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REFINEMENTS OF SOME MAJORIZATION TYPE INEQUALITIES

M. ADIL KHAN, SADIA KHALID AND J. PECARIC

(Communicated by A. Agli¢ Aljinovic)

Abstract. In this paper, we prove refinements of some companion inequalities to the Jensen
inequality, namely Slater’s inequality and the inequalities obtained by Mati¢ and Pecari¢ (2000).
We also give refinements of majorization type inequalities, generalized weighted Favard and
Berwald inequalities.

1. Introduction

Let X be a real normed linear space and let X* be the algebraic dual space of X,
that is, the real space of all linear functionals x* : X — R. If ¢ : C — R is a convex
function defined on a convex open subset C of X, then for any fixed point y € C we
can define the abstract subdifferential d¢(y) of ¢ at y as:

99(y) :=={a"(y;.) €X" 1 9(x) = @(y) +a*(y;x—y), forallx € C}

The set d¢(y) is non empty ([21, p. 108 Theorem B]). Also, when ¢ is strictly convex,
the inequality

¢(x) 2 0(y)+a*(yix—y), forallx,yeC (D

is strict unless x = y.

In the simplest case when ¢ : (a,b) — R is a convex function defined on an open
interval (a,b) in R, for any y € (a,b) we have that a*(y;.) is given by a*(y;x) = mx,
x € R where m € [¢/ (y), ¢} (y)]. For convenience we shall always take m = ¢/ (y)
and in this case (1) becomes

d(x) = ¢(y)+ 9L (v)(x—y), forall x,y € (a,b). @)

In 1981 Slater has proved an interesting companion inequality to the Jensen’s inequality
[22].
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THEOREM 1.1. Let ¢ : (a,b) — R be a monotonic convex function, x; € (a,b)
and p;i >0 (i=1,..,n) with P, =3 p; > 0. If 31| pi¢) (xi) # 0, then

Pnizzlm(x,)@( ArOLb ),

3)
When ¢ is strictly convex on (a,b), inequality (3) becomes equality if and only if x; = ¢
Sfor some ¢ € (a,b) and for all i with p; > 0.

In [18] Pecari¢ noted that (3) remains true if we replace the condition of mono-

Z [pl¢+(xl)xl
tonicity of ¢ with 7,, P00

able points in (a,b) and not necessarily for monotone functions. In the same paper,
one can find the multidimensional case of Slater’s inequality. For the recent work on
Slater’s inequality see [2, 3].

The following theorem has been proved in [15].

€ (a,b), which is more general and can holds for suit-

THEOREM 1.2. Let ¢ : C — R be a convex function defined on an open convex
subset C in the normed real linear space X. For the given vectors x; € C, p; > 0
(i=1,..,n) such that P, := Y | pi >0 and suppose that

1y - _ 13
X = FEp,-x,- and y := P Zp,-(P(xi). “)
ni=1

=1

If ¢,d are arbitrary vectors in C, then we have

q)(c)—i-a*(c;f—c)<)7<¢(d)+Pi2a*(xi;x,-—d). 3)

n =1
Also, when ¢ is strictly convex, we have equality in the left inequality in (5) if and only

if xi = ¢ holds for all indices i with p; > 0, while equality holds in the right inequality
in (5) if and only if x; = d holds for all indices i with p; > 0.

In [8] Favard proved the following result: Let f be a non-negative continuous
concave function on [a,b], not identically zero and ¢ be a convex function on [0,2f],
where f = ;L fff(x)dx, then

[ 6(2s7)as = 2%7 02-7¢(y>dy > o oy

Favard [8] also proved the following result: Let f be a concave non-negative function
on [a,b] CR.If ¢ > 1, then

— a/fq q+l<b a/f dx)q.

Some generalizations of the Favard inequality and its reverse are also given in [10,
pp- 412-413]. Moreover, Berwald (1947) [5] proved the following generalization of
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Favard’s inequality [10, p. 413-414]: Let f be a non-negative, continuous concave
function, not identically zero on [a,b], and W be a continuous and strictly monotonic
function on [0,yo], where yj is sufficiently large. If z is the unique positive root of the
equation

L voar= 51 [yt

Z

then for every function ¢ : [0,y9] — R which is convex with respect to y, we have

z b
[osaas=1["omav=> ;1 [ olrw)ax

Berwald [5] also proved the following result: If f is a non-negative concave function
on [a,b], then for 0 < r < s we have

L ] < [ [ )

In [14, 19], some generalizations of Favard and Berwald inequalities to the weighted
and multidimensional cases are given. For further extension of these results for integral
and discrete case see [11, 12, 20].

