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A MULTIPLE OPIAL TYPE INEQUALITY FOR THE

RIEMANN–LIOUVILLE FRACTIONAL DERIVATIVES
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(Communicated by A. Aglić Aljinović)

Abstract. The aim of this paper is to prove a multiple Opial type inequality for RL fractional
derivatives which is proved for two factors and ordinary derivatives by Fink in [6]. Two methods
are applied and a comparison of the obtained estimations is also given.

1. Introduction

In 1960. Z. Opial [8] proved the following inequality:
Let f ∈C1[0,h] be such that f (0) = f (h) = 0 and f (x) > 0 for x ∈ (0,h) . Then

∫ h

0

∣∣ f (x) f ′(x)
∣∣dx � h

4

∫ h

0

[
f ′(x)

]2
dx , (1.1)

where h/4 is the best possible.
One of many it’s generalization over the last 50 years is the next inequality due to

A. M. Fink [6]

∫ h

0

∣∣∣ f (i)(x) f ( j)(x)
∣∣∣ dx � C(n, i, j, p)h2n−i− j+1− 2

p

(∫ h

0

∣∣∣ f (n)(x)
∣∣∣p dx

) 2
p

, (1.2)

where 0 � i � j � n−1, f ∈ ACn[0,h] , f (0) = f ′(0) = · · ·= f (n−1)(0) = 0 and f (n) ∈
Lp[0,h] where p � 1. The constant C(n, i, j, p) was explicitly computed and it is the
best possible for j = i+1.

R. P. Agarwal and P. Y. H. Pang noticed in [9] that (1.2) does not hold for j = i
and C(n, i, i,2) . In the same paper they gave a weighted multiple version of (1.2) for
ordinary derivatives using different method and without the best possible cases.

The main goal of this paper is to give a multiple version of (1.2) for the Riemann-
Liouville fractional derivatives using Fink’s method.

First we survey some facts about the Riemann-Liouville fractional derivatives
needed in this paper. For more details see monographs [7, Chapter 2] and [10, Chapter
1].
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Let x > 0. By Cm[0,x] we denote the space of all functions on [0,x] which have
continuous derivatives up to order m , and AC[0,x] is the space of all absolutely continu-
ous functions on [0,x] . By ACm[0,x] we denote the space of all functions g∈Cm−1[0,x]
with g(m−1) ∈ AC[0,x] .

By Lp[0,x] , 1 � p < ∞ , we denote the space of all Lebesgue measurable functions
f for which | f p| is Lebesgue integrable on [0,x] , and by L∞[0,x] the set of all functions
measurable and essentially bounded on [0,x] . Clearly, L∞[0,x]⊂ Lp[0,x] for all p � 1.

Let ν > 0 and n = [ν]+1 where [ν] is the integral part of ν . For f ∈ L1[0,x] the
Riemann-Liouville fractional integral of f of order ν is defined by

Jν f (s) =
1

Γ(ν)

∫ s

0
(s− t)ν−1 f (t)dt , s ∈ [0,x] ,

where Γ is the gamma function, and for f : [0,x]→R the Riemann-Liouville fractional
derivative of f of order ν by

Dν f (s) =
dnJn−ν f

dsn (s) =
1

Γ(n−ν)
dn

dsn

∫ s

0
(s− t)n−ν−1 f (t)dt .

In addition, we stipulate

D0 f := f =: J0 f , J−ν f := Dν f if ν > 0.

If ν ∈ N then Dν f = dν f
dsν is the ordinary ν -order derivative.

The space Jν(L1[0,x]) is defined as the set of all functions f on [0,x] of the form
f = Jνϕ for some ϕ ∈ L1[0,x] , [10, Chapter 1, Definition 2.3]. According to Theorem
2.3 in [10, p. 43], the latter characterization is equivalent to the condition

Jn−ν f ∈ ACn[0,x] , (1.3)

d jJn−ν f
ds j (0) = 0 , j = 0,1, . . . ,n−1 .

