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SHARP BOUNDS FOR TOADER MEAN IN TERMS OF

CONTRAHARMONIC MEAN WITH APPLICATIONS

YU-MING CHU, MIAO-KUN WANG AND XIAO-YAN MA

(Communicated by G. Toader)

Abstract. We find the greatest value λ and the least value μ in (1/2,1) such that the dou-
ble inequality C(λa+ (1− λ)b,λb+ (1− λ)a) < T (a,b) < C(μa+ (1− μ)b,μb+ (1− μ)a)
holds for all a,b > 0 with a �= b , and give new bounds for the perimeter of an ellipse. Here,

T (a,b) = 2
π

π/2∫
0

√
a2cos2 θ +b2sin2 θdθ , and C(a,b) = (a2 + b2)/(a+ b) denote the Toader,

and contraharmonic means of two positive numbers a and b , respectively.

1. Introduction

For a,b > 0 with a �= b , the Toader mean T (a,b) was introduced by Toader [11]
as follows:

T (a,b) =
2
π

∫ π/2

0

√
a2cos2 θ +b2sin2 θdθ

=
{

2aE
(√

1− (b/a)2
)
/π , a > b,

2bE
(√

1− (a/b)2
)
/π , a < b,

(1.1)

where E (r) =
π/2∫
0

(1− r2 sin2 t)1/2dt , r ∈ [0,1) is the complete elliptic integrals of the

second kind. In particular, the perimeter L(a,b) of an ellipse with the semiaxes a and
b can be written as L(a,b) = 2πT (a,b) .

In the recent past, investigation of the inequalities between Toader and other means
has attracted the attention of a considerable number of mathematicians [1–6, 8–13].

Let Mp(a,b)= [(ap +bp)/2]1/p , H(a,b)= 2ab/(a+b) , G(a,b)=
√

ab , A(a,b)=
(a+b)/2, S(a,b) = (a−b)/[2arctan((a−b)/(a+b))] , and

C(a,b) =
a2 +b2

a+b
(1.2)
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be the p -th power, harmonic, geometric, arithmetic, Seiffert, and contraharmonicmeans
of two distinct positive numbers a and b , respectively. Then it is well-known that

min{a,b}< H(a,b) = M−1(a,b) < G(a,b) = M0(a,b) < A(a,b)
= M1(a,b) < S(a,b) < C(a,b) < max{a,b}

for all a,b > 0 with a �= b .
Vuorinen [12] conjectured that

M3/2(a,b) < T (a,b)

for all a,b> 0 with a �= b . This conjecturewas proved by Barnard, Pearce and Richards
in [4].

In [2], Alzer and Qiu presented a best possible upper power mean bound for the
Toader mean as follows:

T (a,b) < Mlog2/log(π/2)(a,b)

for all a,b > 0 with a �= b .
Very recently, Chu et al. [10] proved that

T (a,b) < S(a,b) (1.3)

for all a,b > 0 with a �= b .
For fixed a,b > 0 with a �= b and x ∈ [1/2,1] , let

g(x) =C(xa+(1− x)b,xb+(1− x)a).

Then it is not difficult to verify that g(x) is continuous and strictly increasing in
[1/2,1] . Note that g(1/2)= A(a,b)< T (a,b) and g(1)=C(a,b)>T (a,b) . Therefore,
it is natural to ask what are the greatest value λ and the least value μ in (1/2,1) such
that the double inequality C(λa+(1−λ )b,λb+(1−λ )a) < T (a,b) < C(μa+(1−
μ)b,μb+(1− μ)a) holds for all a,b > 0 with a �= b . The main purpose of this paper
is to answer these questions. Our main result is the following Theorem 1.1.

THEOREM 1.1. If λ ,μ ∈ (1/2,1) , then the double inequality

C(λa+(1−λ )b,λb+(1−λ )a) < T (a,b) <C(μa+(1−μ)b,μb+(1−μ)a) (1.4)

holds for all a,b > 0 with a �= b if and only if λ � 3/4 and μ � 1/2+
√

4π −π2/(2π) .

In order to establish our main result we need several formulas (see [3, Appendix
E, pp. 474–475]).

Let r ∈ [0,1) , K (r) =
∫ π/2
0 (1− r2sin2 t)−1/2dt be the complete elliptic integrals

of the first kind. Then

K (0) = π/2, K (1−) = +∞, E (0) = π/2, E (1−) = 1,
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dK (r)
dr

=
E (r)− (1− r2)K (r)

r(1− r2)
,

dE (r)
dr

=
E (r)−K (r)

r
,

d[E (r)− (1− r2)K (r)]
dr

= rK (r), E

(
2
√

r
1+ r

)
=

2E (r)− (1− r2)K (r)
1+ r

.

Moreover, for each c ∈ [1/4,∞) the function f (r) ≡ (1− r2)cK (r) is decreasing
from [0,1) onto (0,π/2] (see [3, Theorem 3.21(7)]).

