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MATHEMATICAL INEQUALITIES FOR BIPARAMETRIC
EXTENDED INFORMATION MEASURES

FLAVIA-CORINA MITROI AND NICUSOR MINCULETE

(Communicated by J. Pecari¢)

Abstract. In this paper we introduce quasilinear-type divergences defined by the two-parameter
generalization of the logarithm. Jeffreys and Jensen-Shannon divergence are also extended to
biparametric forms.

1. Preliminaries

The study of natural phenomena that deviate from standard statistical distributions
increased the interest in alternative definitions of the information measures. In 1988,
Tsallis [12] introduced one-parameter extension of Shannon entropy by

n n 1
Hy(p)=— Y, piingp; = ijlnq;7 (g=0.q#1) (1)
=1 =1 ~

where p = {p1,p2,---,pa} is a probability mass function with p; > 0 for all j =
1,2,---,n.

Here the deformation of the logarithm (¢g— logarithm)is defined by In, (x) = xl; a1
for x > 0, where the parameter ¢ is a measure of non-extensivity of the system. Tsalﬁs
entropy includes Shannon entropy in the limiting sense:

n
lim Hy(p) = Hi(p) = = X pjlogp;. @
j=1

Throughout the paper we consider p = {py,p2,---,pn} and r = {ri,rp, -, 1}
with p; > 0,r; >0 forall j=1,2,---,n to be probability distributions. Tsallis relative
entropy (divergence) is given by

n n
Py
Dq(pHr)E Zp;f.(lnqu—lnqrj):—ijlnq—J‘. 3)
j=1 Jj=1 Pj
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It converges to the classic Kullback-Leibler information,
lim Dy (plIr) = D1 (plIr) = 3. p;(logp; ~ logr;). (4)
j=1

For x > 0 and ¢ > 0 with g # 1, the g-exponential function represents the inverse

function of the g-logarithm, thatis exp, (x) = {1+ (1 — )x}l/ (=) g 1+ (1—¢g)x>0
and vanishes if its argument is nonpositive.
The Jeffreys divergence is defined by

Ji(plIr) = Di(p|[r) + D (r||p) (5)

and the Jensen-Shannon divergence is defined as

1
100 = 301 (w25 ) + 301 (P2 ©

See [4], [10].
For a continuous and strictly monotonic function ¥ on (0,e) and ¢ > 0 with
q # 1, Tsallis quasilinear entropy (g-quasilinear entropy; see [8]) is defined by

1Y (p) = Ing - (21,7,1,/( )) )

Obviously Illjn" (p) = Hy(p).

The aim of this paper is to extend the quasilinear entropies from Tsallis statistical
viewpoints, providing biparametric generalizations. Additionally, we give such exten-
sions for Jeffreys and Jensen-Shannon divergences. The interested reader is referred to
[9] for the study of the uniparametric case.

2. Main results

Before stating the results we establish the notation. The two-parameter extended
logarithmic function (see [11]) is given by the formula

expl%‘j(x“’—l)—l
l—q

In; 4, x = Ingexpln, x =

This is a decreasing function with respect to indices. Correspondingly, the inverse
function of In,, is denoted by

exp,., X = exp,logexp,x.

We start from the Tsallis (r,¢)-quasilinear entropies and Tsallis (r,q)-quasilinear
divergences as they were defined in [9].
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DEFINITION 2.1. For a continuous and strictly monotonic function y on (0, )
and r,q > 0 with r,q # 1, the (r,q)-quasilinear entropy is defined by

1Y, (p) = ng v (Zp,l[/( )) ®)

The above definition generalizes the Tsallis entropy to the context of quasilinear
means. We emphasize here the mathematical significance of our definition. For y(x) =
In,, (x) we recover the entropic functional used in [1 1, Section 4]:

n 1
p)= D pjlng—
j=1 Pj

This also gives rise to another case of interest

1

1 1
1—-r /1 - r /1 !
21, (p) = Ingexplnas (ij-) =Ingexpq T— (ij-) =1, 9
bl r ,:1 - ,:1

7

which coincides with Arimoto’s entropy for ¢ = 1 and r = 1/, cf. [2], and with
R-norm information measure, for ¢ =1 and R =r, cf. [3].

