
Journal of
Mathematical

Inequalities

Volume 7, Number 1 (2013), 115–128 doi:10.7153/jmi-07-11

STABILIZABILITY FOR NONLINEAR DIFFERENCE
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(Communicated by J. Pečarić)

Abstract. In this paper, we investigate the problem of stabilizability for nonlinear difference
controls systems with multiple delays. We present a generalized discrete Gronwall’s inequality
for stabilizability analysis of this systems. Based on a new Gronwall’s inequality, sufficient
conditions for stabilizability of this systems are obtained. Numerical examples illustrate the
results are given.

1. Introduction and preliminaries

Difference equations are often used to model an approximation of differential
equations, an approach which underlies the development of many numerical methods.
However, there are many situation, for example, recurrence relations and the modelling
of discrete process such as traffic flow with finite number of entrances and etc. [1]–
[7]. In recent years, the various condition for stability and stabilizability of nonlinear
control difference equations systems with multiple delays has been extensively studied
in many methods. Some criteria on stability are presented by employing a Lyapunov
function [5], [7]. The Gronwall’s inequality is an important tool in the study of stability
and stabilizability of this system. In 2000, P. Niamsup and V. N. Phat [2] studied the
asymptotic stabilizability of nonlinear control system described by difference equation
with multiple delays of the form

x(k+1) = Lp,q(xk,uk)+ fp,q(k,xk,uk), k ∈ Z
+, (1)

where

Lp,q(xk,uk) =
p

∑
j=1

Aj(k)x(k− p j)+
q

∑
i=1

Bi(k)u(k−qi),

fp,q(k,xk,uk) = f (k,x(k− p1), . . . ,x(k− pp),u(k−q1), . . . ,u(k−qq)),

where x(k)∈R
n ; u(k)∈R

m , n � m ; Aj(k) and Bi(k) are n×m matrices with k∈Z
+ ,

j = 1,2, ..., p , i = 1,2, ...,q ; f (k, .) : Z
+ ×R

pn×R
qm −→ R

n with p,q � 1, qq � pp ,
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0 = p1 < p2 < · · · < pp , 0 = q1 < q2 < · · · < qq . They consider system (1) with the
initial delay condition

x(k) = x0, k = −pp, . . . ,0. (2)

Unlike differential equation, discrete controls system (1) with initial condition (2)
always has solution for every control sequence u(k) , k = −qq, . . . ,0,1, . . . . They as-
sume that f (k,0, . . . ,0) = 0, k ∈ Z

+ . They also consider the delay system without
controls of the form

x(k+1) =
p

∑
j=1

Aj(k)x(k− p j)+g(k,x(k− p1),x(k− p2), . . . ,x(k− pp)) (3)

where Aj(k) is an n×m matrix, k ∈ Z
+, j = 1,2, ..., p ; p � 1, 0 = p1 < p2 < · · · <

pp ; f (k, .) : Z
+ ×R

pn → R
n is a given vector function satisfying g(k,0, . . . ,0) = 0,

k ∈ Z
+ , ∀x0 ∈ R

n , k0 ∈ Z
+ . The solution of (3) with initial condition x(k) = x0 ,

k = k0 −qq, . . . ,k0 is given by

x(k) = Pkx0 +
k−1

∑
s=k0

Gk
s+1g(s,x(s− p1),x(s− p2), . . . ,x(s− pp)) (4)

where the transition matrix Gk
s+1 , s � k0 satisfy

Gk+1
s =

p

∑
i=1

Ai(k)Gk−pi
s , Gk

k = I, Gk
s = 0, k < s,

and

Pk = Gk
0 +

p

∑
i=2

pi−1

∑
s=0

Gk
s+1Ai(s). (5)

We introduce some notations and definitions that will be used throughout the paper.
R

n− the n dimensional Euclidean vector space,
R

+− the set of all non-negative real number,
Z

+− the set of all non-negative integers,
‖x‖− the Euclidean norm vector x ∈ R

n ,
‖A‖− the norm of matrix A , ‖A‖ = ∑n

i=1 ∑n
j=1 ai j .

