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ANOTHER PROOF OF SPIRA’S INEQUALITY AND

ITS APPLICATION TO THE RIEMANN HYPOTHESIS

SADEGH NAZARDONYAVI AND SEMYON YAKUBOVICH

(Communicated by B. Uhrin)

Abstract. By using new inequalities involving powers of rational functions, we give another
proof of an important Spira’s relation for the Riemann zeta-function |ζ (1− s)| � |ζ (s)| in the
strip 0 < ℜs < 1/2, |ℑs| � 12 . Moreover, we establish a sufficient condition of the validity of
the Riemann hypothesis in terms of the derivative of |ζ (s)|2 with respect to ℜs and conjecture
its necessity.

1. Introduction and main result

As it is known, the Riemann zeta-function is defined by the absolutely convergent
series

ζ (s) =
∞

∑
n=1

1
ns , (ℜs > 1). (1)

Moreover, it admits an analytic continuation over the whole complex plane, having as
its only singularity a simple pole with residue 1 at s = 1 ([5], pp. 1-3). The Riemann
hypothesis (RH), stated by Riemann in 1859, concerns the complex zeros of the Rie-
mann zeta function. The RH states that the non-real zeros of the Riemann zeta function
ζ (s) all lie on the critical line σ = 1/2 ([6]).

Let ζ (1− s) = g(s)ζ (s) . It is easily seen from the functional equation for the
Riemann zeta-function ([10], p. 16), that g(s) can be written in two equivalent forms

(1) g(s) = 2(2π)−s cos
πs
2

Γ(s) ,

(2) g(s) = π
1
2−sΓ

( s
2

)/
Γ
(

1− s
2

)
.

In 1965, Spira [9] proved that |g(s)| < 1,s = σ + it , for 0 < σ < 1/2, |t| � 10
using its representation in the form (1). To do this he also employed Stirling’s formula
for logΓ(s) . For the strong inequality |ζ (1− s)| < |ζ (s)| in the same strip, he proved
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that it is equivalent to the Riemann hypothesis. In 1966, Dixon and Schoenfeld [3]
established that |g(s)| < 1 holds for a wider domain 0 < σ < 1/2, |t| � 6.8.

Our goal here is to exhibit another proof of Spira’s inequality, taking represen-
tation (2) and avoiding the use of Stirling’s formula. Our method relies on infinite
product representations of the Euler gamma-function together with two auxiliary lem-
mas involving powers of rational functions. Indeed, we state the main result of this note
by the following

THEOREM 1. For 0 < σ < 1
2 , |t| � 12

|ζ (1− s)| � |ζ (s)| (2)

where the equality takes place only if ζ (s) = 0 .

Finally, we will give a sufficient condition for the validity of the Riemann hy-
pothesis in terms of the partial derivative with respect to σ of |ζ (s)|2 , conjecturing its
necessity as well.

2. Auxiliary lemmas

In order to prove Theorem 1, we will need some auxiliary elementary inequalities
involving rational and logarithmic functions. Precisely, we have (see [7], §2)

1
x+1

< log

(
1+

1
x

)
<

1
x
, (x < −1, or x > 0), (3)

1

x+ 1
2

< log

(
1+

1
x

)
<

1
x
, x > 0, (4)

2x
2+ x

< log(1+ x) <
x(2+ x)
2(1+ x)

, (x > 0), (5)

x(2+ x)
2(1+ x)

< log(1+ x) <
2x

2+ x
, (−1 < x < 0). (6)

Next we give some possibly new inequalities, whose proofs are based on elementary
calculus and will be omitted.

LEMMA 1. For any t � 1(
1+

1
tx+ t−1

)t

� 1+
1
x
, (x � −1, x > 0), (7)

(
1+

x
t

)t
� 1+

2tx
(1− t)x+2t

, (0 � x � 2). (8)

Finally, for 0 � a � 1(
1+

1
x

)a

� 1+
a

x+1−a
, (x � −1, x > 0), (9)
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where the equality holds only if a = 0, 1 or x = −1 , and(
1+

1
x

)a

� 1+
a

x+ 1−a
2

, (x > 0), (10)

(
1+

1
x

)a

� 1+
a

x+ 1−a
2

, (x � −1), (11)

where it becomes equality only if a = 0, 1 .

