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(Communicated by J. Pečarić)

Abstract. In this paper, we will give a unitary approach to some classical inequalities. We will
show that these results could be proved in the same manner.

1. Introduction

It has been said that the relation which truly governs mathematics is that of in-
equality, equality being a special case. In this context, the study of inequalities is a
natural interest of the mathematicians. We find more references on this subject, from
famous books like [6] or [8] to new books like [15] or [5]. Over the years, some results
have remained popular because of the authors. In 2003, Bullen even made a dictionary
of inequalities ([3]), where we can find a large number of known results.

Among these inequalities, there are some very special ones, such as the AM-GM
inequality, Cauchy’s inequality, Hölder’s inequality or Minkowski’s inequality. They
have a fundamental role in many branches of mathematics and are also called classical
inequalities. In this article we want to present another point of view on these inequali-
ties. We will see that all these inequalities have three common elements: homogeneity,
convexity and subadditivity.

2. Preliminary results

In this paragraph, we recall some useful definitions and results. Let f : (0,∞)n →
R be a function.

DEFINITION 2.1. A function f is called positively homogeneous if

f (tx1,tx2, ...,txn) = t f (x1,x2, ...,xn) ,

for all t ∈ (0,∞) and x1,x2, ...,xn ∈ (0,∞) .

EXAMPLE. The function

f : (0,∞)n → R, f (x1,x2, ...,xn) = n
√

x1x2...xn
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is a positively homogeneous function.

DEFINITION 2.2. A function f is called a subadditive function, respectively a
superadditive function if

f (x1 + y1,x2 + y2, ...,xn + yn) � f (x1,x2, ...,xn)+ f (y1,y2, ...,yn) ,

respectively

f (x1 + y1,x2 + y2, ...,xn + yn) � f (x1,x2, ...,xn)+ f (y1,y2, ...,yn) ,

for all x1,x2, ...,xn,y1,y2, ...,yn ∈ (0,∞) .

EXAMPLE. The function

f : (0,∞)n → R, f (x1,x2, ...,xn) = |x1|+ |x2|+ ...+ |xn|

is a subadditive function.
Using induction, it easy to prove the following results.

LEMMA 2.3. Let f : (0,∞)n → R be a subadditive function. Then

f (x1 + x2 + ...+ xk) � f (x1)+ f (x2)+ ...+ f (xk) ,

for all x1,x2, ...,xk ∈ (0,∞)n .

LEMMA 2.4. Let f : (0,∞)n → R be a superadditive function. Then

f (x1 + x2 + ...+ xk) � f (x1)+ f (x2)+ ...+ f (xk) ,

for all x1,x2, ...,xk ∈ (0,∞)n .

3. A very powerful result

The main result of this paper is presented in this paragraph. We will find that
convexity is equivalent to subadditivity under the condition of positive homogeneity. It
must be specified that this results is based on the Theorem 1.4.6. from [14].

First, we introduce some notations. For a function f : (0,∞)n → R , we define n
other functions as follows:

g1,g2, ...,gn : (0,∞)n−1 → R,

g1 (y1,y2, ...,yn−1) = f (1,y1,y2, ...,yn−1) ,

g2 (y1,y2, ...,yn−1) = f (y1,1,y2, ...,yn−1) ,

· · ·
gn (y1,y2, ...,yn−1) = f (y1,y2, ...,yn−1,1) .

In this context, we can prove the theorem below.
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THEOREM 3.1. Let f : (0,∞)n → R be a positively homogeneous functions. Then
f is subadditive if and only if there exists k ∈ {1,2, ...,n} such that the function gk is a
convex function.