In this paper, we give a general inequality in discrete as well as in integral form
and from this inequality, we obtain refinements of the inequalities in (5), Jensen and
Slater inequalities and also refinement of Slater’s inequality for monotone convex func-
tion. Finally, we present some refinements of the majorzation type inequalities and the
generalized Favard and Berwald inequalities.

2. Main results

The main result states.

THEOREM 2.1. Let ¢ : C — R be a convex function defined on an open convex
subset C in the normed real linear space X and x;,y; € C, p; =20, i=1,..,n. Then

Epiq)(xi) - Epi(P (vi) sz (visxi —yi)
i=1 i=1
sz

(visxi — i)

' (6)

Proof. Take x=x; and y = y;(i = 1,2,..,n) in (1) we have

O(xi) = O (vi) +a*(visxi —yi), i.e
O (xi) — ¢(yi) —a" (yizxi — yi) = 0.
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Therefore
O(xi) = (i) —a* (yisxi —yi) = [9(x:) — ¢ (vi) — @ (yisxi — yi)|
> |0(xi) — ¢ (vi)| — la* (visxi — i) |- (7

Multiplying (7) by p; > 0,i = 1,..,n and summing over i from 1 to n we get

Epiq)(xl-)—z,piq)yl sz (visxi — yi)

> pi

i=1

ip’¢ (xi)

i=1

60| ~1a’ (visxi — )|

®)

sz’ (Visxi — yi)’

which is equivalent to (6).

Integral version of Theorem 2.1 for Lebesgue integral can be given:

THEOREM 2.2. Let (Q,A, 1) be a measure space with 0 < [(Q) < o and ¢ :
(a,b) — R be a convex function. If f,g:Q — (a,b) are such that ¢(f),¢'(f), ¢'(f)f,
0(g),0'(g) and ¢'(g)g are in L' (1), then we have

| otdu— [ o(e)au— [ ot (e)(f—e)dn

> | [ otran — ote|an— [ ot 0 ofau]. ©

The following theorem is the refinement of the left inequality in (5).

THEOREM 2.3. Let ¢ : C — R be a convex function defined on an open convex
subset C in the normed real linear space X, x; € C, p; >0 (i =1,..,n) such that
P, =" ,pi>0and x,y beasin (4). If ¢ is arbitrary vector in C, then we have

l n

a'(c;xi— c)’ . (10)

1 n
C)’ _szi
ni=1

Proof. By substituting y; = ¢ in (6) and using the fact that a*(c;.) is linear func-
tional we get (10). O

The integral version of Theorem 2.3 gives us refinement of the inequality given in

[15].
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THEOREM 2.4. Let (Q,A, 1) be a measure space with 0 < U(Q) < oo and ¢ :
(a,b) — R be a convex function. If f: Q— (a,b) is such that ¢(f), 9’ (f) and ¢'.(f)f
are in L' (W), then for any c € (a,b) we have

g=9(c) =94 (c)(f o)

> ‘ﬁ/QWf)du—d)(C)Idu— el 17— clau]. an
where § = 1oy Jo 9(£)dl, | = oy Ja fdu.
The following refinement of Jensen’s inequality holds.
COROLLARY 2.5. Under the assumptions of Theorem 2.3 we have
700> |5 Sfot) o] - g pfawn-n). a2

The following refinement of Jenesen’s inequality is a simple consequence of The-
orem 2.4 (see [1, 9]).

COROLLARY 2.6. Under the assumptions of Theorem 2.4 we have

|¢+ 3l

g—0(f) = (13)

i et —o(r)dn— Sk [ |~ flan).