DEFINITION 1. The zero solution of system (3) is stable if for every ε > 0 and for
every k0 ∈ Z

+ there is δ > 0 (depending on ε and k0 ) such that ‖x(k)‖ < ε , k � k0,
whenever ‖x0‖ < δ . The zero solution is asymptotically stable if it is stable and there
is δ > 0 such that limk→∞ ‖xk‖ = 0, whenever ‖x0‖ < δ .

DEFINITION 2. The zero solution of system (3) is weakly asymptotically stable if
there is a number δ > 0 such that every solution of the system satisfies limk→∞ ‖xk‖ =
0, whenever ‖x0‖ < δ .
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DEFINITION 3. The control system (1) is stabilizable if there are matrices D(k) ,
k � −qq , such that the system (1) with u(k) = D(k)x(k) is asymptotically stable. The
control u(k) = D(k)x(k) is feedback control of the system.

DEFINITION 4. The control system (1) is weakly stabilizable if there exist control
u(k) , k �−qq , and number δ > 0 such that the solution x(k) according to these control
of system (1) satisfies limk→∞ ‖xk‖ = 0, whenever ‖x0‖ < δ .

LEMMA 1. [2] Assume that there exist numbers K > 0 , w ∈ (0,1) such that

‖Gk
s‖ � Kwk−s, ∀k > s � 0. (6)

Then there is a number K1 > 0 such that ‖Pk‖ � K1wk , k ∈ Z
+ where

K1 = K +
MK(p−1)
wpp(1−w)

, M = max{‖Aj(k)‖, k = 0, . . . , p j −1, j = 2, . . . , p}.

2. Generalized discrete Gronwall’s inequality

In this section, we present some discrete versions of the Gronwall-type inequal-
ity that will be used in studying the stabilizability properties of nonlinear difference
controls systems with multiple delays.

THEOREM 1. Let z(k) : Z
+ → R

+. Assume that

z(k) � Ck +
k−1

∑
s=0

p

∑
j=1

a j(s)z(s− p j)m1 +
k−1

∑
s=0

q

∑
i=1

bi(s)z(s−qi)m2 , (7)

where m1,m2 > 0; pp � qq; a j(k),bi(k) : Z
+ → R

+ , j = 1,2, ..., p, i = 1,2, ...,q;
z(k) � C1 � 1,k = −pp, . . . ,0 and 0 = p1 < p2 < · · · < pp; 0 = q1 < q2 < · · · < qq.
Let m = min{m1,m2}, m = max{m1,m2}, d(s) = ∑p

j=1 a j(s)+∑q
i=1 bi(s) and {Ck}k�1

be a sequence of nonnegative real numbers such that Ck+1 � Ck, Ck ∈ (0,1), k ∈ Z
+.

(a) If m1,m2 � 1, then

z(k) � Cmk

1

k−1

∏
s=0

[1+d(s)], (8)

or

z(k) � (1+Cmk

k )
k−1

∏
s=0

[1+d(s)], (9)

where Cmk

k is increasing, k � −pp .
(b) If m1 � 1 < m2, then

z(k) � C
mk

1
1

k−1

∏
s=0

[1+d(s)]m
k−s−1
2 . (10)
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(c) If m1,m2 > 1, then

z(k) � C1

k−1

∏
s=0

[1+d(s)]m
k−s−1

. (11)

Proof. Case (a) m1,m2 � 1: We can prove this theorem by induction on k ∈ Z
+.

Letting k = 1, the inequality (7) gives

z(1) � C1 +
p

∑
j=1

a j(0)z(−p j)m1 +
q

∑
i=1

bi(0)z(−qi)m2

� C1 +
p

∑
j=1

a j(0)Cm
1 +

q

∑
i=1

bi(0)Cm
1

� (Cm
1 )(1+d(0)).

