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A MULTIPLE OPIAL TYPE INEQUALITY FOR THE
RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES

M. ANDRIC, J. PECARIC AND 1. PERIC

(Communicated by A. Agli¢ Aljinovic)

Abstract. The aim of this paper is to prove a multiple Opial type inequality for RL fractional
derivatives which is proved for two factors and ordinary derivatives by Fink in [6]. Two methods
are applied and a comparison of the obtained estimations is also given.

1. Introduction

In 1960. Z. Opial [8] proved the following inequality:
Let f € C'[0,h] be such that £(0) = f(h) =0 and f(x) >0 for x € (0,h). Then

h , h h ,
|l wlar<g [ ax, (L.1)

where h/4 is the best possible.
One of many it’s generalization over the last 50 years is the next inequality due to
A. M. Fink [6]

2
P

/Oh‘f(i)(x)fU)(x) dx < C(n,i, j,p) 2175 (/Oh‘fm)(x))pdx) .12

where 0 < i< j<n—1, f € AC"[0,h], f(0)=f'(0)=---= f*=1)(0)=0 and ™ ¢
L,[0,h] where p > 1. The constant C(n,i, j, p) was explicitly computed and it is the
best possible for j =i+ 1.

R. P. Agarwal and P. Y. H. Pang noticed in [9] that (1.2) does not hold for j =i
and C(n,i,i,2). In the same paper they gave a weighted multiple version of (1.2) for
ordinary derivatives using different method and without the best possible cases.

The main goal of this paper is to give a multiple version of (1.2) for the Riemann-
Liouville fractional derivatives using Fink’s method.

First we survey some facts about the Riemann-Liouville fractional derivatives
needed in this paper. For more details see monographs [7, Chapter 2] and [10, Chapter
1].
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Let x > 0. By C™[0,x] we denote the space of all functions on [0,x] which have
continuous derivatives up to order m, and AC|0,x] is the space of all absolutely continu-
ous functions on [0,x]. By AC™[0,x] we denote the space of all functions g € C"~1[0,x]
with g1 € AC[0,x].

By L,[0,x], 1 < p < eo, we denote the space of all Lebesgue measurable functions
f for which |f?| is Lebesgue integrable on [0,x], and by L..[0,x] the set of all functions
measurable and essentially bounded on [0,x]. Clearly, L..[0,x] C L,[0,x] forall p > 1.

Let v >0 and n = [v]+ 1 where [v] is the integral part of v. For f € L{[0,x] the
Riemann-Liouville fractional integral of f of order v is defined by

6 = s [ 60" e, se o,

where T is the gamma function, and for f: [0,x] — R the Riemann-Liouville fractional
derivative of f of order v by

_dvy 1 a

DY f(s) = a5 ():mﬁ/os(s—f)"_v_lf(t)dt.

In addition, we stipulate
Df:=f=J% JVf:=D"fif v>O0.

If ve N then DVf = % is the ordinary v -order derivative.

The space J¥(L;[0,x]) is defined as the set of all functions f on [0,x] of the form
f=JVe forsome @ € L;[0,x], [10, Chapter 1, Definition 2.3]. According to Theorem
2.3in [10, p. 43], the latter characterization is equivalent to the condition

JVF € AC[0,x], (1.3)

den—Vf
dsi
A function f € L;[0,x] satisfying (1.3) is sad to have an integrable fractional derivative
DVf, [10, Chapter 1, Definition 2.4].

(0)=0, j=0,1,....,n—1.

LEMMA 1. [2, Lemma 1.2] Let v >0 and n=[v]+ 1. A function f € L,]0,x]
has an integrable fractional derivative DY f if and only if

D" kfeClox],k=1,...,n, and D'"'f e AC[0,].

Furthermore, f € JV(L1[0,x]) if and only if f has an integrable fractional derivative
DV f and satisfies the conditions

D" *f(0)=0 fork=1,...,n.
LEMMA 2. [10, Chapter 1, Theorem 2.5] The law of indices
JuJVf — JM+Vf

is valid in the following cases
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(i) v>0, u+v>0,and f € Li[0,x].
(ii) v<0,u>0,and f€J V(L]0,x]).
(ii)) u<0, u+v<0,and feJ " (L[0,x]).
The following theorem is a simple consequence of Lemma 2 (ii) and gives the

basic identity in deducing Opial type inequalities.