A function f ∈ L1[0,x] satisfying (1.3) is sad to have an integrable fractional derivative
Dν f , [10, Chapter 1, Definition 2.4].

LEMMA 1. [2, Lemma 1.2] Let ν > 0 and n = [ν]+ 1 . A function f ∈ L1[0,x]
has an integrable fractional derivative Dν f if and only if

Dν−k f ∈C[0,x], k = 1, . . . ,n, and Dν−1 f ∈ AC[0,x] .

Furthermore, f ∈ Jν(L1[0,x]) if and only if f has an integrable fractional derivative
Dν f and satisfies the conditions

Dν−k f (0) = 0 for k = 1, . . . ,n .

LEMMA 2. [10, Chapter 1, Theorem 2.5] The law of indices

JuJv f = Ju+v f

is valid in the following cases
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(i) v > 0 , u+ v > 0 , and f ∈ L1[0,x] .

(ii) v < 0 , u > 0 , and f ∈ J−v(L1[0,x]) .

(iii) u < 0 , u+ v < 0 , and f ∈ J−u−v(L1[0,x]) .

The following theorem is a simple consequence of Lemma 2 ( ii) and gives the
basic identity in deducing Opial type inequalities.

THEOREM 1. [2, Theorem 1.4] Let ν > γ � 0 . Assume f ∈ L1[0,x] has an inte-
grable fractional derivative Dν f ∈ L∞[0,x] such that Dν−k f (0) = 0 for k = 1, . . . , [ν]+
1 . Then

Dγ f (s) =
1

Γ(ν − γ)

∫ s

0
(s− t)ν−γ−1 Dν f (t)dt , s ∈ [0,x] . (1.4)

In Section 2 we give two versions of our multiple Opial type inequality involving
the Riemann-Liouville fractional derivatives. The proof of the first version is based on
the Fink’s idea from [6] and the second on the method presented in [9]. Comparison
of the obtained estimations is also given. In Section 3 we present another approach to
identity (1.4) .

2. Opial type inequalities

Our main result is the following theorem which is a multiple generalization of the
main theorem from [6].

THEOREM 2. Let ν > μ1 � μi +1 , μi � 0 , i = 2, . . . ,m, m∈ N , m � 2 . Suppose
that f : [0,x] → R is such that identity (1.4) holds for all pairs {ν,μi} , i = 1, . . . ,m.
If p,q > 1 are such that 1/p+1/q = 1 and Dν f ∈ Lp[0,x] , then

∫ x

0

m

∏
i=1

|Dμi f (τ)|dτ � T1(x)
(∫ x

0
|Dν f (t)|p dt

)m
p

(2.1)

where T1(x) is given by

T1(x) =
x

m
∑
i=1

(ν−μi)+1−m
p

m
1
p q

m
q (ν − μ1)

(
ν − μ1 + 1

q

)m−1
q m

∏
i=1

Γ(ν − μi)
[

m
∑
i=1

(ν − μi)+1− m
p

] 1
q

.

Inequality (2.1) is sharp for μ1 = μ2 + 1 = · · · = μm + 1 , and equality in this case is

achieved for a function f such that Dν f (t) = C(x− t)
q
p (ν−μ1) .
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Proof. Write αi = ν − μi − 1, i = 1, . . . ,m . Using identity (1.4) , the triangle
inequality and the Fubini’s theorem, we have∫ x

0

m

∏
i=1

|Dμi f (τ)|dτ

� 1
m
∏
i=1

Γ(αi +1)

∫ x

0

(
m

∏
i=1

∫ x

0
|Dν f (ti)|(τ − ti)

αi
+ dti

)
dτ

=
1

m
∏
i=1

Γ(αi +1)

∫
[0,x]m

m

∏
i=1

|Dν f (ti)|
(∫ x

0

m

∏
i=1

(τ − ti)
αi
+ dτ

)
dt1 · · ·dtm

=
1

m
∏
i=1

Γ(αi +1)

