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OPERATOR INEQUALITIES RELATED TO WEAK 2–POSITIVITY
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(Communicated by A. Čižmešija)

Abstract. In this paper we introduce the notion of weak 2-positivity and present some examples.
We establish some operator Cauchy–Schwarz inequalities involving the geometric mean and give
some applications. In particular, we present some operator versions of Hua’s inequality by using
the Choi–Davis–Jensen inequality.

1. Introduction

Let B(H ),〈·, ·〉) stand for the algebra of all bounded linear operators on a com-
plex Hilbert space H and let I denote the identity operator. In the case when dimH =
n , we identify B(H ) with the full matrix algebra Mn of all n× n matrices with
entries in the complex field C . An operator A ∈ B(H ) is called positive (positive-
semidefinite for matrices) if 〈Aξ ,ξ 〉 � 0 holds for every ξ ∈ H and then we write
A � 0. For self-adjoint operators A,B ∈ B(H ) , we say A � B if B−A � 0. A map
Φ : B(H ) → B(K ) is said to be positive if Φ(A) � 0 whenever A � 0. A map
Φ : B(H ) → B(K ) is called 2 -positive if the map Φ2 : B(H ⊕H ) → B(K ⊕K )
defined by Φ2([Ai j]2×2) = [Φ(Ai j)]2×2 takes each positive block matrix to a positive

one. If Φ2 preserves the positivity of each block matrix of the form

[
A C
C B

]
, then we call

Φ weakly 2 -positive. We say that Φ : B(H )→B(K ) is a ∗ -map if Φ(A∗) = (Φ(A))∗ .
Choi [4, Corollary 4.4] showed that a positive linear map is weakly 2-positive. On the
other hand, the Moore–Penrose inverse † on the matrix algebra Mn gives a map Φ†

defined by Φ†(A) = A† , which is a nonlinear positive map while it is not weakly 2-
positive (and so not 2-positive). In fact, since Φ† assigns the inverses to invertible
matrices, we have[

2I I
I 2I

]
=
[
2 1
1 2

]
⊗ I � 0 while

[
Φ†(2I) Φ†(I)
Φ†(I) Φ†(2I)

]
=
[ 1

2 1
1 1

2

]
⊗ I 	� 0.

Next we present a non-trivial example of a weakly 2-positive map, which is not
2-positive. Let us recall a useful criterion due to Ando [1, Theorem I.1]. It states that

a block matrix T =
(

A C
C∗ B

)
is positive if and only if there exists a contraction W
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such that C = A
1
2WB

1
2 . We first note that the nonlinear map X 
→ (detX)I on Mn is

2-positive. In fact, the condition

(
A C
C∗ B

)
� 0 implies that C = A

1
2WB

1
2 for some con-

traction W . Then |detW | � 1 and detC =
√

detAdetW
√

detB . Using again the above
criterion we conclude that Φ is 2-positive. The map Φα(X) = X∗ + α(detX)I for
α � 0 is neither linear nor conjugate linear. It is clearly weakly 2-positive. Moreover,
let

A =
(

1 0
0 0

)
, B =

(
2 2
2 2

)
, C =

(
1 1
0 0

)
.

Then A
1
2 = A , B

1
2 = B/2 and C = A

1
2 IB

1
2 , so that

(
A C
C∗ B

)
� 0. Noting to detA =

detB = detC = 0, we have

(
Φα (A) Φα (C)
Φα(C∗) Φα (B)

)
=
(

A C∗
C B

)
+ α

(
0 0
0 0

)
=

⎛
⎜⎜⎝

1 0 1 0
0 0 1 0
1 1 2 2
0 0 2 2

⎞
⎟⎟⎠

which is not positive since its determinant is negative. Therefore Φα is not 2-positive
for any α � 0. Furthermore, these matrices A,B,C can be used to show that the trans-
pose map Φ(A) = Atr on M2 is a weakly 2-positive linear map that is not 2-positive.