Proof. Set ¢ = f in (2.4) we obtain (13). O
The following theorem is the refinement of the right inequality in (5).
THEOREM 2.7. Let ¢ : C — R be a convex function defined on an open convex

subset C in the normed real linear space X, x; € C, p; >0 (i =1,..,n) such that
P,=Y"pi>0and y beasin (4). If d is arbitrary vector in C, then we have

1 n
o(d)—y— FEp-a*(x;;d—xi)
1 & 1 &
> szi o(d) — o (x:) —172191- a*(x,-;x,-—d)) : (14)
n il n i1

Proof. By substituting x; = d and y; = x; in (6) we get (2.7). O

The following refinement of the inequality given in [15] holds.
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COROLLARY 2.8. Let the assumptions of Theorem 2.7 be satisfied. If there ex-
ists a vector d € C such that the corresponding functional a*(d;.) € d¢(d) satisfies

a*(d;.) = o Lyn | pia(xi;.), then

- 1
p a* (xind —x;)

o(d)—y— F

HM:

15)

zpz’q) o (x:)

——Zm

(wisxi — )‘ .

THEOREM 2.9. Let (Q,A, 1) be a measure space with 0 < U(Q) < oo and ¢ :
(a,b) = R be a convex function. If f : Q— (a,b) is such that ¢(f), 9’ (f) and ¢'.(f)f
arein L' (1), then for any d € (a,b) we have

7 [ L)@~ fau
Q

1 1 /
> lm/QW(d)—Mf)ldu——“(Q)/Q}¢+(f)(f—d)}du . e
where § = gy Jo (f)du

COROLLARY 2.10. Let (Q,A,u) be a measure space with 0 < u(Q) < eo and
(Z) (a b) — R be a differentiable function. If f:Q — (a,b) is such that ¢(f), o' (f)

d ¢ (f)f are in L' (1), then there exists at least one d € (a,b) such that ¢'(d) =

iy Ja 0/ (F)du., and
g~ [ 6@~
Q
1 - 1 / 7
> | 1o o lan s [Jon—alau|.  an
where § = froy Jo ¢ (f)du

COROLLARY 2.11. Under the assumptions of Theorem 2.7 we have

¢(x)—y— L D pid” (xi3 X — xi)

n

1
_}Tnzpi

i=1

1 n
}Tnzpi

i=1

P

wwW—ﬂw (18)

Proof. By setting d = x in (2.7) we obtain (2.11). [
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COROLLARY 2.12. Under the assumptions of Theorem 2.4 we have
0(f)-g- /Q¢+(f)(f ~ f)du
1 - _
> | 1o - lan— i [ oL (NG -Plaw. a9

REMARK 2.13. In fact (2.11) is further refinement of the counter part of the
Jensen inequality given in [15] and in particular for the counter part of the Jensen in-
equality given in [6]. Also (2.12) is further refinement of the integral counter part of
the jensen inequality given in [15].

Theorem 2.7 for the case when X = R can be stated which is of interest:

THEOREM 2.14. Let ¢ : (a,b) — R be a convex function, x; € (a,b), p; =0
(i=1,..,n) suchthat P, =Y} pi >0 and X,y be as in (4), then we have

1
o(d)—y— ITZP'%(M)(CZ—M)
1y 1,
> |5 2 pi]o(d) = 0(w)| = 5 X pifol () (@ — x| 0)
L L
The following refinement of the Slater’s inequality holds:
COROLLARY 2.15. Let ¢ : (a,b) — R be a convex function, x; € (a,b), p; =0

(i=1,..,n) such that P, =Y/ pi >0 and y be asin (4). If ¥, pi®’, (x;) ;EO such

= X Pl ()X
that x = Sl € (a,b), then

ZP:)‘P )%

¢(x)— 7> 1)

1 ¢ p =
06) |~ 5 X pi 0} () (T )

Integral analogue of Corollary 2.15 can be given:
COROLLARY 2.16. Let (Q,A,1) be a measure space with 0 < (Q) < eo and

¢ : (a,b) — R be a convex function. If f:Q — (a,b) is such that ¢(f),9’ (f) and
o' (f)f areall in L' (1), then
1
@ Ja b

1 - | / )
>’m/QWf)—(b(f)ldﬂ—m/glm(f)(f—fﬂdu (22)

holds, whenever |, ¢ (f)du # 0 and ]% = % € (a,b).
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The following theorem is the refinement of Slater’s inequality for monotone con-
vex function.