We assume that (8) holds for k = 1,2,3, . . . ,k−1. Using (7) for the step k , we have

z(k) � Ck +
k−1

∑
s=0

p

∑
j=1

a j(s)z(s− p j)m1 +
k−1

∑
s=0

q

∑
i=1

bi(s)z(s−qi)m2

� C1 +
k−2

∑
s=0

p

∑
j=1

a j(s)z(s− p j)m1 +
k−2

∑
s=0

q

∑
i=1

bi(s)z(s−qi)m2

+
p

∑
j=1

a j(k−1)z(k−1− p j)m1 +
q

∑
i=1

bi(k−1)z(k−1−qi)m2 .

By induction assumption, we obtain

z(k) � Cmk−1

1

k−2

∏
s=0

[1+d(s)]+
p

∑
j=1

a j(k−1){Cmk−1−p j

1

k−2−p j

∏
s=0

[1+d(s)]}m1

+
q

∑
i=1

bi(k−1){Cmk−1−qi
1

k−2−qi

∏
s=0

[1+d(s)]}m2 .

For m � {m1,m2} � 1, Ck � 1, k ∈ Z
+ , we see that Cm1.mk−1−p j

1 � Cmk−p j

1 � Cmk

1 ,

Cm2.m
k−1−qi

1 � Cmk−qi
1 � Cmk

1 , j = 1, . . . , p , i = 1, . . . ,q,

k−2−p j

∏
s=0

[1+d(s)]m1 �
k−2

∏
s=0

[1+d(s)], j = 1, . . . , p,

k−2−qi

∏
s=0

[1+d(s)]m2 �
k−2

∏
s=0

[1+d(s)], i = 1, . . . ,q.
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Thus,

z(k) � (Cmk−1

1 )
k−2

∏
s=0

[1+d(s)]+
p

∑
j=1

a j(k−1){(Cmk

1 )
k−2

∏
s=0

[1+d(s)]}

+
q

∑
i=1

bi(k−1){(Cmk

1 )
k−2

∏
s=0

[1+d(s)]}

� (Cmk

1 )
k−1

∏
s=0

[1+d(s)],

which implies that (8) holds for the step k .
Another of case (a): It is easy to verify (9) for k = 1. We assume that (9) holds

for steps k = 1,2,3, . . . ,k−1. Using (7) for the step k , we have

z(k) � Ck +
k−1

∑
s=0

p

∑
j=1

a j(s)z(s− pi)m1 +
k−1

∑
s=0

q

∑
i=1

bi(s)z(s−q j)m2

� Ck−1 +
k−2

∑
s=0

p

∑
j=1

a j(s)z(s− p j)m1 +
k−2

∑
s=0

q

∑
i=1

bi(s)z(s−qi)m2

+
p

∑
j=1

a j(k−1)z(k−1− p j)m1 +
q

∑
i=1

bi(k−1)z(k−1−qi)m2 .

By induction assumption, we obtain

z(k) � (1+Cmk−1

k−1 )
k−2

∏
s=0

[1+d(s)]

+
p

∑
j=1

a j(k−1){(1+Cmk−1−p j

k−1−p j
)

k−2−p j

∏
s=0

[1+d(s)]}m1

+
q

∑
i=1

bi(k−1){(1+Cmk−1−qi
k−1−qi

)
k−2−qi

∏
s=0

[1+d(s)]}m2.