THEOREM 1. [2, Theorem 1.4] Let v >y > 0. Assume f € L[0,x] has an inte-
grable fractional derivative D" f € L..[0,x] such that DV f(0) =0 for k=1,...,[v]+
1. Then

l S
D" f(s :7/ s—0)V " IDVF()dr, sel0,x]. 1.4
16) = Fy =gy y =00 0, (1.4)
In Section 2 we give two versions of our multiple Opial type inequality involving
the Riemann-Liouville fractional derivatives. The proof of the first version is based on
the Fink’s idea from [6] and the second on the method presented in [9]. Comparison

of the obtained estimations is also given. In Section 3 we present another approach to
identity (1.4).

2. Opial type inequalities

Our main result is the following theorem which is a multiple generalization of the
main theorem from [6].

THEOREM 2. Let v> 2> i+ 1, 4; 20,i=2,....om, meN, m>2. Sy ppose
that f:[0,x] — R is such that identity (1.4) holds for all pairs {v,u;}, i=1,.
If p,q> 1 are such that 1/p+1/q=1 and D" f € Lp[0,x], then

[ T slae<ni ([ 107s0rar) e

where Ty (x) is given by

m

_ZI(V*ui)H*%
Xi=
Tl(x) - m—1 b
1 m m m q
mr qa (v—u) (v — U+ é) a le(v — L) [_ZI(V —u)+1- %]
= 1=
Inequality (2.1) is sharp for 0 = Uy +1=--- = Wy, + 1, and equality in this case is

achieved for a function f such that D" f(t) = C(x — t)lﬂ’(v_“l) .
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Proof. Write o = v —u;—1, i =1,...,m. Using identity (1.4), the triangle
inequality and the Fubini’s theorem, we have

[T solar

i=1

1 X m X v . B ai |
) mi/o (l_Il/O DY ()] (1 —1;) ¢ dn) dt

MMT(e;+1)
i=1
= m;/ mH\DVf(ti)\ (/ H(T—ti)ffd'L') dt, - dty,
I1 (o + 1) 704" i=1 (U
i=1
N / H‘va (/ [ _ti)aid’f> dty ---dty,
H (o +1) (0] ;2 max{f|,...m} j—|
i=1
= / H‘va )] (/ Z H —li)a”(i)d‘L') dty---dt ,
(Xl + 1 A = Im eS, i=
i=1

(2.2)

where (T—1;)+ = %‘1_”‘, An={(t1,.. . tm) 1 0<t) <+ <ty < x} and Sy, is the
group of all permutations of the set {1,2,...,m}. The last equality in (2.2) follows by
dividing the cube [0,x]" into parts where 0 <t (1) <lg(2) < -+ < gy < x for some
7 € S;y and symmetry of the involved expressions. Suppose that 7 € S, is given and
suppose that j € {1,...,m} is such that 7(j) = 1. We have

m

H( T — ;)% 0)

i=1

_ H —t -0 — l _ OCIH 061+1

i#] i#]
z i—(m—1) +1
< -2 " e [T —nym, (2.3)
i#]j
Using (2.3) we obtain estimation
m
/ EH — ;)% 0 dt
Im esS,, i=
(m—l)z/x S a—(m-)(on+1) d [ vl
< T—1)2 — T—1)"" |dt
ot ) ) 7 (He=n
(m—l)' Zal (mfz)(al“rl) " o +1
—t — ;)™ 2.4
(X1+l ( 1) g(-x l) ) ( )

where the last estimation in (2.4) easily follows by using integration by parts.
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Set
(m—1)!