Now we will prove a key lemma, which is used in the next section to prove the
main result.

LEMMA 2. Let 0 < σ < 1/2 , t ∈ R and x � (1+
√

3)/4 . Then

(2x+1−σ)2 + t2

(2x+ σ)2 + t2
<

{(
2x+1

2x

)2(
1− (1+4x)((−1+ σ)σ + t2)

(1+2x)2((−1+ σ)σ + t2 +4x2)

)}1−2σ

.

(12)

If t � 1/2 , it has

(1−σ)2 + t2

σ2 + t2
<

(
1+

1
(−1+ σ)σ + t2

)1−2σ
. (13)

Finally, for t � 12 , the following inequality holds(
(1−σ)2 + t2

σ2 + t2

) 3

∏
n=1

(2n+1−σ)2+ t2

(2n+ σ)2 + t2
<

(
1
4

3

∏
n=1

(
2n+1

2n

)2
)1−2σ

. (14)

Proof. Let 1−2σ = 1/y . Then (12) is equivalent to(
1+

4(1+4x)
y((−1/y+1+4x)2+4t2)

)y

< 1+
4(1+4x)y2

1+(−1+4t2+16x2)y2 . (15)

It is not difficult to verify

0 <
4(1+4x)

(−1/y+1+4x)2+4t2
� 2, (x � 1+

√
3

4
, t ∈ R). (16)

But relation (15) is just inequality (8), where

x :=
4(1+4x)

(−1/y+1+4x)2+4t2
, t := y.

So we proved (12). In the same manner we establish (13). To prove (14) it is enough to
verify the following inequality(

1+
1

(−1+ σ)σ + t2

) 3

∏
n=1

(
1− (1+4n)((−1+ σ)σ + t2)

(1+2n)2((−1+ σ)σ + t2 +4n2)

)
<

1
4
.

Indeed, its left-hand side is increasing by σ and decreasing by t in the strip
]0,1/2[×]1/2,∞[ . Therefore, we may put σ = 1/2 and t = 12 and see by straightfor-
ward computation that it is less than 1/4. �
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3. Proof of the main result

Now we are ready to prove Theorem 1.

Proof. In fact, using representation (2) for g(s) we show that for 0 < σ < 1
2 and

t � 12, |g(σ + it)| < 1. To do this, we appeal to the infinite product for the sine
function ([1], p. 197)

sinπz = πz
∞

∏
n=1

(1− z2

n2 ), z ∈ C,

and letting z = 1
2 , we arrive at the known Wallis’s formula

π
2

=
∞

∏
n=1

(2n)2

(2n−1)(2n+1)
.

Moreover, the Gauss infinite product formula for the gamma function ([2], p. 61)

Γ(z) =
1
z

∞

∏
n=1

(
1+ 1

n

)z
1+ z

n

,

yields

Γ( 1
2 s)

Γ( 1
2 − 1

2s)
=

1− s
s

∞

∏
n=1

(
1

1+ 1
n

) 1
2−s(

1+ 1−s
2n

1+ s
2n

)
.

Hence

g(s) =
(

1− s
s

)
2

1
2−s

∞

∏
n=1

(
(2n)2

(2n−1)(2n+1)

) 1
2−s ∞

∏
n=1

(
1

1+ 1
n

) 1
2−s(

1+ 1−s
2n

1+ s
2n

)

=
(

1− s
s

)
2

1
2−s

∞

∏
n=1

(
(2n)2n

(2n−1)(2n+1)(n+1)

) 1
2−s ∞

∏
n=1

1+ 1−s
2n

1+ s
2n

=
(

1− s
s

)
2

1
2−s

∞

∏
n=1

(
(2n)n

(2n−1)(n+1)

) 1
2−s ∞

∏
n=1

(
2n

2n+1

) 1
2−s
(

1+ 1−s
2n

1+ s
2n

)

=
(

1− s
s

)
2

1
2−s

∞

∏
n=1

(
(2n)n

(2n−1)(n+1)

) 1
2−s ∞

∏
n=1

(
2n

2n+1

) 1
2−s(2n+1− s

2n+ s

)

=
(

1− s
s

)
2

1
2−s

∞

∏
n=1

(
(2n+1)n

(2n−1)(n+1)

) 1
2−s ∞

∏
n=1

(
2n

2n+1

)1−2s(2n+1− s
2n+ s

)
.