The geometric mean A#B of two positive operators A,B∈ B(H ) is characterized
by Ando [1]

A#B = max

{
X = X∗ ∈ B(H ) :

[
A X
X B

]
� 0

}
.

Then we immediately have Φ(A#B) � Φ(A)#Φ(B) for any weakly 2-positive map Φ .
Ando [1] also characterized the harmonic mean AB by

AB = max

{
X = X∗ ∈ B(H ) :

[
2A 0
0 2B

]
�
[

X X
X X

]}
.

Then, for a weakly 2-positive map Φ , we have[
Φ(2A−AB) Φ(−AB)

Φ(−AB) Φ(2B−AB)

]
� 0.

If Φ is linear in this case, we have[
2Φ(A) 0

0 2Φ(B)

]
�
[

Φ(AB) Φ(AB)
Φ(AB) Φ(AB)

]
,

and hence Φ(AB) � Φ(A)Φ(B) holds, which is shown in [1, Cor.IV.1.3].
In this note we present operator Cauchy–Schwarz inequalities for 2-weakly posi-

tive and 2-positive maps involving the operator geometric mean and give two operator
Hua types inequalities as application.
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2. Cauchy–Schwarz type inequalities

One of the fundamental inequalities in mathematics is the Cauchy–Schwarz in-
equality. It states that in an inner product space (X ,〈·, ·〉)

|〈x,y〉| � ‖x‖‖y‖ (x,y ∈ X ) .

There are many generalizations and applications of this inequality for integrals and iso-
tone functionals; see the monograph [6]. Moreover, some Cauchy–Schwarz inequalities
for Hilbert space operators and matrices involving unitarily invariant norms were given
by Jocić [14] and Kittaneh [16]. Also Joiţa [15], Ilišević and Varošanec [13], the first
author and Persson [18], Arambasić, Bakić and the first author [2] have investigated the
Cauchy–Schwarz inequality and its various reverses in the framework of C∗ -algebras
and Hilbert C∗ -modules. Tanahashi, A. Uchiyama and M. Uchiyama [20] investigated
some Schwarz type inequalities and their converses in connection with semi-operator
monotone functions. A refinement of the Cauchy–Schwarz inequality involving con-
nections is investigated by Wada [21]. An application of the covariance-variance in-
equality to the Cauchy–Schwarz inequality was obtained by Fujii, Izumino, Nakamoto
and Seo [10]. Some operator versions of the Cauchy–Schwarz inequality with simple
conditions for the case of equality are presented by the second author [9].

To achieve our main result we need the polar decomposition of bounded linear
operators. Recall that if A ∈ B(H ) , then there exists a unique partial isometry U ∈
B(H ) such that A = U |A| and ker(U) = ker(|A|) (the polar decomposition). Then
U∗A = |A| and A∗ = U∗|A∗| is the polar decomposition of A∗ .

THEOREM 2.1. Let A,B,X ,Y ∈ B(H ) be arbitrary operators.

(i) If Φ is a weakly 2 -positive map, then Φ(|X∗A∗Y |)� Φ(V ∗X∗|A|XV )#Φ(Y ∗|A∗|Y ) ,
in which X∗A∗Y = V |X∗A∗Y | denotes the polar decomposition.

(ii) If Φ is a 2 -positive ∗ -map, then |Φ(X∗A∗Y )| � U∗Φ(X∗|A|X)U #Φ(Y ∗|A∗|Y ) ,
in which Φ(X∗A∗Y ) = U |Φ(X∗A∗Y )| denotes the polar decomposition.