Proof. First, let f be a subadditive function. Let a1,a2, ...,an−1 ∈ (0,∞) ,
b1,b2, ...,bn−1 ∈ (0,∞) and t ∈ (0,1) . We will prove that g1 is a convex function. Then

g1 (ta1 +(1− t)b1,ta2 +(1− t)b2, ...,tan−1 +(1− t)bn−1)

= f (1, ta1 +(1− t)b1,ta2 +(1− t)b2, ...,tan−1 +(1− t)bn−1)

= f (t +(1− t) ,ta1 +(1− t)b1,ta2 +(1− t)b2, ...,tan−1 +(1− t)bn−1)

� f (t, ta1, ta2, ...,tan−1)+ f ((1− t) ,(1− t)b1,(1− t)b2, ...,(1− t)bn−1)

= t f (1,a1,a2, ...,an−1)+ (1− t) f (1,b1,b2, ...,bn−1)

= tg1 (a1,a2, ...,an−1)+ (1− t)g1 (b1,b2, ...,bn−1) ,

so g1 is a convex function.
Conversely, without loss of generality, suppose that g1 is a convex function. For

any x1,x2, ...,xn ∈ (0,∞) and y1,y2, ...,yn ∈ (0,∞) , we have

f (x1 + y1,x2 + y2, ...,xn + yn)

= (x1 + y1) f

(
1,

x2 + y2

x1 + y1
, ...,

xn + yn

x1 + y1

)

= (x1 + y1)g1

(
x2 + y2

x1 + y1
, ...,

xn + yn

x1 + y1

)

= (x1 + y1)g1

(
x1

x1 + y1
· x2

x1
+

y1

x1 + y1
· y2

y1
, ...,

x1

x1 + y1
· xn

x1
+

y1

x1 + y1
· yn

y1

)

� (x1 + y1)
(

x1

x1 + y1
·g1

(
x2

x1
, ...,

xn

x1

)
+

y1

x1 + y1
·g1

(
y2

y1
, ...,

yn

y1

))

= x1g1

(
x2

x1
, ...,

xn

x1

)
+ y1g1

(
y2

y1
, ...,

yn

y1

)

= x1 f

(
1,

x2

x1
, ...,

xn

x1

)
+ y1 f

(
1,

y2

y1
, ...,

yn

y1

)
= f (x1,x2, ...,xn)+ f (y1,y2, ...,yn) ,

so f is a subadditive function and the proof is finished. �
A similar result exists for superadditive functions.

THEOREM 3.2. Let f : (0,∞)n → R be a positively homogeneous functions. Then
f is superadditive if and only if there exists k ∈ {1,2, ...,n} such that the function gk is
a concave function.

Proof. We apply the previous theorem for the function − f . �
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4. Proofs for classical inequalities

In the context of the results from the previous paragraphs, we can present a gen-
eral method to prove inequalities. We find a positively homogeneous function, study a
partial convexity/concavity, apply Theorem 3.1./3.2. and obtain the conclusion using
subadditivity. If necessary, we extend the results with Lemma 2.3./2.4. We start with
two easy examples.

EXAMPLE 4.1. Radon’s inequality. (see e.g. [6], p. 61, ex. 65)
Let x1,x2, ...,xn ∈ (0,∞) and y1,y2, ...,yn ∈ (0,∞) . For any p > 0, we have

n

∑
i=1

xp+1
i

yp
i

�

(
n
∑
i=1

xi

)p+1

(
n
∑
i=1

yi

)p .

Proof. Consider the function

f : (0,∞)2 → R, f (x,y) =
xp+1

yp .

It is a positively homogeneous function. Then, the function g : (0,∞) → R , g(x) =
f (x,1) = xp+1 is a convex function, because g′′ (x) = p(p+1)xp−1 > 0 for all x > 0.
Now, applying Theorem 3.1. and Lemma 2.3, we obtain

n

∑
i=1

f (xi,yi) � f

(
n

∑
i=1

xi,
n

∑
i=1

yi

)
,

which is equivalent to the conclusion. �
EXAMPLE 4.2. Milne’s inequality. (see e.g. [6], p. 61, ex. 67)

For any x1,x2, ...,xn ∈ (0,∞) and y1,y2, ...,yn ∈ (0,∞) , we have

n

∑
i=1

(xi + yi)
n

∑
i=1

xiyi

xi + yi
�

n

∑
i=1

xi

n

∑
i=1

yi.

Proof. Consider the function

f : (0,∞)2 → R, f (x,y) =
xy

x+ y
.