For m � {m1,m2} � 1, Ck � 1, k ∈ Z
+ , it is easy to see that (1+Cmk−1−p j

k−1−p j
)m1 � (1+

Cmk−1−p j

k−1−p j
) � (1 + Cmk−1

k−1 ) , (1 + Cmk−1−qi
k−1−qi

)m1 � (1 + Cmk−1−qi
k−1−qi

) � (1 + Cmk−1

k−1 ) ,
j = 1, . . . , p , i = 1, . . . ,q,

k−2−p j

∏
s=0

[1+d(s)]m1 �
k−2−p

∏
s=0

[1+d(s)], j = 1, . . . , p,

k−2−qi

∏
s=0

[1+d(s)]m2 �
k−2

∏
s=0

[1+d(s)], i = 1, . . . ,q.
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Therefore, we obtain

z(k) � (1+Cmk−1

k−1 )
k−2

∏
s=0

[1+d(s)]+
p

∑
j=1

a j(k−1){(1+Cmk−1

k−1 )
k−2

∏
s=0

[1+d(s)]}

+
q

∑
i=1

bi(k−1){(1+Cmk−1

k−1 )
k−2

∏
s=0

[1+d(s)]}

� (1+Cmk−1

k−1 )
k−1

∏
s=0

[1+d(s)]

� (1+Cmk

k )
k−1

∏
s=0

[1+d(s)],

which implies that (9) holds for the step k .
Case (b) m1 � 1 < m2 : It is easy to verify (10) for k = 1. Assume that (10) holds

for steps k = 1,2,3, . . . ,k− 1. Using (7) for the step k and by induction assumption,
we have

z(k) � C
mk−1

1
1

k−2

∏
s=0

[1+d(s)]m
k−s−2
2

+
p

∑
j=1

a j(k−1){Cm
k−1−p j
1

1

k−2−p j

∏
s=0

[1+d(s)]m
k−s−2−p j
2 }m1

+
q

∑
i=1

bi(k−1){Cmk−1−qi
1

k−2−qi

∏
s=0

[1+d(s)]m
k−s−2−qi
2 }m2 .

Similar to Case (a), we see that C
m1.m

k−1−p j
1

1 � C
m

k−p j
1

1 � C
mk

1
1 , C

m2.m
k−1−qi
1

1 � C
m

k−qi
1

1 �
C

mk
1

1 , j = 1, . . . , p , i = 1, . . . ,q,

k−2−p j

∏
s=0

[1+d(s)]m1.m
k−s−2−p j
2 �

k−2

∏
s=0

[1+d(s)]m
k−s−1
2 , j = 1, . . . , p,

k−2−qi

∏
s=0

[1+d(s)]m2.m
k−s−2−p j
2 �

k−2

∏
s=0

[1+d(s)]m
k−s−1
2 , i = 1, . . . ,q.

Therefore, we obtain

z(k) � (Cmk
1

1 )
k−2

∏
s=0

[1+d(s)]m
k−s−1
2 +

p

∑
j=1

a j(k−1){(Cmk
1

1 )
k−2

∏
s=0

[1+d(s)]m
k−s−1
2 }

+
q

∑
i=1

bi(k−1){(Cmk
1

1 )
k−2

∏
s=0

[1+d(s)]m
k−s−1
2 }

� (Cmk
1

1 )
k−1

∏
s=0

[1+d(s)]m
k−s−1
2 ,
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which implies (10) for the step k .
Case (c) m1,m2 > 1 : We can prove by the same way of case (b). Therefore, the

proof of this theorem is complete. �

COROLLARY 1. Let z(k) : Z
+ → R

+. Assume that

z(k) � Ck +
k−1

∑
s=0

p

∑
j=1

a j(s)z(s− p j)m

where m > 0; p � 1; a j(k) : Z
+ → R

+ , j = 1,2, ..., p; z(k) � C1 � 1 , k = −pp, . . . ,0
and {Ck}k�1 is a sequence of nonnegative real numbers such that Ck+1 � Ck , Ck ∈
(0,1) , k ∈ Z

+.
(a) If m � 1, then

z(k) � Cmk

1

k−1

∏
s=0

[1+
p

∑
j=1

a j(s)],

or

z(k) � (1+Cmk

k )
k−1

∏
s=0

[1+
p

∑
j=1

a j(s)].

where Cmk

k is increasing, k � −pp .
(b) If m > 1, then

z(k) � C1

k−1

∏
s=0

[1+
p

∑
j=1

a j(s)]m
k−s−1

.