Proof. (i) First note that[ |A| A∗
A |A∗|

]
=
[

I 0
0 W

][ |A|1/2 0
|A|1/2 0

][ |A|1/2 |A|1/2

0 0

][
I 0
0 W

]∗
� 0,

where we apply the polar decomposition A = W |A| . Hence[
X∗|A|X X∗A∗Y
Y ∗AX Y ∗|A∗|Y

]
=
[

X∗ 0
0 Y ∗

][ |A| A∗
A |A∗|

][
X 0
0 Y

]
� 0 . (2.1)

Utilizing the polar decomposition X∗A∗Y = V |X∗A∗Y | we obtain[
V ∗(X∗|A|X)V |X∗A∗Y |

|X∗A∗Y | Y ∗|A∗|Y
]

=
[
V ∗(X∗|A|X)V V ∗(X∗A∗Y )

(Y ∗AX)V Y ∗|A∗|Y
]

=
[
V 0
0 I

]∗ [
X∗|A|X X∗A∗Y
Y ∗AX Y ∗|A∗|Y

][
V 0
0 I

]
� 0 .
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Due to the weak 2-positivity of Φ , we get[
Φ(V ∗(X∗|A|X)V ) Φ(|X∗A∗Y |)

Φ(|X∗A∗Y |) Φ(Y ∗|A∗|Y )

]
� 0 .

Thus we obtain

Φ(|X∗A∗Y |) � Φ(V ∗X∗|A|XV)#Φ(Y ∗|A∗|Y ) .

(ii) It follows from (2.1) and 2-positivity of Φ that[
Φ(X∗|A|X) Φ(X∗A∗Y )
Φ(Y ∗AX) Φ(Y ∗|A∗|Y )

]
� 0 ,

whence, by using the polar decoposition Φ(X∗A∗Y ) = U |Φ(X∗A∗Y )| , we get[
U∗Φ(X∗|A|X)U |Φ(X∗A∗Y )|
|Φ(X∗A∗Y )| Φ(Y ∗|A∗|Y )

]
=
[
U∗Φ(X∗|A|X)U U∗Φ(X∗A∗Y )

Φ(Y ∗AX)U Φ(Y ∗|A∗|Y )

]

=
[
U 0
0 I

]∗ [Φ(X∗|A|X) Φ(X∗A∗Y )
Φ(Y ∗AX) Φ(Y ∗|A∗|Y )

][
U 0
0 I

]
� 0 ,

which gives the desired inequality. �

REMARK 2.2. The proof of Theorem 2.1 (ii) shows that if A = A∗ and Y = X ,
then the “2-positivity” of Φ can be replaced by the weaker assumption “weak 2-
positivity”. Then we get (ii) ′ If Φ is a weakly 2-positive ∗ -map, then |Φ(X∗AX)| �
U∗Φ(X∗|A|X)U #Φ(X∗|A|X) , in which Φ(X∗AX) = U |Φ(X∗AX)| denotes the polar
decomposition.

Now consider the separable Hilbert space H = �2 . Take the 2-positive map
Φ(A) = 〈Ae,e〉 where A ∈ B(H ) , e = (1,0,0, · · ·) and X = x⊗ e , Y = y⊗ e where
(x⊗y)(z) := 〈z,y〉x . Then we get from Theorem 2.1 (ii) the following Cauchy–Schwarz
inequality in Hilbert spaces:

COROLLARY 2.3. Let A ∈ B(H ) and x,y ∈ H . Then

|〈Ax,y〉|2 � 〈|A|x,x〉〈|A∗|y,y〉 .

Considering the positive linear functional tr(·) on Mn , it follows from Theorem
2.1 (i) that

COROLLARY 2.4. Let A,X ,Y ∈ Mn . Then

tr(|X∗A∗Y |)2 � tr(X∗|A|X)tr(Y ∗|A∗|Y ) .



OPERATOR INEQUALITIES RELATED TO WEAK 2-POSITIVITY 179

COROLLARY 2.5. Let X ∈ B(H ) .

(i) If Φ is a weakly 2 -positive map, then Φ(|X |) � Φ(V ∗|X∗|V )#Φ(|X |) ,
where X = V |X | is the polar decomposition.