∫
[0,x]m

m

∏
i=1

|Dν f (ti)|
(∫ x

max{t1,...,tm}

m

∏
i=1

(τ − ti)αi dτ

)
dt1 · · ·dtm

=
1

m
∏
i=1

Γ(αi +1)

∫
Δm

m

∏
i=1

|Dν f (ti)|
(∫ x

tm
∑

π∈Sm

m

∏
i=1

(τ − ti)απ(i) dτ

)
dtm · · ·dt1 ,

(2.2)

where (τ − ti)+ = τ−ti+|τ−ti|
2 , Δm = {(t1, . . . ,tm) : 0 � t1 � · · · � tm � x} and Sm is the

group of all permutations of the set {1,2, . . . ,m} . The last equality in (2.2) follows by
dividing the cube [0,x]m into parts where 0 � tπ(1) � tπ(2) � · · · � tπ(m) � x for some
π ∈ Sm and symmetry of the involved expressions. Suppose that π ∈ Sm is given and
suppose that j ∈ {1, . . . ,m} is such that π( j) = 1. We have

m

∏
i=1

(τ − ti)απ(i)

= ∏
i�= j

(τ − ti)απ(i)−α1−1(τ − t j)α1 ∏
i�= j

(τ − ti)α1+1

� (τ − t1)
m
∑

i=2
αi−(m−1)(α1+1)

(τ − t j)α1 ∏
i�= j

(τ − ti)α1+1 . (2.3)

Using (2.3) we obtain estimation∫ x

tm
∑

π∈Sm

m

∏
i=1

(τ − ti)απ(i) dτ

� (m−1)!
α1 +1

∫ x

tm
(τ − t1)

m
∑

i=2
αi−(m−1)(α1+1) d

dτ

(
m

∏
i=1

(τ − ti)α1+1

)
dτ

� (m−1)!
α1 +1

(x− t1)
m
∑

i=2
αi−(m−2)(α1+1) m

∏
i=2

(x− ti)α1+1 , (2.4)

where the last estimation in (2.4) easily follows by using integration by parts.
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Set

A =
(m−1)!

(α1 +1)
m
∏
i=1

Γ(αi +1)
.

It follows

∫ x

0

m

∏
i=1

|Dμi f (τ)|dτ

� 1
m
∏
i=1

Γ(αi +1)

∫
Δm

m

∏
i=1

|Dν f (ti)|
(∫ x

tm
∑

π∈Sm

m

∏
i=1

(τ − ti)απ(i) dτ

)
dtm · · ·dt1

� A
∫

Δm

m

∏
i=1

|Dν f (ti)|(x− t1)
m
∑

i=2
αi−(m−2)(α1+1) m

∏
i=2

(x− ti)α1+1dtm · · ·dt1

= A
∫ x

0
(x− t1)

m
∑

i=2
αi−(m−2)(α1+1)|Dν f (t1)|dt1

∫ x

t1
(x− t2)α1+1|Dν f (t2)|dt2

· · ·
∫ x

tm−1

(x− tm)α1+1|Dν f (tm)|dtm . (2.5)

Applying Hölder’s inequality on the last integral in (2.5) we get

∫ x

tm−1

(x− tm)α1+1|Dν f (tm)|dtm

�
(∫ x

tm−1

(x− tm)q(α1+1) dtm

) 1
q
(∫ x

tm−1

|Dν f (tm)|p dtm

) 1
p

=
(x− tm−1)

α1+1+ 1
q

[q(α1 +1)+1]
1
q

(∫ x

tm−1

|Dν f (tm)|p dtm

) 1
p

. (2.6)

Therefore

∫ x

tm−2

(x− tm−1)
2(α1+1)+ 1

q |Dν f (tm−1)|
(∫ x

tm−1

|Dν f (tm)|p dtm

) 1
p

dtm−1

�
(∫ x

tm−2

(x− tm−1)2q(α1+1)+1 dtm−1

) 1
q

×
(∫ x

tm−2

|Dν f (tm−1)|p
∫ x

tm−1

|Dν f (tm)|pdtm dtm−1

) 1
p

=
(x− tm−2)