3. Stabilizability results

In this section, we present sufficient conditions for the stabilizability and stability
of system (1). We consider the system (1) where Bi(k) = 0 of the form

x(k+1) =
p

∑
j=1

Aj(k)x(k− p j)+ fp,q(k,xk,uk), k ∈ Z
+. (12)

Associated with condition (6), we consider two conditions

∃K > 0, w ∈ (0,1), ‖Gk
s‖ � Kw2k−s, ∀k > s � 0, (13)

and

∃K > 0, w ∈ (0,1), ‖Gk
s‖ � Kw2∑k−1

i=s mi
, ∀k > s � 0. (14)

In the sequel we assume that ∃a j(k),bi(k) : Z
+ −→ R

+ , j = 1,2, ..., p , i = 1,2, ...,q,
such that

‖ f (k,x1, . . . ,xp,u1, . . . ,uq)‖ �
p

∑
j=1

a j(k)‖x j‖m1 +
q

∑
i=1

bi(k)‖ui‖m2 , (15)
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where m1,m2 > 0; p,q ∈ Z
+. Let us set

lp j (k) = wm1 ∑
k−p j−1
i=0 mi

2−∑k−1
i=0 mi

2+1,

lqi(k) = wm2 ∑
k−qi−1
i=0 mi

2−∑k−1
i=0 mi

2+1,

l p j (k) = wm1 ∑
k−p j−1
i=0 mi−∑k−1

i=0 mi+1,

l qi(k) = wm2 ∑
k−qi−1
i=0 mi−∑k−1

i=0 mi+1.

THEOREM 2. Assume that the conditions (13) and (15) are satisfied. Suppose that
there exist D(k), k � −qq, are (n×m) matrices.

(a) If m1,m2 � 1, there exists w ∈ (0,1) so that

lim
k→∞

[
p

∑
j=1

a j(k)w−k+km1 +
q

∑
i=1

bi(k)‖D(k−qi)‖m2w−k+km2 ] = 0. (16)

Then the system (12) is weakly stabilizable.
In another of case (a), assume that the following conditions hold.
(i) There exist δ ∈ (0,1) and w ∈ (0,1) such that

Cmk

k � Cmk+1

k+1 , k � −pp where Ck = K1w
kδ � 1 (17)

where K1 is defined by Lemma 1.
(ii) Equation (16) holds. Then the system (12) is weakly stabilizable.
(b) If m1 � 1 < m2, and there exist w ∈ (0,1) and K > 0 so that

lim
k→∞

p

∑
j=1

a j(k)lp j (k)+
q

∑
i=1

bi(k)‖D(k−qi)‖m2 lqi(k)] = 0 (18)

and we assume the condition (14) instead of (13). Then the system (12) is weakly
stabilizable.

(c) If m1,m2 > 1, and there exist w ∈ (0,1) and K > 0 so that

lim
k→∞

[
p

∑
j=1

a j(k) l p j(k)+
q

∑
i=1

bi(k)‖D(k−qi)‖m2 l qi(k)] = 0 (19)

and we assume the condition (14) instead of (13). Then the system (12) is stabilizable.
The feedback controller of (12) is given by u(k) = D(k)x(k).

Proof. Given w ∈ (0,1) and choose δ ∈ (0,1) so that K1wkδ � 1. The solution
of system (12) is given by

x(k) = Pkx0 +
k−1

∑
s=0

Gk
s+1 f (s,x(s− p1), . . . ,x(s− pp),u(s−q1), . . . ,u(s−qq)).
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Then, we have

‖x(k)‖ � K1w
2k‖x0‖+

k−1

∑
s=0

Kwk−s−1
( p

∑
j=1

a j(k)‖xk−p j‖m1 +
q

∑
i=1

bi(k)‖uk−qi‖m2

)
.