THEOREM 2.17. Let ¢ : (a,b) — R be a monotonic convex function, x; € (a,b),
pi=0 (i=1,...,n) suchthat P, =Y} pi>0and y beasin (4). If ¥, pi¢} (x;) #0

andl—{lel —{1 2,0} x> x—m},thenwehave

5 pioh (xi)
: — - st 2P
%) ~7> | 3 3 psents =)o) — 50} 5)-+70,5)] +0(9) (1- 3 ) '
(23)
where Pr =Y ,ci pi.
Proof. Consider the case when ¢ is non decreasing
2 0ilo(x) = 0()| = X pi(@(xi) — 9(x)) + X pi(9(x) — 9 ()
i=1 i€l el
=Y pid(xi) — X pid(x;) — X pid(¥) + X pip(¥)
iel icl iel icl
= ZPISgn i—X Pt¢( 1) ¢(§)(PI_PI,1\I)- (24)
Similarly
Ep,-’(bjr (x,-)()%—x,-) = Ep,-sgn(x,- - )%) (xi — )%)(Z)jr (xi)- (25)
i=1 i=1
Now by using (24) and (25) in (21) we get (23).

The case when ¢ is non increasing can be treated similarly. [J

The integral analogue of Theorem 2.17 can be given:

THEOREM 2.18. Let (Q,A,1) be a measure space with 0 < U(Q) < oo, ¢ :
(a,b) — R be a monotone convex function and f :Q — (a,b) be such that ¢(f), ¢’ (f)
and ¢'.(f)f are all in L' (). If Jo ¢, (f)dp #0 and ' = {1 € (a,b): f(1) > f =
% , then the inequality

o(f)-g> ‘ﬁ/{zsgn(f—f)[mf)—f¢’+(f)+f¢’+(f)]—¢(f)(1—2“(9/) ‘

holds, where g = m Jao(f)du.
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3. Refinements of the majorization type inequalities,
Favard and Berwald inequalities

The purpose of this section is to give some refinements of the well known results.
The following theorem is the refinement of the majorization inequality given in
[12, 16, 13].

THEOREM 3.1. Let ¢ : (a,b) — R be a convex function, p = (p1,p2,---sPn),
X = (x1,....,x,) and y = (¥1,...,yn) be n-tuples such that x;,y; € (a,b), p; =20, (i=
1,2,..,n) and satisfying

k

k
> pivi < Y, pixi fork=1,...n—1, (27)
i=1 i=1

and . .
Y pivi = Y, pixi. (28)
i=1 i=1

(i) Ify is decreasing n-tuple, then the inequality

Y pito (xi) = > pid (vi) = | 2 pil @ (xi) — ¢ (i) | = D, il 0 (i) (xi = vi) || (29)
i=1 i=1 i=1 i=1
holds.
(ii) Ifx is increasing n-tuple, then the inequality
2,00 () = X, it (xi) = | X, pil® (i) — ¢ (i) | = X pil 0 (i) (vi —xa) || (30)
i=1 i=1 i=1 i=1

holds.

Proof. By taking x =x; and y =y;(i = 1,2,..,n) in (2) and following the proof of
Theorem 2.1, we have

éPﬂP (x;) — épﬂl’ (i) — épt% (i) (xi — i)

> (€29

3 il () — 0 00) | — 3% i 6 03) s — 1) ||
i=1 i=1

If y is decreasing n-tuple then by using (27), (28) and the convexity of ¢, we have,
L pidl (i) (xi —yi) =0 ([16], p. 32) and so

ilW (xi) — il)ﬂb i) = il)ﬂb (xi) — ilw (vi) — ipi¢’+ (vi) (xi — i)
i=1 i=1 i=1 i=1 i=1

which together with (3) gives (29). Similarly we can prove (30). O

The following theorem is the refinement of the majorization inequality given by
Dragomir in [7].
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THEOREM 3.2. Let ¢ : (a,b) — R be a convex function, x;,y; € (a,b), p;i =0
(i=1,2,..,n) with P, =Y pi >0. If (x —y,-)(l-:m) is increasing (decreasing),
()’i)(i:ﬁ) is increasing (decreasing) and satisfying (28), then the inequality
> pio (xi) = X pio (yi) = |2 pild () — & (i) | — D pil o} i) (i — i) || (B2)
i=1 i=1 i=1 i=1
holds.

Proof. The idea of the proof is similar to the proof of Theorem 3.1. [J

REMARK 3.3. Let ¢,y;,x; —y; and p; (i =1,..,n) be the same as in Theorem
3.2. If in addition, ¢ is increasing and Y | pix; > " p;yi, then (32) holds.

The following theorem is an integral analogue of Theorem 3.1.