2(α1+1)+ 2
q

[2q(α1 +1)+2]
1
q

1

2
1
p

(∫ x

tm−2

|Dν f (tm)|pdtm

) 2
p

. (2.7)
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Next step gives us

∫ x

tm−3

(x− tm−2)
3(α1+1)+ 2

q |Dν f (tm−2)|
(∫ x

tm−2

|Dν f (tm)|pdtm

) 2
p

dtm−2

�
(∫ x

tm−3

(x− tm−2)3q(α1+1)+2dtm−2

) 1
q

×
[∫ x

tm−3

|Dν f (tm−2)|p
(∫ x

tm−2

|Dν f (tm)|pdtm

)2

dtm−2

] 1
p

=
(x− tm−3)

3(α1+1)+ 3
q

[3q(α1 +1)+3]
1
q

1

3
1
p

(∫ x

tm−3

|Dν f (tm)|pdtm

) 3
p

. (2.8)

Finally, we have

∫ x

0

m

∏
i=1

|Dμi f (τ)|dτ

� A

(m−2)![q(α1 +1)+1]
m−2

q

∫ x

0
(x− t1)

m
∑

i=2
αi−(m−2)(α1+1)|Dν f (t1)|dt1

× (x− t1)
(m−1)(α1+1)+ m−1

q

[(m−1)q(α1 +1)+m−1]
1
q (m−1)

1
p

(∫ x

t1
|Dν f (tm)|pdtm

)m−1
p

dt1

=
A

(m−1)![q(α1 +1)+1]
m−1

q

∫ x

0
(x− t1)

m
∑

i=1
αi+1+ m−1

q |Dν f (t1)|dt1

×
(∫ x

t1
|Dν f (tm)|pdtm

)m−1
p

dt1

� 1
m
∏
i=1

Γ(αi +1)(α1 +1) [q(α1 +1)+1]
m−1

q

(∫ x

0
(x− t1)

q
m
∑
i=1

αi+q+m−1
dt1

) 1
q

×
[∫ x

0
|Dν f (t1)|p

(∫ x

t1
|Dν f (tm)|pdtm

)m−1

dt1

] 1
p

=
1

m
∏
i=1

Γ(αi +1)(α1 +1) [q(α1 +1)+1]
m−1

q

· x

m
∑

i=1
αi+1+ m

q

[q(
m
∑
i=1

αi +1)+m]
1
q

× 1

m
1
p

(∫ x

0
|Dν f (tm)|pdtm

)m
p

.

This proves inequality (2.1).
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Consider the case μ1 = μ2+1 = · · ·= μm+1 and a function f such that Dν f (t) =
C(x− t)

q
p (ν−μ1) . Straightforward calculation shows that in this case inequality (2.1) is

sharp. Namely, in this case the both sides of inequality (2.1) are equal to

Cm xqm(ν−μ1)+m

m [q(ν − μ1)+1]m [Γ(ν − μ1)]
m (ν − μ1)m . (2.9)

This completes the proof of the theorem. �

REMARK 1. Let m = 2, ν = n ∈ N , μ1 = j ∈ N , μ2 = i ∈ N , i < j � n−1 and
x = h . Then inequality (2.1) becomes Fink’s inequality (1.2) on [0,h] with T1(h) =

C(n, i, j, p)h2n−i− j+1− 2
p .

Next we consider a special case of [3, Theorem 2.1], which gives us the same
Opial type inequality as the previous one, but with a different constant. We give a short
proof for the reader’s convenience.

THEOREM 3. Let p, q > 1 are such that 1/p+1/q= 1 . Let ν > μi + 1
p , μi � 0 ,

i = 1,2, . . . ,m, m ∈ N , m � 2 . Suppose that f : [0,x] → R is such that identity (1.4)
holds for all pairs {ν,μi} , i = 1, . . . ,m. If Dν f ∈ Lp[0,x] , then

∫ x

0

m

∏
i=1

|Dμi f (τ)|dτ � T2(x)
(∫ x

0
|Dν f (t)|p dt

)m
p

where T2(x) is given by

T2(x) =
x

m
∑
i=1

(ν−μi)+1−m
p

q
m
q

[
m
∑
i=1

(ν − μi)+1− m
p

]
m
∏
i=1

Γ(ν − μi)
(

ν − μi− 1
p

) 1
q

.