Setting u(k) = D(k)x(k) , k � −qq, we obtain

w−k‖x(k)‖ � K1w
kδ +

k−1

∑
s=0

Kw−s−1
p

∑
j=1

a j(k)‖xk−p j‖m1

+
k−1

∑
s=0

Kw−s−1
q

∑
i=1

bi(k)‖D(k−qi)‖m2‖x(k−qi)‖m2 .

for ‖x0‖ < δ . Let us set

C1 = K1w
−ppδ ,

Ck = K1w
kδ ,

z(k) = w−k‖x(k)‖,
a j(k) = Kw−k−1+km1−m1 p j a j(k),

bi(k) = Kw−k−1+km2−m2qibi(k)‖D(k−qi)‖m2 ,

d(k) =
p

∑
j=1

a j(k)+
q

∑
i=1

bi(k).

We have

‖z(k)‖ � Ck +
k−1

∑
s=0

p

∑
j=1

a j(s)‖z(s− p j)‖m1 +
k−1

∑
s=0

q

∑
i=1

bi(s)‖z(s−qi)‖m2 . (20)

Case (a) m1,m2 � 1: Applying Theorem 1 to the inequality (20), we obtain

‖x(k)‖ � Cmk

1

k−1

∏
s=0

(
w+

p

∑
j=1

Kw−s+sm1−m1 p ja j(s)

+
k−1

∑
s=0

Kw−s+sm2−m2qibi(s)‖D(k−qi)‖m2

)
.

By assumption (16), there are N ∈ N , l ∈ (0,1−w) such that

w+
p

∑
j=1

Kw−k+km1−m1 p ja j(k)+
k−1

∑
s=0

Kw−k+km2−m2qibi(k)‖D(k−qi)‖m2 � w+ l := v < 1,

for all k � N and Cmk

1 = (K1w−ppδ )mk � 1. Therefore, we obtain

‖x(k)‖ � MNvk−N , k � N.



124 K. MUKDASAI AND P. NIAMSUP

It implies that limk→∞ ‖xk‖ = 0, whenever ‖x0‖ < δ . Therefore, the system (12) is
weakly stabilizable by the feedback control u(k) = D(k)x(k) .

In another of case (a), it is very clear that the system (12) is weakly stabilizable by
using the same way of case (a).

Case (b) m1 � 1 < m2 : We consider the condition (18) and by the same arguments
that used in the proof of Lemma 2.1 [2], we can find some number K2 > 0 such that

‖Pk‖ � K2w
2∑k−1

i=0 mi
, k ∈ Z

+.

We obtain the following estimation the solution of system (12) of the form
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Multiplying both sides of inequality by w−∑k−1
i=0 mi

, we obtain
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for ‖x0‖ < δ . Let us set

C1 = K2wδ ,

Ck = K2w∑k−1
i=0 mi

2δ ,

z(k) = w−∑k−1
i=0 mi‖x(k)‖,
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q
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Applying Theorem 3.1 to above inequality, we obtain
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By assumption (18), there are N1 ∈ N , l ∈ (0,1−w) such that

w+
p

∑
j=1

Klpj(k)a j(k)+
q

∑
i=0

Klqi(k)bi(k)‖D(k−qi)‖m2 � w+ l := v < 1,

for all k � N1 and C
mk

1
1 = (K2wδ )mk

1 � 1. Therefore, we obtain

‖x(k)‖ � MN1v
k−N1 , k � N1.

It implies that limk→∞ ‖xk‖ = 0, whenever ‖x0‖ < δ . Therefore, the system (12) is
weakly stabilizable by the feedback control u(k) = D(k)x(k) .