THEOREM 3.4. Let w be a positive weight function and f,g : [a,b] — [c,d] be
integrable functions. Suppose that ¢ : [c,d) — R is a convex function and

/axg(t)w(t)dzg / Fw(i)dt forall x € [a,b]

and Y ,
/a g(t)w(t)di = / Fw(r)dr
holds.

(i) If g is a decreasing function on |a,b], then the following inequality holds

b b
| otnmwa= [ @wa

b b
>|[woletn-otwla- [wolei@u-ola. @
(ii) If f is an increasing function on |a,b], then the following inequality holds
b b
| o @wa— [ o(wa
b b
2| [ vl -onla= [wilel (e-plar|. @4

REMARK 3.5. Similarly we can give integral version of Theorem 3.2 which is in
fact the refinement of the majorization inequality given in [4].

The following result is needed in the proof of the next theorem.
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LEMMA 3.6. ([12]) Let v= (vi,..,v2) be a positive n-tuple. If a = (ay,..,a,) is
decreasing real n-tuple, then

n k n

k
2a,~v,~2v,~<Zaivixvi,k:I,Z,..,n. (35)
i=1 i=1

=1 =1
If a is increasing real n-tuple, then the reverse inequality holds in (35).

If x = (x1,.,%),¥y = (¥1,...,yn) are two n-tuples with y; # 0, i = 1,2,..,n, then
we define the n-tuple % by ()yc—i,’y‘—;,,’y‘—:)

The following theorem is the refinement of the generalized discrete weighted
Favard’s inequality.

THEOREM 3.7. Let ¢ : (0,1) — R be a convex function, p = (p1,..,pn), X =
(X1,.s%n) and 'y = (y1,...,yn) be positive n-tuples. Assume that u; = ﬁ, Zi =

< t—, i=1,2,..,n. Consider the inequalities
2,':1171}’1

> it (zi) = X, pit (ui) =
i=1 i=1

ipi|¢ (zi) — ¢ (i) | — ipi|¢/+ (u:) (Zi—ui)|‘ (36)

and

N pi¢ (ui) =Y, pio (zi) >
i=1 i=1

ipilfl’ (i) — 0 (zi) | — ém’d’i (z:) (i — i) " (37)

(i) Let % be a decreasing n-tuple. If X is an increasing n-tuple, then (36) holds. If
y is a decreasing n-tuple, then (37) holds.

(ii) Let % be an increasing n-tuple. If y is an increasing n-tuple, then (37) holds. If
X is a decreasing n-tuple, then (36) holds.

Proof. Using Lemma 3.6 for a positive n-tuple v = yp and a decreasing n-tuple

=X we have,

a—y,

k k
S pizi < Y piui, fork=1,2,..n—1
i=1

=

and
n n
EpiZi = Zpiui.
i=1 i=1

Now if x is increasing, then by using Theorem 3.1(ii), we have (36) and if y is decreas-
ing, then again by using Theorem 3.1(i), we have (37).
Similarly way can prove the remaining cases. [
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COROLLARY 3.8. Let ¢ : [0, ) — ]R be convexfunctzon p=(p1,- ,p,,) be posi-
. — —1 n—i _
tive n-tuples. Assume that u; = ST px, 27 11’:(’ SRR Aal s e R 1,2,..,n.

(i) If x = (x1,...,x,) is a positive increasing concave n-tuple, then we have

zpl zp, w) > | pilo (i) — 6 () | — 3 il 0L () (i — )
i=1 =1

(i) If x = (x1,...,X,) is an increasing convex real n-tuple with x; =0, then we have

ép,«p () — épﬂp (@) > épim () — ¢ ()| - _jzlp,-;m (@) () ||. (39)

(iii) If x = (x1,...,Xn) is a positive decreasing concave n-tuple, then we have

S it (20— pit () = |3 pilo (2) — 0 () | = 3 pil 0 (i) (2 — )
=1 =1 i=1 i=1

(iv) If x = (x1,...,xn) is a decreasing convex real n-tuple with x,, = 0, then we have

ép,wp (i) — épﬂp (z) > épim () — ¢ ()| - _jzlp,-ym (z) (wi— 7) || @)

. (38)

. (40)

Proof. (i) By taking y; =& < —, yi=i—1 (2 <i< n) and by using the concavity
of x we have 3 is a decreasing n- tuple Now as 3 is a decreasing n-tuple and x is
increasing by assumption therefore by using Theorem 3.7 (i) and taking € — 0, we
have (38).