Proof. Write αi = ν − μi − 1, i = 1, . . . ,m . Using identity (1.4) , the triangle
inequality and Hölder’s inequality we have

∫ x

0

m

∏
i=1

|Dμi f (τ)|dτ

� 1
m
∏
i=1

Γ(αi +1)

∫ x

0

m

∏
i=1

(∫ τ

0
(τ − t)αi |Dν f (t)|dt

)
dτ

� 1
m
∏
i=1

Γ(αi +1)

∫ x

0

m

∏
i=1

[(∫ τ

0
(τ − t)qαi dt

) 1
q
(∫ τ

0
|Dν f (t)|p dt

) 1
p
]

dτ
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=
1

m
∏
i=1

Γ(αi +1)(qαi +1)
1
q

∫ x

0
τ

m
∑

i=1
αi+ m

q
(∫ τ

0
|Dν f (t)|p dt

)m
p

dτ

� 1
m
∏
i=1

Γ(αi +1)(qαi +1)
1
q

(∫ x

0
|Dν f (t)|p dt

)m
p x

m
∑

i=1
αi+1+ m

q

m
∑
i=1

αi +1+ m
q

. �

REMARK 2. Although the constant T1 gives the best possible estimation in the
case μ1 = μi +1, i = 2, . . . ,m (see Theorem 2), it seems the constant T2 from Theorem
3 gives the more uniform estimation which is partially justified by the discussion below.

Notice

T1(x)
T2(x)

=

[
m
∑
i=1

(ν − μi)+1−m+ m
q

] 1
p m

∏
i=1

(
ν − μi−1+ 1

q

) 1
q

m
1
p (ν − μ1)

(
ν − μ1 + 1

q

)m−1
q

.

Set ν −μ1 = d and μ1−μi = δi � 1 for i = 2, . . . ,m . Then T2(x) < T1(x) is equivalent
to

1(
md +

m
∑
i=2

δi +1−m+ m
q

)1− 1
q m

∏
i=2

(
d + δi−1+ 1

q

) 1
q

<

(
d−1+ 1

q

) 1
q

m1− 1
q d
(
d + 1

q

)m−1
q

.

(2.10)
If δi are big enough, then the left side of (2.10) tends to zero, while the right side
depends only of d . Therefore, in this case T2(x) < T1(x) .

Let δi = 1, that is μ1 = μi + 1, i = 2, . . . ,m (see the discussion of sharpness in
Theorem 2). Then the reverse inequality in (2.10) is equivalent to

1(
md + m

q

)1− 1
q
(
d + 1

q

)m−1
q

>

(
d−1+ 1

q

) 1
q

m1− 1
q d
(
d + 1

q

)m−1
q

.

that is
qd +1

qd−q+1
>

(
1+

1
qd

)q

,

which is equivalent to inequality(
qd +1−q

qd +1

) 1
q

<
qd

1+qd

and this is a simple consequence of the Bernoulli’s inequality. This is in accordance
with Theorem 2 and implies that T2 is not the best possible estimation in this case.

Numerical calculations indicate that there is a very narrow area around the best
possible case μ1 = μi +1, i = 2, . . . ,m , where T1 gives better estimation than T2 .
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3. On composition identity (law of indices) for the
Riemann-Liouville fractional derivatives

Here we give another approach to composition identity given in Theorem 1.

THEOREM 4. Let ν > γ � 0 and let f ∈ ACn[0,x] be such that Dν f ∈ L1[0,x]
and Dγ f ∈ L1[0,x] .