Let

f (s) = 2
1
2−s

∞

∏
n=1

(
(2n+1)n

(2n−1)(n+1)

) 1
2−s

,
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and
h(s) = h1(s)h2(s),

where

h1(s) =
1− s

s
, h2(s) =

∞

∏
n=1

(
2n

2n+1

)1−2s 2n+1− s
2n+ s

.

For any N we have ∏N
n=1{((2n+1)n)/((2n−1)(n+1))}= (2N +1)/(N+1) < 2 and

so
∞

∏
n=1

(2n+1)n
(2n−1)(n+1)

= 2.

Hence
| f (s)| = 21−2σ .

Therefore, it is sufficient to show that for 0 < σ < 1
2 and t � 12, |h(s)| < 22σ−1 .

Indeed, |h1(s)| is a decreasing function with respect to σ and t for 0 < σ < 1/2
and t > 0. Meanwhile,

|h2(s)| =
∞

∏
n=1

(
2n

2n+1

)1−2σ ∣∣∣∣2n+1− s
2n+ s

∣∣∣∣ (17)

is increasing with respect to σ in the strip (σ ,t) ∈]0,1/2[×[1/2,∞[ and decreasing
with respect to t in the strip (σ ,t) ∈]0,1/2[×R+ .

Denoting by

h2,n(σ ,t) =
(

2n
2n+1

)1−2σ ∣∣∣∣2n+1− (σ + it)
2n+(σ + it)

∣∣∣∣
the general term of the product and assuming for now

h2,n(σ ,t) < 1, (0 < σ <
1
2
, t � 0), (18)

we easily come out with the inequality

N+1

∏
n=1

h2,n(σ ,t) <
N

∏
n=1

h2,n(σ ,t), (0 < σ <
1
2
, t � 0).

To verify (18) we need to show that

(1+
1
2n

)1−2σ >

√
(2n+1−σ)2+ t2

(2n+ σ)2 + t2
, t � 0. (19)

In fact,
(2n+1−σ)2 + t2

(2n+ σ)2 + t2
= 1+

(1−2σ)(4n+1)
(2n+ σ)2 + t2

. (20)
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Hence inequality (19) yields

(1+
1
2n

)1−2σ >
2n+1−σ

2n+ σ
�
√

(2n+1−σ)2+ t2

(2n+ σ)2 + t2
. (21)

However
2n+1−σ

2n+ σ
= 1+

1−2σ
2n+ σ

.

So the first inequality in (21) follows immediately from (9), letting x = 2n and a =
1−2σ . Thus we have inequality (18).

Further, we show that {h2,n(σ ,t)}∞
n=1 is an increasing sequence for any (σ ,t) ∈

]0,1/2[×R . To do this we consider the function H2(y) = h2,y(σ ,t) and differentiate it
with respect to y . Hence by straightforward calculations we derive

H ′
2(y) =

1−2σ
y(2y+1)

(
2y

2y+1

)1−2σ

((2y+ σ)2 + t2)2

√
(2y+1−σ)2 + t2

(2y+ σ)2 + t2

×
{
(2y+1−σ)(1−σ)σ(2y+σ)+(1+6y(1+2y)−2(1−σ)σ)t2+ t4

}
.