This is a positively homogeneous function. The function g : (0,∞) → R , g(x) =
f (x,1) = x

x+1 has g′′ (x) = − 2
(x+1)3

< 0, hence g is a concave function. Applying

Theorem 3.2. and Lemma 2.4. we have,

n

∑
i=1

f (xi,yi) � f

(
n

∑
i=1

xi,
n

∑
i=1

yi

)
,
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which is equivalent to

n

∑
i=1

xiyi

xi + yi
�

n
∑
i=1

xi

n
∑
i=1

yi

n
∑
i=1

(xi + yi)

and the conclusion. �

The next examples contain proofs for the most famous inequalities from mathe-
matics.

EXAMPLE 4.3. Cauchy’s inequality – strong form.
Let a1,a2, ...,an ∈ R and b1,b2, ...,bn ∈ R . Then

(|a1b1|+ |a2b2|+ ...+ |anbn|)2 �
(
a2

1 +a2
2 + ...+a2

n

)(
b2

1 +b2
2 + ...+b2

n

)
.

Proof. Consider the positively homogeneous function

f : (0,∞)2 → R, f (x,y) =
√

xy.

Then the function g : (0,∞)→ R , g(x) = f (x,1) =
√

x is concave. From Theorem 3.2.
and Lemma 2.4. we obtain √

n

∑
i=1

xi

n

∑
i=1

yi �
n

∑
i=1

√
xiyi,

which is equivalent to (
n

∑
i=1

√
xiyi

)2

�
n

∑
i=1

xi

n

∑
i=1

yi.

Replace xi with a2
i and yi with b2

i and the conclusion follows. �

EXAMPLE 4.4. Hölder’s inequality. Let a1,a2, ...,an,b1,b2, ...,bn ∈ (0,∞) and
p,q > 1 be real numbers satisfying 1

p + 1
q = 1. Then:

n

∑
i=1

aibi �
(

n

∑
i=1

ap
i

) 1
p
(

n

∑
i=1

bq
i

) 1
q

.

Proof. We use the function

f : (0,∞)2 → R, f (x,y) = x
1
p y

1
q .

For any t > 0 we have

f (tx,ty) = (tx)
1
p (ty)

1
q = t

1
p + 1

q x
1
p y

1
q = t f (x,y) .
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Let g : (0,∞) → R , g(x) = f (x,1) = x
1
p . We have

g′′ (x) =
1
p

(
1
p
−1

)
x

1
p−2 = − 1

pq
x

1
p−2,

so g′′ is a negative function. Then g is concave and f superadditive. Applying Theo-
rem 3.2. and Lemma 2.4. gives

n

∑
i=1

x
1
p
i y

1
q
i �

(
n

∑
i=1

xi

) 1
p
(

n

∑
i=1

yi

) 1
q

.

Replace xi with ap
i and yi with bq

i and we are done. �
EXAMPLE 4.5. Minkowski’s inequality.

Let a1,a2, ..,an ∈ (0,∞) and b1,b2, ..,bn ∈ (0,∞) . Then

(
n

∑
i=1

(ai +bi)
p

) 1
p

�
(

n

∑
i=1

ap
i

) 1
p

+

(
n

∑
i=1

bp
i

) 1
p

,

for any real number p > 1.

Proof. The function

g : (0,∞) → R,g(x) = (xp +1)
1
p

is convex because g′′ (x) = (p−1)xp−2 (xp +1)
1
p−2 > 0, for all x ∈ (0,∞) . In this

context, the function

f : (0,∞)2 → R, f (x,y) = (xp + yp)
1
p

is subadditive because g(x) = f (x,1) . Lemma 2.3. concludes the proof. �
EXAMPLE 4.6. AM −GM inequality. For any real numbers x1,x2, ...,xn > 0,

have
x1 + x2 + ...+ xn

n
� n

√
x1x2...xn.

Proof. Consider the function

f : (0,∞)n → R, f (x1,x2, ...,xn) =
x1 + x2 + ...+ xn

n
− n
√

x1x2...xn

and we have

f (tx1, tx2, ...,txn) =
tx1 + tx2 + ...+ txn

n
− n
√

tx1tx2...txn = t f (x1,x2, ...,xn) ,

for any t > 0. This shows us that f is positively homogeneous. Consider the function

g : (0,∞)n−1 → R, g(x1,x2, ...,xn−1) = f (x1,x2, ...,xn−1,1) .