DEFINITION 2.2. For a continuous and strictly monotonic function y on (0, )
and r,q > 0 with r,q # 1, the (r,q)-quasilinear divergence is defined by

DY, (pllr) = I,y (ijw (—)) | (10)
j=1 P

For y(x) = In,4 (x) we obtain the following entropy that extends the usual Tsallis
divergence:

n
Dyq(pllr) = ij lnrq
izl Dj

By analogy to the entropy computation, we find the following Arimoto type divergence:

1
D’ér 4(Pllr) = —Ingexp —lir 1—(219’1 ’) : (11)

LEMMA 2.3. (Young’s inequality) Let m, n >0 and p,q € R such that %—l—é =
1.If p<O(then 0<g<1)or 0<p<1 (then g <0), then one has m%—i—% < mn.

Firstly we obtain an inequality involving the deformation of the logarithm which
is of interest in itself.
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LEMMA 2.4. Let r >0, r # 1. Assume p,q € R satisfy ﬁ—l—ﬁ: 1. If
l<p<2orifl<q<?2,then

In,,x+1In,,y <exp(In,x+In,y) — 1. (12)
Proof. Using Young’s inequality we obtain

exp((1—p)ln,x)—1 n exp((1—¢)ln,y)—1
l—p l—¢q
<exp(ln,x+1In,y)—1. O

In,expln, x +Ingexpln,y =

We can see this inequality illustrated in the figure below.

I s o001 5,00
[ oln i )1

;: ) /i”;;';"l"”'l'l""'
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Figure 1: Ing ; , x+1n3 2y < exp (Ing (x) +1n3 (y)) — 1

When the parameters approach the value 1, the lemma reduces to the known
inequality logxy < xy — 1.

PROPOSITION 2.5. Let r be a real number. Assume p,q € Ry satisfy p = é. If
l<p<2orif 1<q<?2,then

n e
Dy p(pl|r) +Har2—4(p) =2 1 - 2 Pjexp <1nr p_J +1nrpj) . (13)
= j

Proof. We apply Lemma 2.4. Since we have
1
lnr,qy = 1n2—r,2—q ; (14)

forall y >0, we get

<exp(In,x+1In,y)—1.

<=

Ingpx+Ingy=1In,px—1Iny >,
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Putting x = ;—’ and y = p; and multiplying —p; and then taking the sum on both sides,
J
it follows

l 1 7
_Zpllnrp +2p11n2 r2—q I—ijeXp <ln,—J'+ln,pj)
Pj =1 Dj =1 Dj

which implies the inequality (13). The proof is completed. [J

The case r = 1 reduces to a nicer form and was already proved in [9, Proposition
5.3] using the same technique.

Our next extensions incorporate known entropies and divergences: Jeffreys and
Jensen-Shannon divergences are extended in the context of Tsallis theory to their bi-
parametric forms.

DEFINITION 2.6. Let the Jeffreys (r,¢q)-divergence be

Jrq(PlIr) = Dy g(pllr) + Dy y(r||p) (15)

and the Jensen-Shannon (r,q)-divergence be

1
35:(0110) = 500 (P25 )+ 3000 (1255 ) (16)

We find that J,.4(p||r) = J.4(r||p) and JS,4(p||r) = JS,4(r||p). That is, these
divergences are symmetric.

S. Furuichi [7, Theorem 3.5] obtained the following refinement of Young’s in-
equality:

LEMMA 2.7. (Refinement of Young’s inequality) Let a, b>0and A <0 or A >
1. Then one has

2
ha+(1-A)b<atp'+a(Va-vb)
where oo =min{A,1 —A}.
We can reformulate this in a more convenient way.

LEMMA 2.8. Let m, n > OandpqE]Rsuchthat——i———l If p <O (then
0<g<1l)or0<p<1 (then g <0), then one has

P 2
m7+%—mn<a(mp/2—nq/2> , 17)

where o0 = mln{

==
»Q.I'—
—
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REMARK 2.9. Under the same assumptions, J. M. Aldaz (see [l, Lemma 2.1])
established for p > 1 (then g > 1) that
P pd 2
Oz(mp/2 nq/2> - +——mn<(1—a) (mp/z—nq/2> . (18)
P q
The double inequality (18) is a direct application of a more general result concern-
ing a refinement and a reverse of the Jensen’s inequality provided in [5]. See also [6]
for other helpful details.
Let the following conditions be fulfilled: » > 0, r # 1. In what follows o =

min { 1 }1} . Hence we derive the following result.