(ii) If Φ is a 2 -positive ∗ -map, then |Φ(X)| � U∗Φ(|X∗|1/2)U #Φ(|X |3/2) ,
where Φ(X) = U |Φ(X)| is the polar decomposition.

Proof. Let X = V |X | be the polar decomposition of X . It follows from Theorem
2.1 (i) that

(i) Φ(|X |) = Φ(|V ∗XI|) � Φ(IV ∗|X∗|VI)#Φ(|X |) = Φ(V ∗|X∗|V )#Φ(|X |) .
(ii) Utilizing Theorem 2.1 (ii) we have

|Φ(X)| = |Φ(V |X |1/2|X |1/2)|
� U∗Φ(V |X |1/2V ∗)U #Φ(|X |1/2|X |1/2|X |1/2)

= U∗Φ(|X∗|1/2)U #Φ(|X |3/2) . �

3. Applications to Hua’s inequality

Hua’s inequality states that(
δ −

n

∑
i=1

xi

)2

+ α
n

∑
i=1

x2
i � α

n+ α
δ 2 ,

where δ , α are positive numbers and xi (i = 1,2, . . . ,n) are real numbers. There are
several refinement and improvement of this inequality in the literature; see [17] and
references therein. An operator version of Hua’s inequality was given by Drnovšek
[7]. Moreover, Radas and Šikić [19] generalized the Hua inequality for linear operators
in real inner product spaces. A refinement of Hua’s inequality was presented by the
second author in [8] by showing that if A,B are bounded linear operators acting on a
Hilbert space H and ϕ is a state on B(H ) , then

(1−|ϕ(B∗A)|)2 � (1−
√

ϕ(A∗A)ϕ(B∗B))2 � ϕ(I−A∗A)ϕ(I−B∗B), (3.1)

which in turn gives an extension of the above classical Hua’s inequality by considering
ϕ as the normalized trace on the matrix algebra Mn and some suitable diagonal matri-
ces. An extension in the setting of Hilbert C∗ -modules and operators on Hilbert spaces
was given by the first author in [17].

Our first result in this section gives an extension of (3.1). Recall that a contraction
is an operator A of norm less than or equal one.

THEOREM 3.1. Let Φ be a 2 -positive ∗ -map and let A,B,X ,Y ∈B(H ) be arbi-
trary operators. If Φ(X∗A∗Y )=U |Φ(X∗A∗Y )| is the polar decomposition of Φ(X∗A∗Y ) ,
and Φ(Y ∗|A∗|Y ) and Φ(X∗|A|X) are contractions, then

I−|Φ(X∗A∗Y )| � U∗(I−Φ(X∗|A|X)
)
U #
(
I−Φ(Y ∗|A∗|Y )

)
.
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Proof. Theorem 2.1 (ii) ensures that

I−|Φ(X∗A∗Y )| � I−
(
U∗Φ(X∗|A|X)U #Φ(Y ∗|A∗|Y )

)
. (3.2)

Using the properties of the geometric mean (see [11, Chapter 5]), we get(
U∗(I−Φ(X∗|A|X))U #

(
I−Φ(Y ∗|A∗|Y )

))
+
(
U∗Φ(X∗|A|X)U #Φ(Y ∗|A∗|Y )

)
� U∗U#I (by the subadditivity of the geometric mean)
� I#I (by the monotonicity of the geometric mean)
= I ,

which together with (3.2) give the required inequality. �
Now let f be a continuous real function f defined on an interval J ⊆ R . The

function f is called operator convex if

f

(
A+B

2

)
� f (A)+ f (B)

2

for all selfadjoint operators A and B with spectra contained in J . There are several
statements equivalent to the operator convexity; see [11, Theorems 1.9 and 1.10]. In
particular, f is operator convex if and only if

f

(
n

∑
i=1

X∗
i AiXi

)
�

n

∑
i=1

X∗
i f (Ai)Xi (3.3)

for all self-adjoint bounded operators Ai with spectra contained in J and all bounded
operators Xi with ∑n

i=1 X∗
i Xi = I ; cf [12]. The Jensen operator inequality due to Davis

[5] and Choi [3] reads as follows

f (Φ(A)) � Φ( f (A)) (The Choi–Davis–Jensen inequality)

where Φ is a unital positive linear map on B(H ) , f is operator convex and A is a
self-adjoint operator whose spectrum sp(A) is contained in J .