Since

(2y+1−σ)(1−σ)σ(2y+σ)+(1+6y(1+2y)−2(1−σ)σ)t2+ t4

� (2y+1−σ)(1−σ)σ(2y+σ)> 0,

we get that the derivative is positive, and therefore H2(y) is increasing for y > 0. Now
fixing t � 1/2, we justify that h2,n(σ ,t) is increasing by σ . Precisely,

∂
∂σ

h2,n(σ , t) =

(
2n

2n+1

)1−2σ

∣∣∣∣2n+1− (σ + it)
2n+(σ + it)

∣∣∣∣
{
− (1+4n)(4n2+2n+ σ −σ2 + t2)

+2((2n+1−σ)2+ t2)((2n+ σ)2 + t2) log

(
1+

1
2n

)}

and we achieve the goal, showing that the latter multiplier is positive. But this is true
due to inequality (4), because it is greater than

−(1−2σ)2(2n+1−σ)(2n+ σ)+(8n(1+2n)+3−8(1−σ)σ)t2+4t4

1+4n

� 1+(1−σ)σ(8n(1+2n)−3+4(1−σ)σ)
1+4n

> 0, (0 < σ < 1/2, t � 1/2).
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Returning to (17) we conclude that |h2(σ ,t)| is increasing with respect to σ for 0 <
σ < 1

2 and t � 1/2, and by (20) it is decreasing with respect to t for 0 < σ < 1
2 and

t > 0.
Further, since

|hN(s)| =
∣∣∣∣1− s

s

∣∣∣∣ N

∏
n=1

(
2n

2n+1

)1−2σ ∣∣∣∣2n+1− s
2n+ s

∣∣∣∣ (22)

is decreasing by N , we have
|h(s)| � |hN(s)|.

As |hN(s)| is decreasing by t , it is enough to show that

|hN(s)| < 22σ−1, for (t = 12, N = 3)

and this has been established in (14). Moreover, since ζ (s) is reflexive with respect to
the real axis, i.e., ζ (s) = ζ (s) , inequality (2) holds also for t � −12. Theorem 1 is
proved. �

REMARK 1. A computer simulation shows that the main result is still valid for
t ∈]6.5,12[ . However, a direct proof by this approach is more complicated, because to
achieve the goal we should increase a number N of terms in the product (22).

4. An application to the Riemann hypothesis

Similar to [9], we announce the following proposition.

PROPOSITION 1. The Riemann hypothesis is true if and only if

|ζ (1− s)|< |ζ (s)|, for (0 < σ <
1
2
, |t| > 6.5).

As it is known [4], zeros of the derivative ζ ′(s) of Riemann’s zeta-function are
connected with the behavior of zeros of ζ (s) itself. Precisely, Speiser’s theorem [8]
states that the Riemann hypothesis (RH) is equivalent to ζ ′(s) having no zeros on the
left of the critical line.

PROPOSITION 2. If

∂
∂σ

|ζ (s)|2 < 0, for (0 < σ <
1
2
, |t| > 6.5), (A)

then the Riemann hypothesis is true.

Proof. In fact, if the Riemann hypothesis were not true, then by Speiser’s theorem
[8], there exists a number s ∈]0,1/2[×R , such that ζ ′(s) = 0. Hence ∂

∂σ |ζ (s)|2 =
0. �

Finally, we conjecture the necessity of the condition (A) for the validity of the
Riemann hypothesis.
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[7] D. S. MITRINOVIĆ et. al., Elementary Inequalities, P. Noordhoff Ltd., Groningen, 1964.
[8] A. SPEISER, Geometrisches zur Riemannschen Zetafunktion, Math. Ann. 110 (1934), 514–521 (Ger-

man).
[9] R. SPIRA, An inequality for the Riemann zeta function, Duke Math. J. 32 (1965), 247–250.

[10] E. C. TITCHMARSH,The Theory of the Riemann Zeta-Function, 2nd edition, Clarendon Press Oxford
University Press, Oxford, 1986.

(Received July 28, 2012) Sadegh Nazardonyavi
Department of Mathematics, Faculty of Sciences

University of Porto
Rua do Campo Alegre, 687
4169-007 Porto, Portugal

e-mail: sdnazdi@yahoo.com

Semyon Yakubovich
Department of Mathematics, Faculty of Sciences

University of Porto
Rua do Campo Alegre, 687
4169-007 Porto, Portugal

e-mail: syakubov@fc.up.pt

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