(i) If ν−γ �∈N and f is such that Dν−k f (0)= 0 for k = 1, . . . , [ν]+1 and Dγ−k f (0)
= 0 for k = 1, . . . , [γ]+1 , then

Dγ f (s) =
1

Γ(ν − γ)

∫ s

0
(s− t)ν−γ−1 Dν f (t)dt , s ∈ [0,x] . (3.1)

(ii) If ν − γ = l ∈ N and f is such that Dν−k f (0) = 0 for k = 1, . . . , l , then (3.1)
holds.

Proof. Let n = [ν]+1, m = [γ]+1.
(i) Define auxiliary function h : [0,∞) → R with

h(t) =

⎧⎨
⎩

f (t) , t ∈ [0,x]
n
∑

k=0

f (k)(x)
k! (t− x)k , t � x . (3.2)

Obviously h ∈ ACn(0,∞) and Dν−kh(0) = 0, k = 1, . . . ,n and Dγ−kh(0) = 0, k =
1, . . . ,m . Also h has polynomial growth at ∞ , so the Laplace transform of h exists.
Notice that both sides of (3.1) are integrable functions. The identity (3.1) will follow if
we prove that

1
Γ(m− γ)

dm

dsm

∫ s

0
(s− t)m−γ−1 h(t)dt

=
1

Γ(ν − γ)Γ(n−ν)

∫ s

0
(s− t)ν−γ−1 dn

dtn

∫ t

0
(t − y)n−ν−1h(y)dydt (3.3)

holds for s � 0. Using standard properties of the Laplace transform, for the right side
of the equality (3.3) we have

L

(
1

Γ(ν − γ)Γ(n−ν)

∫ s

0
(s− t)ν−γ−1 dn

dtn

∫ t

0
(t− y)n−ν−1 h(y)dydt

)
(p)

=
1

Γ(ν − γ)Γ(n−ν)
L
(
sν−γ−1)(p)L

(
dn

dtn

∫ t

0
(t− y)n−ν−1 h(y)dy

)
(p)
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=
1

pν−γ Γ(n−ν)

[
pn L

(∫ t

0
(t − y)n−ν−1h(y)dy

)
(p)

−
n−1

∑
k=0

pk dn−k−1

dtn−k−1

(∫ t

0
(t− y)n−ν−1 h(y)dy

)
(0)

]

=
pn−ν+γ

Γ(n−ν)
L
(
tn−ν−1)(p)L (h)(p)− 1

pν−γ

n

∑
k=1

pk−1Dν−kh(0) (3.4)

= pγL (h)(p) . (3.5)

For the left side of (3.3) we have

L

(
1

Γ(m− γ)
dm

dsm

∫ s

0
(s− t)m−γ−1 h(t)dt

)
(p)

=
1

Γ(m− γ)

[
pm L

(∫ s

0
(s− t)m−γ−1 h(t)dt

)
(p)

−
m−1

∑
k=0

pk dm−k−1

dsm−k−1

(∫ s

0
(s− t)m−γ−1 h(t)dt

)
(0)

]

=
1

Γ(m− γ)
pm L

(
sm−γ−1)(p)L (h)(p)−

m

∑
k=1

pk−1Dγ−kh(0) (3.6)

= pγ L (h)(p) . (3.7)

Using (3.5) and (3.7) it follows that both sides of (3.3) have the same Laplace transform
so we conclude that equality holds in (3.3) for s � 0 (see [11]). This completes the proof
of the (i) .

(ii) Notice that from ν = γ + l , l ∈ N , it follows n = m+ l . Using (3.6) and (3.4)
it is enough to prove that

m

∑
k=1

pk−1Dγ−kh(0) =
1

pν−γ

n

∑
k=1

pk−1Dν−kh(0),

which is equivalent to

m

∑
k=1

pk−1Dγ−kh(0) =
m

∑
k=1−l

pk−1Dγ−kh(0),

which obviously holds by assumption Dν−k f (0) = 0 for k = 1, . . . , l . �

There is no an easy way to check the boundary conditions given in Theorem 4. To
give simpler conditions we use the identity

Dν f (t) =
n−1

∑
i=0

f (i)(0)t−ν+i

Γ(−ν + i+1)
+

1
Γ(n−ν)

∫ t

0
(t− τ)n−ν−1 f (n)(τ)dτ, (3.8)

which holds for f ∈ ACn[0,x] (see for example [7]).
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PROPOSITION 1. Let ν > 0 , n = [ν]+1 and f ∈ ACn[0,x] .

