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THE BEST CONSTANT IN A GEOMETRIC INEQUALITY RELATING

MEDIANS, INRADIUS AND CIRCUMRADIUS IN A TRIANGLE

SHI-CHANG SHI AND YU-DONG WU

(Communicated by L. Yang)

Abstract. In this paper, the authors give a refinement of the inequality associated with the me-
dians, inradius and circumradius in a triangle by making use of certain analytical techniques for
systems of nonlinear algebraic equations.

1. Introduction and main results

For a given �ABC , let a , b and c denote the side-lengths facing the angles A , B
and C , respectively. Also let ma , mb and mc denote the corresponding medians, ha ,
hb and hc the altitudes, s = 1

2 (a+b+ c) the semi-perimeter, R the circumradius and r
the inradius of �ABC . In addition, we let

m1 =
1
2

√
(b+ c)2−a2,

m2 =
1
2

√
2a2 +

1
4
(b+ c)2,

r0 =
a
√

s(s−a)
2s

,

and

R0 =
(b+ c)2

8
√

s(s−a)
.

In 1986, Janous [3] posed the following conjecture involving the geometrical in-
equality

5
s

<
1
ma

+
1
mb

+
1
mc

. (1.1)

Later, in 1988, Gmeiner and Janous [2] proved the inequality (1.1) by using calculus.
Later, inequality (1.1) was sharpened by An [1], Shi [8, 9], Yang [13] and Srivastava et
al. [7], etc. It is easy to prove the reverse of inequality (1.1)

1
ma

+
1
mb

+
1
mc

� 1
r

(1.2)
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with the well-known inequalities ma � ha , etc.
In 1996, Liu considered a refinement of inequality (1.2), and he [4] posed the

following interesting and beautiful geometric inequality conjecture with regard to the
medians, inradius and circumradius.

CONJECTURE 1.1. In �ABC , prove or disprove

1
ma

+
1
mb

+
1
mc

� 2
3

(
1
R

+
1
r

)
. (1.3)

Recently, Liu [5] proved inequality (1.3). The main goal of this paper is to refine
inequality (1.3) as follows.

THEOREM 1.1. In �ABC, the best constant k for the following inequality

1
ma

+
1
mb

+
1
mc

� 1
r
− k

(
1
r
− 2

R

)
(1.4)

is the real root in the interval
(

1
3 , 2

5

)
of equation

354294k6−509571k5 +1927260k4−2145600k3 +133376k2+99328k+12288= 0.
(1.5)

Furthermore, the constant k is approximately equal to 0.3440653 .

2. Preliminary results

In order to prove Theorem 1.1, we need the following results.

LEMMA 2.1. In �ABC, if a � b � c, then

(m2 +mb)(m2 +mc) � s (a+2
√

(s−b)(s− c)). (2.1)

Proof. From the well-known inequalities mb �
√

s(s−b) , mc �
√

s(s− c) and

the obvious inequality m2 �
√

1
2as , we get

(m2 +mb)(m2 +mc)− s (a+2
√

(s−b)(s− c))

�
(√

1
2
as+

√
s(s−b)

)(√
1
2
as+

√
s(s− c)

)
− s (a+2

√
(s−b)(s− c))

=− 1
2
as+

√
1
2
as (
√

s(s−b)+
√

s(s− c))−
√

s2(s−b)(s− c)

=s

(√
1
2
a−√

s−b

)(
√

s− c−
√

1
2
a

)

=
s(b− c)2

2(
√

a+
√

2(s−b))(
√

a+
√

2(s− c))
� 0.

Hence, inequality (2.1) holds true.
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LEMMA 2.2. In �ABC, if inequality (1.4) holds, then k � 4
9 .

Proof. Let b = c = 1 and a = x (0 < x < 2) , then inequality (1.2) is equivalent to

2√
4− x2

+
4√

2x2 +1
� 2(2+ x)

x
√

4− x2
− k

[
2(2+ x)
x
√

4− x2
−2
√

4− x2

]

⇐⇒k · 2(2+ x)(1− x)2

x
√

4− x2
� 2(2+ x)

x
√

4− x2
− 2√

4− x2
− 4√

2x2 +1

⇐⇒k · 2(2+ x)(1− x)2

x
√

4− x2
� 4

x
√

4− x2
− 4√

2x2 +1

⇐⇒k · 2(2+ x)(1− x)2

x
√

4− x2
� 4(x2−1)2

x
√

(2x2 +1)(4− x2)(x
√

4− x2 +
√

2x2 +1)
.

Thus,

(2+ x)k � 2(x+1)2
√

2x2 +1(x
√

4− x2 +
√

2x2 +1)
. (2.2)

Taking x = 1 in inequality (2.2), we obtain that k � 4
9 .

