisfy 1
1−p + 1

1−q = 1 . If 1 < p < 2 or if
1 < q < 2 , then

JSr,p(p||r)+ JSr,q(p||r) � 1− 1
2

n

∑
j=1

[
p j exp

(
2lnr

p j + r j

2p j

)
+ r j exp

(
2lnr

p j + r j

2r j

)]

−α
2

n

∑
j=1

[
p jE

(
p j + r j

2p j

)
+ r jE

(
p j + r j

2r j

)]
, (26)

where E (x) =
[
exp
(

1−p
2 lnr x

)
− exp

(
1−q
2 lnr x

)]2
.
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Proof. From (22), for r →p+r
2 we get

Dr,p

(
p||p+ r

2

)
+Dr,q

(
p||p+ r

2

)
� 1−

n

∑
j=1

p j exp

(
2lnr

p j + r j

2p j

)
−α

n

∑
j=1

p jE

(
p j + r j

2p j

)
.

(27)
Analogously from (23) for p →p+r

2 we get

Dr,p

(
r||p+ r

2

)
+Dr,q

(
r||p+ r

2

)
� 1−

n

∑
j=1

r j exp

(
2lnr

p j + r j

2r j

)
−α

n

∑
j=1

r jE

(
p j + r j

2r j

)
.

(28)
This completes the proof. �

REMARK 2.14. Similarly the following inequality holds:

JS2−r,2−p(p||r)+ JS2−r,2−q(p||r)

� −1+
1
2

n

∑
j=1

[
p j exp

(
2lnr

2p j

p j + r j

)
+ r j exp

(
2lnr

2r j

p j + r j

)]

+
α
2

n

∑
j=1

[
p jE

(
2p j

p j + r j

)
+ r jE

(
2r j

p j + r j

)]
. (29)

As we have seen in all these examples, in many cases the use of the (r,q) - gener-
alized logarithmic function nicely completes the picture obtained with the q -logarithm
and can be useful in applied areas (signal and image processing, information theory).
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