(i) If f (0) = f ′(0) = · · · = f (n−2)(0) = 0 , then Dν−1 f (0) = Dν−2 f (0) = · · · =
Dν−n f (0) = 0 .

(ii) If ν /∈N and Dν−1 f is bounded in a neighborhood of t = 0 , then f (0) = f ′(0) =
· · · = f (n−2)(0) = 0 .

Proof. (i) Using (3.8) for ν ≡ ν − k we have

Dν−k f (t) =
n−k−1

∑
i=0

f (i)(0)t−ν+i+k

Γ(−ν + i+ k+1)
+

1
Γ(n−ν)

∫ t

0
(t− τ)n−ν−1 f (n−k)(τ)dτ, (3.9)

where k = 1, . . . ,n− 1, and the implication obviously follows. Notice that f (n−k) ∈
Cn−k[0,x] for k = 1, . . . ,n−1 and Dν−n f (0) = Jn−ν f (0) = 0 since f ∈C[0,x] .

(ii) Using (3.9) for k = 1 we have

Dν−1 f (t) =
n−2

∑
i=0

f (i)(0)t−ν+i+1

Γ(−ν + i+2)
+

1
Γ(n−ν)

∫ t

0
(t− τ)n−ν−1 f (n−1)(τ)dτ. (3.10)

For 0 < ν < 1 there is nothing to prove. Suppose ν > 1. Multiplying (3.10) with tν−1

and taking limt→0 of the both sides of (3.10) it follows f (0) = 0. For 1 < ν < 2 the
proof is complete. For ν > 2 we proceed by induction analogously. �

In the following corollary we summarize conditions for identity (3.1).

COROLLARY 1. Let ν > γ � 0 , n = [ν]+1 , m = [γ]+1 . Identity (3.1) is valid
if one of the following conditions holds:

(i) f ∈ Jν (L1[0,x]) .

(ii) Jn−ν f ∈ ACn[0,x] and Dν−k f (0) = 0 for k = 1, . . .n.

(iii) Dν−k f ∈C[0,x] for k = 1, . . . ,n, Dν−1 f ∈ AC[0,x] and Dν−k f (0) = 0 for k =
1, . . .n.

(iv) f ∈ ACn[0,x] , Dν f ∈ L1[0,x] , Dγ f ∈ L1[0,x] , ν − γ /∈ N , Dν−k f (0) = 0 for
k = 1, . . . ,n and Dγ−k f (0) = 0 for k = 1, . . . ,m.

(v) f ∈ ACn[0,x] , Dν f ∈ L1[0,x] , Dγ f ∈ L1[0,x] , ν − γ = l ∈ N , Dν−k f (0) = 0 for
k = 1, . . . , l .

(vi) f ∈ ACn[0,x] , Dν f ∈ L1[0,x] , Dγ f ∈ L1[0,x] and f (0) = f ′(0) = · · ·= f (n−2)(0)
= 0 .

(vii) f ∈ ACn[0,x] , Dν f ∈ L1[0,x] , Dγ f ∈ L1[0,x] , ν /∈ N and Dν−1 f is bounded in
a neighborhood of t = 0 .
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[5] M. ANDRIĆ, J. PEČARIĆ, I. PERIĆ, Composition identities for the Caputo fractional derivatives and
applications to Opial-type inequalities, to appear in Math. Inequal. Appl.

[6] A. M. FINK, On Opial’s inequality for f (n) , Proc. Amer. Math. Soc. 115 (1992), 177–181.
[7] A. A. KILBAS, H. M. SRIVASTAVA, J. J. TRUJILLO, Theory and Applications of Fractional Differ-

ential Equations, North-Holland Mathematics Studies 204, Elsevier, 2006.
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