Case (c) m1,m2 > 1: The proof can show by the same way in case (b). Therefore,
the proof of this theorem is complete. �

COROLLARY 2. Assume the condition (13) holds and suppose that

‖g(k,x1, . . . ,xp)‖ �
p

∑
j=1

a j(k)‖x j‖m,

where m > 0,a j(k) : Z
+ → R

+ , j = 1,2, ..., p.
(a) If m � 1, and there exists w ∈ (0,1) so that

lim
k→∞

p

∑
j=1

a j(k)w−k+km = 0 (21)

then the system (3) is weakly asymptotically stable.
In another of case (a), We assume that the following conditions hold.
(i) There exist δ ∈ (0,1) and w ∈ (0,1) such that

Cmk

k � Cmk+1

k+1 , k � −pp where Ck = K1w
kδ � 1 (22)

where K1 is defined by Lemma 1.
(ii) Equation (21) holds. Then the system (3) is weakly stabilizable.
(b) If m > 1, and there exist w ∈ (0,1) and K > 0 so that

lim
k→∞

p

∑
j=1

a j(k)wm∑
k−p j−1
i=0 mi−∑k−1

i=0 mi
= 0 (23)

and we assume the condition (14) instead of (13). Then the system (3) is asymptotically
stable.

4. Numerical examples

EXAMPLE 1. Consider the nonlinear difference controls delay system in R
2 of

the form

x1(k+1) =
1

2k+3 x1(k)+
1
2k u1/3(k)+

1
2k x1/3

1 (k), (24)

x2(k+1) =
1

2k+3 x1(k)− x2(k)+
1

2k+3 x2(k−3)+ ku(k)+
1
2k x1/3

2 (k−3), (25)
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where x1(k),x2(k),u(k) ∈ R. This equations can be the form of system (1), where

A1(k) =
( 1

2k+3 0
1

2k+3 −1

)
, A2(k) =

(
0 0
0 1

2k+3

)
, B1(k) = [0 k]T ,

‖ f (k,x(k),x(k−3),u(k))‖ � 2−k‖u(k)‖1/3 +2−k‖x1(k)‖1/3 +2−k‖x2(k−3)‖1/3 .
We have m1 = 1/3, m2 = 1/3, p = 2, p2 = 3, q = 1, a1(k) = 2−k , a2(k) = 2−k ,

b1(k) = 2−k. For the feedback control u(k) = D(k)x(k) with D(k) = [0 1/k] , we
obtain

C1(k) = A1(k)+B1(k)D(k) =
( 1

2k+3 0
1

2k+3 0

)
, C2(k) = A2(k).

It is easy to verify that the transition matrix Gk
s of the equations (24)–(25) satisfies (13),

where K = 1, w = 1/2 and the condition (16) can do it. Therefore, (24) and (25) are
weakly stabilizable. �

EXAMPLE 2. Consider the nonlinear difference controls delay system in R
2 of

the form

x1(k+1) =
1

5k+4 x1(k)+
1

5k+4 x2(k)+
1
5k u1/4(k)+

1
5k x1/4

1 (k), (26)

x2(k+1) = −kx1(k)− x2(k)+
1

5k+4 x2(k−3)+ k2u(k)+
1
5k x1/4

2 (k−3), (27)

where x1(k),x2(k),u(k) ∈ R. This system is the form of system (1), where

A1(k) =
( 1

5k+4
1

5k+4

−k −1

)
, A2(k) =

(
0 0
0 1

5k+4

)
, B1(k) = [0 k2]T ,

‖ f (k,x(k),x(k− 3),u(k))‖ � 5−k‖u(k)‖1/4 + 5−k‖x1(k)‖1/4 + 5−k‖x2(k− 3)‖1/4. We
have m1 = 1/4, m2 = 1/4, p = 2, p2 = 3, q = 1, a1(k) = 5−k , a2(k) = 5−k , b1(k) =
5−k. For the feedback control u(k) = D(k)x(k) with D(k) = [1/k 1/k2] , we get

C1(k) = A1(k)+B1(k)D(k) =
( 1

5k+4
1

5k+4

0 0

)
, C2(k) = A2(k).