LEMMA 2.10. Assume p,q € R satisfy —; %:1 Ifl<p<lorifl<
q <2, then

2
qln,y)} < exp(In,x+In,y) — L.

1-— 1—
In.px+In,y— o [exp ( 5 p ln,x) —exp ( 3
(19)

Proof. Using the above refinement of Young’s inequality we obtain

exp((1—p)ln,x)—1 n exp((1—¢g)ln,y)—1
IL—p l—¢q
< exp(In,x+In,y)

1 1 :
—l—a{exp(Tplnrx)—exp( 2q1nry>} —-1. 0

We are now in a position to state and prove the following:

In,expln, x+Ingexpln,y =

THEOREM 2.11. Assume p,q € R satisfy —; —|—%:1. If1<p<2orif
1 <g<?2,then

Jrp(p|Ir) +Jg(pllr) > 2— 2 [pjexp (21n,p ) +rjexp <21n,%>}
J j

WSpe()er(®)]

where E (x) = [exp <%ln, ) —exp< Ly, )}2

Proof. In Lemma 2.10, we get for x =y

_ 2
qln,x)} @1

1-— 1
In, px+In,4x < exp(2In, )—1+a{exp< 2p1n,x> —exp(
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Putting x = ;—’ , multiplying —p; and then taking the sum on both sides, it follows
J

Dyp(p|[r) + Dyg(p[r) = Zpllnrp Zl’/lnrq
I—ijexp<21n, ) aij ( f'). (22)
=1 Pj
Putting x = 2. multiplying —r; and then taking the sum on both sides, it follows
D, (x||p) + Dyy(r||p) = erln,p Er,lnrq
I—erexp<21nr ) aZr, (pf). (23)
j=1 Tj

Summing the inequalities (22) and (23) the proof is completed. [

REMARK 2.12. Using (14), under the same assumptions as in Theorem 2.11, we
get analogously

T2 p(BlIE) + 22 g(plIF) < 2 [pjexp (21nr ) +rjexp <2lnrp')] -2
rj J

+O€2[p, ( )wg(p})]. (24)

We omit the computation. From (20) and (24) we get

rp(PH ) +Jrg(PIIX) = S22 p(PIIX) = J2—r2—4(plIF)

g pi+r) [exp(Zln, j>—|—exp<21nr;—i)}
2[ ()= (2] @

Our last result reads as follows.

THEOREM 2.13. Assume p,q € R satisfy ﬁ + 1% =1. Ifl<p<2orif

1 <g<?2,then
1 n p+r
ISy p(IIE) +ISrg (pllr) > 1 21 {p,,» exp (zln, ) riexp (21nr Jer z)]
o< i+
SEbe() e ()] e

where E (x) = [exp <% 1n,x> —exp <1—qun,x>}

S
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Proof. From (22), for r —23F we get

p+r p+r < pj+r; d pj+r
Dy <p|T> +Drg (pl 3 ) >1- ;p/eXp <2lnr’27j’) —a Xt (’271’> :
J= J=

27)

Analogously from (23) for p —BIF we get

ptr ptr S pitr o o (Pitr
Dr,p<r| ) >+Dr,q<r| ) )21—;ﬁ/exp<21n,2—rj —a Y riE )

j=1
(28)

This completes the proof. [

REMARK 2.14. Similarly the following inequality holds:

JS2-r2-p(PlI*) +S2-r2-4(p|Ir)

n

1 2p; 2r;
<—1+= {p-exp(ﬂn ! >+r-exp<2ln / )]
21-:21 ! "pitri) "pitr

o 2pj 21"j
+—= p-E( >+r-E< . 29)
2;[’ pjtrj T\ pjtr

As we have seen in all these examples, in many cases the use of the (r,q) - gener-
alized logarithmic function nicely completes the picture obtained with the g-logarithm
and can be useful in applied areas (signal and image processing, information theory).
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