2. Proof of Theorem 1.1

Proof of Theorem 1.1. Let α = 3/4 and β = 1/2+
√

4π −π2/(2π) . Then from
the monotonicity of the function g(x) = C(xa+(1− x)b,xb+(1− x)a) in [1/2,1] we
know that to prove inequality (1.4) we only need to prove that inequalities

T (a,b) > C(αa+(1−α)b,αb+(1−α)a) (2.1)

and
T (a,b) < C(βa+(1−β )b,βb+(1−β)a) (2.2)

hold for all a,b > 0 with a �= b .
Without loss of generality, we assume that a > b . Let t = b/a ∈ (0,1) , r =

(1− t)/(1+ t)∈ (0,1) and p ∈ [1/2,1] . Then from (1.1) and (1.2) one has

T (a,b)−C(pa+(1− p)b, pb+(1− p)a)

=
2a
π

E

(√
1− (b/a)2

)
−a

[p+(1− p)(b/a)]2+[p(b/a)+1− p]2

1+b/a

=
2a
π

E
(√

1− t2
)
−a

[p+(1− p)t]2+[pt +1− p]2

1+ t

=
2a
π

2E (r)− (1− r2)K (r)
1+ r

−a
[1− (1−2p)r]2+[1+(1−2p)r]2

2(1+ r)

=
a

1+ r

{
2
π

[
2E (r)− (1− r2)K (r)

]− (1−2p)2r2−1

}
. (2.3)

Let

f (r) =
2
π

[
2E (r)− (1− r2)K (r)

]− (1−2p)2r2 −1, (2.4)

f1(r) = r f ′(r) , and f2(r) = f1 ′(r)/r . Then simple computations lead to

f (0) = 0, (2.5)

f (1−) =
4
π
−1− (1−2p)2, (2.6)

f1(r) =
2
π

[
E (r)− (1− r2)K (r)

]−2(1−2p)2r2,

f1(0) = 0, (2.7)
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f1(1−) =
2
π
−2(1−2p)2, (2.8)

f2(r) =
2
π

K (r)−4(1−2p)2, (2.9)

f2(0) = 1−4(1−2p)2, (2.10)

f2(1−) = +∞. (2.11)

We divide the proof into two cases.

Case 1. p = α = 3/4. Then equation (2.10) reduces to

f2(0) = 0. (2.12)

From (2.12), (2.9), (2.7) and (2.5) we clearly see that f (r) > 0 for r ∈ (0,1) .
Therefore, inequality (2.1) follows from (2.3) and (2.4) together with f (r) > 0.

Case 2. p = β = 1/2+
√

4π −π2/(2π) . Then equations (2.6), (2.8) and (2.10)
lead to

f (1−) = 0, (2.13)

f1(1−) = (2π −6)/π > 0, (2.14)

f2(0) = (5π −16)/π < 0. (2.15)

From (2.11) and (2.15) together with the monotonicity of f2(r) we clearly see that
there exists r0 ∈ (0,1) such that f2(r) < 0 for r ∈ (0,r0) and f2(r) > 0 for r ∈ (r0,1) .
Hence f1(r) is strictly decreasing in (0,r0) and strictly increasing in (r0,1) .

It follows from (2.7) and (2.14) together with the piecewise monotonicity of f1(r)
that there exists r1 ∈ (0,1) such that f1(r) < 0 for r ∈ (0,r1) and f1(r) > 0 for r ∈
(r1,1) . Hence f (r) is strictly decreasing in (0,r1) and strictly increasing in (r1,1) .

Therefore, inequality (2.2) follows from (2.3)–(2.5) and (2.13) together with the
piecewise monotonicity of f (r) .

Next, we prove that the parameter α = 3/4 is the best possible parameter in
(1/2,1) such that inequality (2.1) holds for all a,b > 0 with a �= b . In fact, if p >
α = 3/4, then equation (2.10) leads to f2(0) < 0. From the continuity of f (r) , f1(r)
and f2(r) we know that there exists δ1 = δ1(p) > 0 such that

f (r) < 0 (2.16)

for r ∈ (0,δ1) .
It follows from (2.3), (2.4) and (2.16) that T (a,b) < C(pa+(1− p)b, pb+(1−

p)a) for b/a ∈ ((1− δ1)/(1+ δ1),1) .
Finally, we prove that the parameter β = 1/2+

√
4π −π2/(2π) is the best possi-

ble parameter in (1/2,1) such that inequality (2.2) holds for all a,b > 0 with a �= b . In
fact, if 1/2 < p < β = 1/2+

√
4π −π2/(2π) , then equation (2.6) leads to f (1−) > 0.

Hence, there exists δ2 = δ2(p) ∈ (0,1) such that

f (r) > 0 (2.17)
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for r ∈ (1− δ2,1) .
Therefore, T (a,b) > C(pa+(1− p)b, pb+(1− p)a) for b/a ∈ (0,δ2/(2− δ2))

follows from equations (2.3) and (2.4) together with inequality (2.17).

REMARK 2.1. Let β = 1/2+
√

4π −π2/(2π)) and a,b > 0 with a �= b . Then
from inequality S(a,b) >C(βa+(1−β )b,βb+(1−β )a) [7] and Theorem 1.1 we get

T (a,b) < C(βa+(1−β )b,βb+(1−β )a)< S(a,b),

which is a refinement of inequality (1.3).
The following Corollary 2.2 can be derived directly from Theorem 1.1.

COROLLARY 2.2. The double inequality

2πC(αa+(1−α)b,αb+(1−α)a)< L(a,b) < 2πC(βa+(1−β )b,βb+(1−β )a)

holds for α = 3/4,β = 1/2+
√

4π −π2/(2π) and a,b > 0 with a �= b.
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