It is easy to verify that the transition matrix Gk
s of the equations (26)–(27) satisfies (13),

where K = 1, w = 1/5. ‖Gk
s‖ � 1

52k−s for k > s � 0. Next, we will show that (16) and

(17) hold. We choose w = 1/5, K1 = 5, δ = (1/5)7 and we can see that

Cmk

k � Cmk+1

k+1 , ∀k � −p2 where Ck = 5

(
1
5

)k+7

and

lim
k→∞

a1(k)w−k+ k
4 +a2(k)w−k+ k
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+
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w−k+ k

4
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5−k5k− k
4 +5−k5k− k

4 +5−k
(
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+
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Therefore, the equations (26) and (27) are weakly stabilizable. �

EXAMPLE 3. Consider the nonlinear difference controls delay system in R
2 of

the form

x1(k+1) =
1

42k+4 x1(k)+
1

42k+4 x2(k)+2−2k−1−ku2(k)+2−2k−1−2k−2−kx1/4
1 (k), (28)

x2(k+1) = −k2x1(k)− kx2(k)+
1

42k+4 x2(k−3)+ k3u(k), (29)

where x1(k),x2(k),u(k) ∈ R. This system is the form of system (1), where

A1(k) =
( 1

42k+4
1

42k+4

−k2 −k

)
, A2(k) =

(
0 0
0 1

42k+4

)
, B1(k) = [0 k3]T ,

‖ f (k,x(k),x(k − 3),u(k))‖ � 2−2k−1−k‖u(k)‖2 + 2−2k−1−2k−2−k‖x1(k)‖1/4 . We have

m1 = 1/4, m2 = 2, p = 1, q = 1, a1(k) = 2−2k−1−2k−2−k , b1(k) = 2−2k−1−k. For the
feedback control u(k) = D(k)x(k) with D(k) = [1/k 1/k2] , we get

C1(k) = A1(k)+B1(k)D(k) =
( 1

42k+4
1

42k+4

0 0

)
, C2(k) = A2(k).

It is easy to verify that the transition matrix Gk
s of the system (28)–(29) satisfies (14)

for K = 1, w = 1/4 and the condition (18) can do it. Therefore, the system (28)–(29)
is weakly stabilizable. �

EXAMPLE 4. Consider the nonlinear difference controls delay system in R
2 of

the form

x1(k+1) =
1

33k+4
x1(k)+

1

33k+4
x2(k)+3−3k−1−ku3(k)+3−3k−1−kx3

1(k), (30)

x2(k+1) = −kx1(k)− x2(k)+
1

53k+4
x2(k−3)+ ku(k), (31)

where x1(k),x2(k),u(k) ∈ R. This system is the form of control system (1), where

A1(k) =

(
1

33k+4
1

33k+4

−k −1

)
, A2(k) =

(
0 0
0 1

53k+4

)
, B1(k) = [0 k2]T ,

‖ f (k,x(k),x(k−3),u(k))‖� 3−3k−1−k‖u(k)‖3+3−3k−1−k‖x1(k)‖3. We have m1 = m2 =
3, p = 2, p2 = 3, q = 1, a1(k) = 3−3k−1−k , a2(k) = 0, b1(k) = 3−3k−1−k. For the feed-
back control u(k) = D(k)x(k) with D(k) = [1/k 1/k2] , we get

C1(k) = A1(k)+B1(k)D(k) =

(
1

33k+4
1

33k+4

0 0

)
, C2(k) = A2(k)

We consider in the same way of Example 3 for this feedback control. Therefore, the
system (30)–(31) is stabilizable. �
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5. Conclusion

In this paper, we study nonlinear difference controls systems with multiple delays
on control and states. We present a generalized discrete Gronwall’s inequality. Based
on a new Gronwall’s inequality, sufficient conditions for stabilizability are obtained.
Numerical examples illustrate the results are given.
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