First, we prove the following short lemma.
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LEMMA. Let n be a natural number, n � 2 . For any real numbers a1,a2, ...,an ,
the matrix An = (ai j)i, j=1,n where

ai j =

{
na2

i i f i = j

−aia j i f i �= j

is positive-definte.

Proof. Let x = (x1,x2, ...,xn) ∈ R
n . We compute xAxT and obtain

xAxT = n
n

∑
i=1

a2
i x

2
i −2 ∑

1=i< j=n

aia jxix j

=
n

∑
i=1

a2
i x

2
i + ∑

1=i< j=n

(aixi−a jx j)2

which is equivalent to the conclusion. �
Now, we can study the function g . We have

∂ 2g

∂x2
i

= −1
n

(
1
n
−1

)
x

1
n
1 ...x

1
n
i−1x

1
n−2
i x

1
n
i+1...x

1
n
n−1

for i = 1,n and

∂ 2g
∂xi∂x j

= − 1
n2 x

1
n
1 ...x

1
n
i−1x

1
n−1
i x

1
n
i+1...x

1
n
j−1x

1
n−1
j x

1
n
j+1..x

1
n
n−1

for 1 � i < j � n . After some algebraic manipulations, we can write the hessian of g
under the form

Hg =
1
n2 x

1
n
1 x

1
n
2 ...x

1
n
n−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n−1

x2
1

− 1
x1x2

.... − 1
x1xn−1

− 1
x2x1

n−1

x2
2

.... − 1
x2xn−1

........................................

− 1
xn−1x1

− 1
xn−1x2

....
n−1

x2
n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

But x1,x2, ...,xn−1 > 0, so Hg is a positive-definte matrix according to the previous
lemma. Now, we can affirm that the function g is convex. Then, f is subadditive. So,
we can write

f (x1,x2, ...,xn)+ f (x2,x3...,xn,x1)+ ...+ f (xn,x1, ...,xn−1)
� f (x1 + x2 + ...+ xn,x2 + ...+ xn + x1, ...,xn + x1 + ...+ xn−1)
= f (s,s, ..,s) = 0,
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where s = x1 + x2 + ...+ xn . But

f (x1,x2, ...,xn) = f (x2,x3...,xn,x1) = ... = f (xn,x1, ...,xn−1) ,

hence n f (x1,x2, ...,xn) � 0. We obtain f (x1,x2, ...,xn) � 0 which is equivalent to the
AM-GM inequality. �

Finally, we briefly introduce other examples of inequalities that can be proven
through the same method.

• Using the function

f : (0,∞)n → R, f (x1,x2, ...,xn) = n
√

x1x2...xn,

we obtain the inequality

n
√

(x1 + y1)(x2 + y2) ...(xn + yn) � n
√

x1x2...xn + n
√

y1y2...yn,

for x1,x2, ...,xn,y1,y2, ...,yn ∈ (0,∞) . (see e.g. [2], p. 176, ex. 4.4.6)

• With the function

f : (0,∞)2 → R, f (x,y) =
x2 + y2

x+ y
,

we can prove the following inequality:

n

∑
i=1

x2
i + y2

i

xi + yi
�

n
∑
i=1

x2
i +

n
∑
i=1

y2
i

n
∑
i=1

xi +
n
∑
i=1

yi

,

for any (x1,x2, ...,xn) ,(y1,y2, ...,yn) ∈ (0,∞)n .

• For any p ∈ [1, 2] , the function

f : (0,∞)n → R, f (x1,x2, ...,xn) =
xp
1 + xp

2 + ...+ xp
n

xp−1
1 + xp−1

2 + ...+ xp−1
n

is useful to prove the inequality

n
∑
i=1

(xi + yi)
p

n
∑
i=1

(xi + yi)
p−1

�

n
∑
i=1

xp
i

n
∑
i=1

xp−1
i

+

n
∑
i=1

yp
i

n
∑
i=1

yp−1
i

,

which holds for all (x1,x2, ...,xn) ,(y1,y2, ...,yn) ∈ (0,∞)n . (see e.g. [1], p. 25,
theorem 9.)
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Colegiul Naţional “Iancu de Hunedoara”

Hunedoara, Romania
e-mail: marinescuds@gmail.com

M. Monea
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