(i) If x is an increasing convex real n-tuple and x; = 0, then .x—"l, 2<i<n
increasing. Now as -7, (2 <i< n) is increasing and also y; =i—1, (2<i<n
increasing, therefore by using Theorem 3.7 (i), we have (39).

Similarly we can prove the remaining cases. [

~— —
—
w

The following corollary is an application of Theorem 3.7.

COROLLARY 3.9. Let p=(p1,.-,Pn), X= (X1,...,%,) and y = (y1,...,yn) be pos-
itive n-tuples and ¢ (x) = xP, where p > 1 or p < 0. Consider the inequalities

(Z?zlpixi>p_z,'-'1pix i }< i 1pixi>p v X o
P

Y1 pivi stopyt T A SLipvi) Shapt Xhipot
n n *1 P
DiXi ytx X;
—[pI Y pi i1 (42)
E’ l} 1 DiYi 2 11’)’1 = 1Pyz|
and
Ship (2?:1171')6:')17 < ip| <Z?=1Pixi)p v X |
= 1
"opy! \3h, poi = Lpyi) Yiipt Xipt
—1 1
plZM( o 1pixi>p S (zylpmy 0 . @3
1
i piyi Yopy! \ZLipvi) Xipit
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(i) Let % be a decreasing n-tuple. If X is an increasing n-tuple, then (42) holds. If
y is a decreasing n-tuple, then (43) holds.

(ii) Let % be an increasing n-tuple. If y is an increasing n-tuple, then (43) holds. If
X is a decreasing n-tuple, then (42) holds.

The following result is an application of Corollary 3.8.

COROLLARY 3.10. Let p = (p1,.-,Pn), X = (x1,..,Xn) be a positive n-tuple and
__ D L X; i—1 . n—i

¢ (x) =xP, where p > 1. Assume that u; = ST N7E = ST , 2= ST
. _ (Z?:lpixi)p — (2?:1171)(1)’

ISisn w=gromoy ad W= setr-

(i) If x = (x1,...,x,) is an increasing concave n-tuple, then we have

( Si piv )P_ SI i pid
i pi(i—1) iy pi(i=1)P

/w

$ plit-ot|- 3 ot |
(ii) If X = (x1,...,X,) is an increasing convex real n-tuple with x| =0, then we have

n P n p n n
i=1 Py Xiz1 PiXi ) > P 7P| Apia? Y (ui—iT;
zlf’:lpi(i—l)P <27=1pl(l—l) =W izElpl’ul u; | lzzlpl’puz (uz ul)"

(iii) If X = (x1,...,X,) is a decreasing concave n-tuple, then we have
iy pi(n—i) i 1Pt(
(iv) If x = (x1,...,xn) is decreasing convex real n-tuple with x, = 0, then we have
X pix; _ < i1 Pii ) W
. . /
i piln=i)P \ XL, pi(n—i

The following theorem is the refinement of the generalized weighted Favard’s in-
equality given in [11].

’Z —up’—Ep,|pup 1 Z—M |‘

$ ol =<t S nloat -0

THEOREM 3.11. Let w, f,g: [a,b] — R™" be integrable functions and ¢ - R —

[ N (0 ;
R be a convex function. Assume that h(t) = T omid , k(t) = a0 Consider

b b
/a o (k) w(t)di — / 0 () w(t)di

> '/abw(t)}fl’(k)—qﬁ(h) }dt_/abw(l)}%(h)(k—h)}dz 44)

the inequalities
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and
[ otwarar— [ owwiea
b b
> | [ wolo -0 ) ar - [ wi|of (- e @5)

(i) Let g be decreasing function on [a,b]. If f is an increasing function on [a,b],
then (3.11) holds. If g is decreasing function on [a,b], then (3.11) holds.

(ii) Let g be increasing function on [a,b]. If g is an increasing function on |a,b],
then (3.11) holds. If f is decreasing function on [a,b], then (3.11) holds.

REMARK 3.12. If x — ¢(x) is a convex function, then x — ¢ (kx), k € R is also
convex function. If f is a positive increasing concave function and g(¢) =t — a, then
(3.11) gives the refinement of the weighted Favard’s inequality.