Finally we show another type of Hua’s operator inequality. Recall that a con-
ditional expectation Φ from a unital C∗ -algebra A of operators to a C∗ -subalgebra
B of A containing its identity is a linear norm reducing idempotent. Such a map
is completely positive and satisfies the bimodule property Φ(AXB) = AΦ(X)B for all
A,B ∈ B and X ∈ A .

THEOREM 3.2. Let f be an operator convex function on an interval J and
Φ be a conditional expectation from a unital C∗ -algebra A of operators to a C∗ -
subalgebra B of A containing its identity. If C ∈ B is invertible and B ∈ A is
self-adjoint and satisfies

sp(I−Φ(B))∪ sp((I +C∗C)−1)∪ sp(C∗−1BC−1) ⊆ J ,
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then

f (I−Φ(B))+C∗Φ
(

f
(
C∗−1BC−1))C � f

(
(I +C∗C)−1)(I +C∗C) .

Proof. Put

X = (I +C∗C)−1/2 and Y = C(I +C∗C)−1/2.

Then X∗X +Y∗Y = I . We have

f (I −Φ(B))+C∗Φ( f (C∗−1BC−1))C

= X−1
[
X f (I−Φ(B))X +Y ∗Φ( f (C∗−1BC−1))Y

]
X−1

� X−1
[
X f (I−Φ(B))X +Y ∗ f (Φ(C∗−1BC−1))Y

]
X−1

( by the Choi–Davis–Jensen inequality)

= X−1
[
X f (I−Φ(B))X +Y ∗ f (C∗−1Φ(B)C−1)Y

]
X−1

(by the bimodule property of Φ)

� X−1 f
(
X(I−Φ(B))X +Y ∗C∗−1Φ(B)C−1Y

)
X−1

(by X∗X +Y ∗Y = I and (3.3))

= X−1 f
(
X(I−Φ(B))X +XΦ(B)X

)
X−1

= f (X2)X−2 (by the functional calculus)

= f
(
(I +C∗C)−1) (I +C∗C) . �

COROLLARY 3.3. Let f be an operator convex function on an interval J , ϕ
be a state and γ > 0 . If B is self-adjoint, 1−ϕ(B) and 1/(γ + 1) belong to J and
sp(B/γ) ⊆ J , then

f (1−ϕ(B))+ γϕ
(
f (B/γ)

)
� (1+ γ) f

(
1

1+ γ

)
.
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[19] S. RADAS AND T. ŠIKIĆ, A note on the generalization of Hua’s inequality, Tamkang J. Math., 28

(1997), no. 4, 321–323.
[20] K. TANAHASHI, A. UCHIYAMA AND M. UCHIYAMA, On Schwarz type inequalities, Proc. Amer.

Math. Soc. 131 (2003), no. 8, 2549–2552.
[21] S. WADA, On some refinement of the Cauchy–Schwarz inequality, Linear Algebra Appl. 420 (2007),

no. 2–3, 433–440.

(Received December 13, 2011) Mohammad Sal Moslehian
Department of Pure Mathematics

Center of Excellence in Analysis on Algebraic Structures (CEAAS)
Ferdowsi University of Mashhad

P.O. Box 1159, Mashhad 91775, Iran
e-mail: moslehian@um.ac.ir; moslehian@member.ams.org

Jun Ichi Fujii
Department of Art and Sciences (Information Science)

Osaka Kyoiku University
Asahigaoka, Kashiwara
Osaka 582–8582, Japan

e-mail: fujii@cc.osaka-kyoiku.ac.jp

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