(04 +1) f[ll"(oc,-+ )

A:

It follows
/H|D“’ 7)|dt
/H\DV f(t) (/ ZH —tza")dr>dtm.d

Im ges,, i=

(e +1)

Z i—(m=2) (o +1) "
A/ H|vatz —1‘1) oi—( ) )H(x_ti)al+ldtm"'dt1

Am i= =2

x S - (m—2)(ay+1 x
= [T ® T D G an [ ) DY )
0 I

X
. / (= 1) A |DY £ (1) |l 2.5)
Im—1
Applying Holder’s inequality on the last integral in (2.5) we get

[ =) D" f(e)] diy
In—1

1
<(/ (x—tm>4<al+1>dzm>q</ |DVf<tm>|Pdtm)”
b1 In—1

m

o144 x b
= G—tw) </ |va(tm)|pdtm) ) (2.6)
(o + )+ 17 Vi

U~

Therefore

1

[P0 )l ([ 10 )
Im—2 Im

1
X q
< (/ (x_tm1)2q(a1+l)+ldtml)
Im—2

([ [0 Pt )

. 2(0{1+1)-‘v—2 X 2
_ ()C Z‘m72) lq Ll (/ |va(tm)|pdtm)p . (27)
Rg(og+1)+2]s 2p \Vin2
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Next step gives us

/ (x— 1) HY HDV<mzﬁ|(/
-3 1

m— m—2
1

< ( / ) (x—tmz)3’f<"”“)“dtmz> !
Im—3
X X 2
« l / DY fim_2)|? ( / DY f(tm)|pdtm> dtmzl
tm—3 m—2

3

(x_tm_3)3(061+1)+ 1 </x v ?

= — [DY f(tw)|Pdty, | .
Ba(on+1)+3)¢ 37 \Jins

1
P

Finally, we have

X m
/H|D“’ 7)|dt

x S = (m—2)(ay+1
< A wa/@—n%f( " DY )
(m—=2)g(oy+1)+1]" 7

m— m—

D)oL . nel
x (x=1) 2 ) ( / |D"f(tm)”dtm> " an
—1 p

[m— D)g(on + 1) +m—1]7 (m

A * Za,+1+m

- xX—t DV t dl

(m_l)![fl(a1+l)+1]m71/()( ) |DY f(t1)|dy
m—1

X (/XDVf(tm)Pdtm) ! dt

1 X qg 0;+g+m—1
< 7 — (A (x—tl) i=1 dl‘1>

[TT (i +1) (o +1)[glon +1) + 1] 7

i=1
X X m—1 %
[ies s ([ 10 ) dn]
0 f

Z a,+l+f
1 xi=1

T T(ei+ 1) (o + D) [glo + 1)+ 17 [g(F o4+ 1) +m]a

i=1 i=1

AT G
X— / |D f(tm)‘pdtm
mp \/0

This proves inequality (2.1).

2
va(tm)pdtm) ' dty—>

(2.8)
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Consider the case ) = p+1="--- = u,, + 1 and a function f such that DY f(r) =

Clx—r1)?r p(v=im) . Straightforward calculation shows that in this case inequality (2.1) is
sharp. Namely, in this case the both sides of inequality (2.1) are equal to

cm xqm(v—ul)+m

m(q(v — ) + 1" [T(v — )" (v — )™

(2.9)
This completes the proof of the theorem. [

REMARK 1. Let m=2, v=neN, yy=jeN, ip=ieN,i<j<n—1and
x = h. Then inequality (2.1) becomes Fink’s inequality (1.2) on [0,A] with Tj(h) =

L 2
C(n7 l,]7p) hzn—l—j-‘rl—F

Next we consider a special case of [3, Theorem 2.1], which gives us the same
Opial type inequality as the previous one, but with a different constant. We give a short
proof for the reader’s convenience.