COROLLARY 3.13. Let w,f,g: [a,b] — R™ be integrable functions and ¢(x) =

P —__Jf) —__ 8 i
xP, where p>1 or p <0. Assume that h(t) = P rowia” k(r)= Prow(d Consider
the inequalities

(fa”f(t)W(t)dt ) TR wndn
J2g(yw(t)dr

J2 fpwiydr)”
>W /abw(t)|k1’—hpjdz—/ahw(z)lgb;(h)(k—h);dz (46)
and
Ja P (O)w(t)dt (fff(t)w(t)dt>p
[Per(ywn)de  \ [P g(t)w(t)dt
S rawyar )
> W /abw(t)}hp_kp}dz—/abw(t)}¢’+(k)(h—k)|dz . (47)

(i) Let g be decreasing function on [a,b]. If f is an increasing function on [a,b),
then (3.13) holds. If g is decreasing function on [a,b], then (3.13) holds.

(ii) Let g be increasing function on [a,b]. If g is an increasing function on |a,b],
then (3.13) holds. If f is decreasing function on [a,b] , then (3.13) holds.

REMARK 3.14. If f is a positive increasing concave function and if we substitute
g(t)=t—a, w(t) =1 in (3.13), then we obtain the refinement of the classical Favard’s
inequality.
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The following theorem is the refinement of the majorization inequality given in
[12].

THEOREM 3.15. Let p= (p1,p2,---sPn), X= (X1,...,%,) and y = (y1,...,yu) be
positive n-tuples. Let ¢,y : [0,00) — R be such that  is strictly increasing function
and ¢ oy~ is convex. Also suppose that

k k
Epil// Vi) Zp,l// x;) fork=1,..n—1, (48)
i=1 i=1
and i )
D piv(yi) =Y piv(x) (49)
i=1 i=1
hold.

(i) If'y is decreasing n-tuple, then we have
n n
> pio (xi) — Y. pio (i)
i=1 i=1

0 (xi) — 0 ()| = gpilw oy D (W) (w(x) — w(v)] ‘ - (50)

(ii) If X is increasing n-tuple, then we have
n n
> it (vi) = Y pi¢ (xi)
i=1 i=1

0 (vi) — ¢ (xi) | = gpilw oy (W) (w(vi) — ll/(xi))|‘ - (3D

Proof. By using Theorem 3.1 for the convex function f(x) = ¢ o w~!(x) and the
for the n-tuples (ay,..,a,) and (by,..,b,), where a; = y(x;),b; = 14/( i), we obtain the
required inequalities. [J

Integral version of the above theorem is stated as:
THEOREM 3.16. Let w, f,g be positive integrable functions on [a,b]. Suppose

0,y :[0,00) — R are such that v is strictly increasing function and ¢ oy~ is convex.
Also suppose that

/ax w(s())w / v(f t)dt forall x € |a,b)

b b
| wteomiordr = [ i

and

hold.
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(i) If g is a decreasing function on |a,b|, then the following inequality holds
b b
[ otrwr— [ o (g wieya
b

> ' [ w0]6 ()o@l [ w90, (W) (wlr) - wle)la|
(52)

(ii) If f is an increasing function on |a,b], then the following inequality holds
b b
| ot@wa= [ 6w

b b
> | [wolot@- 00— [Twl@e v vt - winla
(53)

The following theorem is the refinement of the generalized discrete weighted
Berwald’s inequality.

THEOREM 3.17. Let p= (p1,p2,---sPn), X= (X1,...,%,) and y = (y1,...,yu) be

positive n-tuples. Suppose ¢,y : [0,00) — R are such that y is continuous and strictly
increasing function and ¢ oy~ is convex. Let 7| be such that

> piv(zyi) = Y piv(x). (54)
i=1 i=1
Consider the inequalities

Y it (z1yi) — X, pi® (xi)
i=1 i=1

g jZleW’ (i) = () | - épiw oW (W) (wizy) = w(x,->>|‘ (55)
and
iPﬂP (xi) — iPﬂP (z1yi)
i=1 i=1
> ipi}q) (x7) = ¢ (z1yi) | — ipi| 0oy ™ (w(zy) (W) — wlz)|| - (56)
i=l1 i=1

(i) Let ’y—‘ be a decreasing n-tuple. If X is an increasing n-tuple, then (3.17) holds.
Ify is a decreasing n-tuple, then (3.17) holds.

