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OPERATOR MONOTONE FUNCTIONS, A > B >0 AND logA > logB
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Abstract. Let f(t) be any non-constant operator monotone function on [0,e0) and also let A
and B be strictly positive operators on a Hilbert space H .

(1) If A > B, then the following inequality holds:
f(A%) > f(B*) forall o€ (0,1].

(ii) If logA > log B, then there exists 3 € (0,1] and following inequality holds:
f(A%) > f(B%) forall a€(0,B].

1. A>B>0, logA > logB and logA > logB

A capital letter means a bounded linear operator on a complex Hilbert space H .

An operator T is said to be positive (denoted by T > 0) if (Tx,x) >0 forall x € H
and an operator 7T is said to be strictly positive (denoted by T > 0) if T is positive and
invertible. Chaotic order is defined by logA > logB for strictly positive operators A
and B, and also strictly chaotic order is defined by logA > logB for strictly positive
operators A and B. The well known celebrated Lowner-Heinz inequality asserts that
if A= B >0, then A* > B* for any o € [0, 1]. This means that z — % is operator
monotone. Another well known example of operator monotone is ¢ — logz on (0,),
that is, logA > log B is weaker than the usual order A > B > 0.

We consider the following two operator monotone functions on (0,c°) in [8, p.
151] and [10, p. 131]:

t—1 tlog—t+1
nd _ &.

o) = Togr w() (L.1)
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THEOREM A. Let A and B be strictly positive operators on a Hilbert space H .
If log > log B, then there exists § € (0,1] and the following inequalities hold:

©(A%) > @(B¥) forall o€ (0,B) (1.2)
and

v(A%) > y(BY) forall a€(0,B) (1.3)
where @(t) and y(t) are defined in (1.1).

THEOREM B. There exist strictly positive operators A and B such that 1ogA >
logB:
O(A%) % o(B%) forany o>0 (1.4)
and
y(A%) % w(B%) forany o >0 (L.5)
where @(t) and y(t) are defined in (1.1).

(1.2) and (1.4) are shown in [5], and (1.3) and also (1.5) are shown in [6].
In §2, we shall show Theorem 2.2 which is a further extension of Theorem A.

2. Relations among A > B, logA > logB for A,B > 0
and operator monotone functions

We study relations among A > B, logA > logB for A,B > 0 and operator mono-
tone functions for strictly positive operators A and B.

THEOREM 2.1. Let A and B be strictly positive operators on a Hilbert space H .
If A > B, then the following inequality holds:

f(A) > f(B) (2.1)

for any non-constant operator monotone function f on [0,).

Proof. Let A > B. Then there exists some € > 0 such that
A—B>el (2.2)
sothat A+s> B-+s+€&> B-+s for s > 0, so that there exists some 0 > 0 such that
(B4+s) '—(A+s)"' =41 (2.3)

It is well known (for examples, [1], [11]) that a function f on [0,) is an operator
monotone if and only if it has the representation

B XY
FO) =a+bi+ /0 ~dm(s)
S2

= a+bt+/0w <s— H_—s)dm(s) (2.4)
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with a € R and b > 0 and a positive measure m on [0,).
Then (2.2), (2.3) and (2.4) ensure the following (2.5)

fM)—fw):bM—By+AﬁﬂB+®*hﬂA+®’@me®>0 (2.5)
so that we have (2.1) by (2.5). O

THEOREM 2.2. Let f(t) be any non-constant operator monotone function on
[0,00) and also let A and B be strictly positive operators.
If logA > logB, then there exists B € (0, 1] and the following inequality holds:

F(A%) > f(BY) forall o€ (0,B]. (2.6)

Proof. Recall the following obvious relation (2.7):
X>Y>0=X">Y" forany ye(0,1]. (2.7)

Infact X >Y >0 ensures X >Y +€l >Y >0 for some € >0, then X" > (Y +¢l)" >
Y7 forany y € (0,1] by Lowner-Heinz inequality and we have (2.7).
[3, Corollary 2] asserts that

logA > logB <= thereexists f € (0,1] suchthat AP >BF. (2.8)

Applying (2.7) for y= % € (0,1] to (2.8), then we have A* > B* for any « € (0, 3],
so that we have (2.6) by Theorem 2.1. [J
REMARK 2.1. We remark that Theorem 2.2 is a further extension of Theorem A

since Theorem 2.2 can be available for any non-constant operator monotone functions
on [0,00).

REMARK 2.2. For a simple proof of (2.7), we have only to put f(¢z) =7 for
y € (0,1] in Theorem 2.1 since f(r) is a typical well known operator monotone. In fact
(2.7) is cited in [2, p. 477, Corollary 8.6.11].

3. Concluding remark and a conjecture

Itis interesting to point out that an interesting contrast between A > B and logA >
logB for A,B > 0 as follows.

REMARK 3.1. Let f(¢) be any non-constant operator monotone function on [0, )
and also let A and B be strictly positive operators.
(1) If A > B, then the following inequality holds:

f(A%) > f(B*) forall o€ (0,1]. (3.1)
(ii) If logA > log B, then there exists B € (0, 1] and the following inequality holds:
fA%) > f(B*) forall o€ (0,B]. (3.2)
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Proof. If A > B, then A* > B% for any o € (0,1] by (2.7) and we have (3.1) by

Theorem 2.1 and (ii) is already shown in Theorem 2.2.

It is reasonable understanding that the condition logA > logB in (ii) is weaker

then A > B > 0 in (i), the corresponding result (3.2) is weaker than (3.1). [

Theorem 2.2, Theorem A and Theorem B suggest the following conjecture.

CONIJECTURE. There exist strictly positive operators A and B such that logA >

logB, but f(A*) % f(B*) for any non-constant operator monotone function f(t) on
[0,00) and for any o > 0.

(4],

We remark that useful and interesting results associated with §2 are discussed in
[7] and [9].
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