THEOREM 3. Let p, g > 1 are suchthat 1/p+1/q=1. Let v >,LL,-+%, ui =0
i=1,2,....m, meN, m>=2. Suppose that f :[0,x] — R is such that identity (1.4)
holds for all pairs {v,p;}, i=1,....m. If DV f € Lp[0,x], then

[ fristotan <rio ([0

where Th(x) is given by

al
L

Proof. Write o = v —u;—1, i =1,...,m. Using identity (1.4), the triangle
inequality and Holder’s inequality we have

/ H|D“' 7)|dt

<-— / ] (/0 O"va()|dt)dr

T1 (05 +1)

L ([ema) ([’
<57 T—1)1%dt |DY f(£)|P dt dr
[T (e +1) [ /0 /0
i=1

Z (V “I)+l_m
xi=1

T(x) = T
v+ 18] firv- ) (v-w- 1)

M3

1
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1 x % o T »
- / NN ( / |D"f(t)1’dt>pdr
0 0

= — 1
I1 F(O(i-f— 1) (qOCi-f— 1)5
i=1

m
m 2 OC,'+1+%

1 x P xi=1
< 1</ va(t)”dt> - U
(04 +1)(qoy+1)7 0 Yo+1+7
i=1

3

i=1

REMARK 2. Although the constant 7; gives the best possible estimation in the
case Uy = Ui+ 1,i=2,...,m (see Theorem 2), it seems the constant 7, from Theorem
3 gives the more uniform estimation which is partially justified by the discussion below.

Notice

m % m 1
—u _ m - L)4
L) El(v i) +1 m—i—q} i];Il (v ik 1+q>

T (x 1 m=l
%) m”(V—#1)<V—H1+é> !

Setv—uy=dand gy — ;=06 =1 fori=2,...,m. Then Tr(x) < T (x) is equivalent
to

1

1\4

: < (a-1+1)
m—1 "

1-= 1 1
m m qg m Y 1—= 1 q
(md-l—_zz&-i-l—m—i—q) l_1='[2<d+5,-—1+;) m'“vd (a+1)

l (2.10)
If §; are big enough, then the left side of (2.10) tends to zero, while the right side
depends only of d. Therefore, in this case T>(x) < Tj(x).
Let 6; =1, thatis u; = u;+1, i =2,...,m (see the discussion of sharpness in
Theorem 2). Then the reverse inequality in (2.10) is equivalent to
1
1 (d —1+ 5) !
- é e m—1 *

(d+l>T m'~id <d+$) ‘

q

qd+1 - 1_'_1 q
qgd—q+1 qd) ’

which is equivalent to inequality

gd+1—q $< qd
qd+1 1 +qd

and this is a simple consequence of the Bernoulli’s inequality. This is in accordance

with Theorem 2 and implies that 7, is not the best possible estimation in this case.
Numerical calculations indicate that there is a very narrow area around the best

possible case () = y;+1, i =2,...,m, where T; gives better estimation than 75.

(ma+5)

that is



THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES AND OPIAL INEQUALITIES 147

3. On composition identity (law of indices) for the
Riemann-Liouville fractional derivatives

Here we give another approach to composition identity given in Theorem 1.

THEOREM 4. Let v > v > 0 and let f € AC"|0,x] be such that DV f € L,]0,x]
and DYf € L;[0,x].

(i) If v—y¢N and f is suchthat D"~ *f(0) =0 for k=1,...,[v]+1 and D" f(0)
=0fork=1,...,[y]+1, then

DYf(s) = ﬁ/os(s—t)v‘y‘lef(t)dm seloa]. (D)

(ii) If v—y=1€N and f is such that D" *f(0) =0 for k=1,...,1, then (3.1)
holds.

Proof. Let n=[v]+1, m=[y]+1.
() Define auxiliary function % : [0,) — R with

f0), t € 1[0,x]

no (k)
D o) k,(x) (t—x)k, t>x
k=0

h(t) = (3.2)

Obviously & € AC"(0,00) and DY *h(0) =0, k=1,...,n and D" *h(0) =0, k =
1,...,m. Also h has polynomial growth at o, so the Laplace transform of / exists.
Notice that both sides of (3.1) are integrable functions. The identity (3.1) will follow if
we prove that

1 am s o
WW/O (s =)™ V" h(r)dr
! ’ vV=r— d" ' n—v—
N W/o (s=0)"" IW/O (t=y)""""h(y)dyds (3.3)

holds for s > 0. Using standard properties of the Laplace transform, for the right side
of the equality (3.3) we have