(ii) Let X be an increasing n-tuple. If y is an increasing n-tuple, then (3.17) holds.
If x is a decreasing n-tuple, then (3.17) holds.
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Proof. In [12] authors has shown the existence of z; and proved that

k k
2 piv(ay) < Y piw(xi) fork=1,...n—1. (57)
i=1 i=1

Now using (54) and (57) in Theorem 3.15, we obtain the required inequalities. [J
COROLLARY 3.18. Let p=(p1,p2,...,Pn) be apositive n-tuple and ¢,y : [0,0)

— R be such that y is continuous and strictly increasing function and ¢ oy~ is
convex. Let z; and zp be such that

Zm (@1(i—1) =Y piv(x) (58)

i=1

and .
Em y(za(n—i) = piv(x). (59)

=1

(i) If X is an increasing concave n-tuple and x|, = 0, then we have

n n

2p1¢(11(i—1)) Epz

i=1 i=1

- il’i|(¢ oy (W) (w(z(i—1)) - llf(xz'))}' :
i=1

l¢ (21(i=1)) = ¢ (x7) |

(ii) If X is an increasing convex n-tuple and x; =0, then we have

n
2 Zp, (z1(i—1))

i=1

- ipi|(¢ oy (wzi (i = 1)) (wlx) — wlz (i~ 1)))}‘ :
i=1

2P:|¢ xl - Zl l_l))’

(iii) If X is a decreasing concave n-tuple and x, =0, then we have

ép,-q) (@(n—i))—épi(b x;) szlq) 2(n—i)— ¢ (x)|

- ipi|(¢ oy (W) (w(za(n—1i)) llf(xz'))ll :
i=1

(iv) If X is a decreasing convex n-tuple and x,, = 0, then we have

n

Z Zpl Zzn—l

i=1

_jzl,,i|(¢ow1>;<w(zz<n_i>>><w(x,-> - W(Zz(n—i)))"'

Zl’l|¢ x;) Z2n_l))’
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The following refinement of the inequalities given in [17] is a simple consequence

of the Theorem 3.17.

X = (X1,.0, ) and Yy = Y1,y n)

COROLLARY 3.19. Let p = (p1,p2,-,Pn),
be positive n-tuples and let y(x) = x4, ¢(x) =xP, where 0 < g < p
Let X be a decreasing n-tuple. If x is an increasing n-tuple, then we have

P P
(zylpix?> T 2?:1171')6 i | ( i=1 Pt ) ¥ =
S piyt A 2? 2 P Lopyl) 0T

pix!
23 i (F )|
l lpyz
Similarly we can give other possible results by using Theorem 3.17

The following corollary is an application of Corollary 3.18
) be positive n-

COROLLARY 3.20. Let p = (p1,p2,---,Pn) and X = (X1,...,X,
tuples and y(x) = x4, ¢(x) = xP, where 0 < g < p. Assume that u =73y} | pi(i—1)

If X is an increasing n-tuple, then

n q 5 n p n n q 5

st )| - EE e LS (gt )

) ; = i n s i
2i=1pi(1_1)q u u\liz Z,-=1pi(l—1)q
n n q
P p—q 2i=1pixi . \g 4
2 St (-t |

Similarly we can give other possible results by using Corollary 3.18

The following theorem is the refinement of the extension of the weighted Berwald

inequality given in [11].
. Suppose

THEOREM 3.21. Let w, f,g be positive integrable functions on |a,b]
0,y :[0,00) — R are such that v is continuous and strictly increasing function and

Uis convex. Let z; be such that

doy
b b
| vas@wod = [y ramwear 60)
Consider the inequalities
b b
[ oy ["o i > | ["wilo Graw) - o 1) a
1)))l|dt (61)

[ w16 ey W) wago) - w0
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and

b b b
[ ot [ ocewina > | [ wolo (r0) -0 Grsto) a
[ w0@ow Y (wasON W) - vasOD|al. @)

(i) Let be decreasing function on [a,b]. If f is an increasing function on [a,b],
then (61) holds. If g is decreasing function on [a,b], then (62) holds.

(ii) Let be increasing function on [a,b]. If g is an increasing function on |a,b],
then (62) holds. If f is decreasing function on [a,b] , then (61) holds.

REMARK 3.22. If z; > 0, where z; is defined in Theorem 3.21, f is a positive in-
creasing concave function and g(r) = 7=%, then (61) gives refinement of the weighted
Berwald’s inequality.

REMARK 3.23. We can obtain integral version of Corollary 3.19 as an application
of Theorem 3.21.
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