! S e d
2w o0 e o) o)
1 n

vey— d [t .
— e L 02 (G [ o) o
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s [p"f (fe-or o))

n—1 n—k—1 t
-2 Pk% (/0 (t=y)"""""h(y) dy) (0)1
k=0

P e L e
= T L) (20 e) - pv,yk;pk DV ER0)  (3.4)
=p"Z(h)(p). (3.5)

For the left side of (3.3) we have

B

m—1 m—k—1 s
- k;)p" jsmﬁ (/O (S—f)’"_y_lh(t)dt) (0)]

= ﬁl’miﬂ ("7 (p) Z (W) (p) — Iﬁlp"‘lDy"‘h(O) (3.6)

=p’ Z(h)(p). (3.7)

Using (3.5) and (3.7) it follows that both sides of (3.3) have the same Laplace transform
so we conclude that equality holds in (3.3) for s > 0 (see [11]). This completes the proof
of the (7).

(ii) Notice that from v = y+1, I € N, it follows n =m+1. Using (3.6) and (3.4)
it is enough to prove that

m l n

> D (0) = 5 3 P DY R(0),
k=1 A e

which is equivalent to

m

m
Y p D Fn(0) = Y p DT Fn(0),
k=1 k=1-1

which obviously holds by assumption DY =¥f(0) =0 for k=1,...,I. O

There is no an easy way to check the boundary conditions given in Theorem 4. To
give simpler conditions we use the identity

n—1 f(t) (O)I_V'H 1

PO =2 Ty [0t @an 6y

=

which holds for f € AC"[0,x] (see for example [7]).
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PROPOSITION 1. Let v >0, n=[v]+1 and f € AC"[0,x].

(i) If £(0) = f'(0) = - = f"=2)(0) = 0, then D"~ f(0) = DV"2f(0) = -+ =
D" f(0) =0.

(ii) If v¢ N and D'~ f is bounded in a neighborhood of t =0, then f(0) = f'(0) =
= f(n—2)(0) —=0.

Proof. (i) Using (3.8) for v=v —k we have

n—k—1 f(z) (0)t7v+i+k 1

DY f(r) = 26 [(—v+itk+1) T(n-v)

t
[a—ayrtfr i @ar, 3.9
0
where k = 1,...,n— 1, and the implication obviously follows. Notice that f (n—k) ¢
C"k[0,x] for k=1,...,n—1 and DV"f(0) = J"~V £(0) = 0 since f € C[0,x].
(if) Using (3.9) for k =1 we have

n=2 (i) 0 —v+i+l1 1 t
Dv*lf(t) = 2 Jli(_(v):_i+2) T(n—v) /O (t— T)n7V7lf(n71)(T)dT~ (3.10)
i=0

For 0 < v < 1 there is nothing to prove. Suppose v > 1. Multiplying (3.10) with V!
and taking lim,_,o of the both sides of (3.10) it follows f(0) =0. For 1 < v < 2 the
proof is complete. For v > 2 we proceed by induction analogously. [l

In the following corollary we summarize conditions for identity (3.1).

COROLLARY 1. Let v>vy >0, n=[v]+1, m=[y]+ 1. Identity (3.1) is valid
if one of the following conditions holds:
(i) feJ” (L[0,x]).
(ii) J"Vfe€AC"[0,x] and DV*f(0) =0 fork=1,...n.
(iii)y DY=Ff € Cl0,x] for k=1,...,n, DV~ f € AC[0,x] and D"=*f(0) =0 for k =

1,...n.

(iv) f € AC"0,x], DVf € L1]0,x], D'f € L1[0,x], v—y ¢ N, D" *f(0) =0 for
k=1,....,n and DY *f(0) =0 for k=1,...,m.

(v) f€ACY0,x], DVf € L[0,x], D'f € L1[0,x], v—y=1€N, DV *£(0) =0 for
k=1,....1.

(vi) fEAC"[0,x], DVf € L1[0,x], DYf € L1(0,x] and f(0) = f'(0) =--- = f"=2)(0)
=0.

(vii) f€AC"[0,x], DV f € Li[0,x], DVf € L1[0,x], v ¢ N and DV~ f is bounded in
a neighborhood of t = 0.
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