LEMMA 2.3. In �ABC, if a � b � c, then

1
ma

+
1
mb

+
1
mc

− 1
m1

− 2
m2

� 9(b+ c)2(b− c)2

32
√

1
2as(s−b)(s− c) · s2[a+2

√
(s−b)(s− c)]

. (2.3)

Proof. It is obvious that

1
ma

− 1
m1

=
m2

1−m2
a

mam1(ma +m1)
= − (b− c)2

4mam1(ma +m1)
. (2.4)

For a � b � c , we have that

m1 � ma � mb � m2 � mc, (2.5)

then by Cauchy’s Inequality, we get

mc +m2 � mb +mc

� mb +m2

� 1
2

√
a2 +2c2 +

1
2

√
2a2 +

1
4
(b+ c)2

� a+2c

2
√

3
+

2a+ b+c
2

2
√

3

=
6a+b+5c

4
√

3

�
√

3
2

(b+ c).

(2.6)
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And

m2
b +m2

c −2m2
2 =

(b− c)2

8
� 0,

so
m2

b +m2
c � 2m2

2. (2.7)

Hence, by inequalities a � b � c and (2.5)–(2.7), we obtain

1
mb

+
1
mc

− 2
m2

=
m2

2−m2
b

mbm2(mb +m2)
+

m2
2−m2

c

mcm2(mc +m2)

=
(5b+7c)(b− c)

16mbm2(mb +m2)
+

(7b+5c)(c−b)
16mcm2(mc +m2)

=− (b−c)2

16mbm2(mb+m2)
− (b−c)2

16mcm2(mc+m2)
+

3(b+c)(b−c)
8mbm2(mb+m2)

+
3(b+c)(c−b)

8mcm2(mc+m2)

=− (b−c)2

16mbm2(mb+m2)
− (b−c)2

16mcm2(mc+m2)
+

3(b+c)(c−b)[(m2
b−m2

c)+m2(mb−mc)]
8mbmcm2(mb+m2)(mc+m2)

=− (b− c)2

16mbm2(mb +m2)
− (b− c)2

16mcm2(mc +m2)
+

3(b+ c)(c−b)(m2
b−m2

c)
8mbmcm2(mb +m2)(mc +m2)

+
3(b+ c)(c−b)(m2

b−m2
c)

8mbmc(mb +m2)(mc +m2)(mb +mc)

=− (b− c)2

16mbm2(mb +m2)
− (b− c)2

16mcm2(mc +m2)
+

9(b+ c)2(b− c)2

32mbmcm2(mb +m2)(mc +m2)

+
9(b+ c)2(b− c)2

32mbmc(mb +m2)(mc +m2)(mb +mc)

=− [m2
b +m2

c +m2(mb +mc)](b− c)2

16mbmcm2(mb +m2)(mc +m2)
+

9(b+ c)2(b− c)2

32mbmcm2(mb +m2)(mc +m2)

+
9(b+ c)2(b− c)2

32mbmc(mb +m2)(mc +m2)(mb +mc)

�− [2m2
2 +m2(mb +mc)](b− c)2

16mbmcm2(mb +m2)(mc +m2)
+

9(b+ c)2(b− c)2

32mbmcm2(mb +m2)(mc +m2)

+
9(b+ c)2(b− c)2

32mbmc(mb +m2)(mc +m2) ·
√

3
2 (b+ c)

=− [2m2 +(mb +mc)](b− c)2

16mbmc(mb +m2)(mc +m2)
+

9(b+ c)2(b− c)2

32mbmcm2(mb +m2)(mc +m2)

+
9(b+ c)(b− c)2

16
√

3mbmc(mb +m2)(mc +m2)

�−
√

3(b+ c)(b− c)2

16mbmc(mb +m2)(mc +m2)
+

9(b+ c)2(b− c)2

32mbmcm2(mb +m2)(mc +m2)
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+
3
√

3(b+ c)(b− c)2

16mbmc(mb +m2)(mc +m2)

=
√

3(b+ c)(b− c)2

8mbmc(mb +m2)(mc +m2)
+

9(b+ c)2(b− c)2

32mbmcm2(mb +m2)(mc +m2)

� (b− c)2

4mam1(ma +m1)
+

9(b+ c)2(b− c)2

32mbmcm2(mb +m2)(mc +m2)
. (2.8)

From inequalities (2.4) and (2.8), we obtain

1
ma

+
1
mb

+
1
mc

− 1
m1

− 2
m2

� 9(b+ c)2(b− c)2

32mbmcm2(mb +m2)(mc +m2)
. (2.9)

With inequalities mb �
√

s(s−b) , mc �
√

s(s− c) , m2 �
√

1
2as , inequality (2.9),

together with Lemma 2.1, we immediately obtain inequality (2.3).

LEMMA 2.4. In �ABC,

1
r0

− 1
r

= −
√

s(b− c)2

a
√

(s−a)(s−b)(s− c)[a+2
√

(s−b)(s− c)]
, (2.10)

if a � b � c, then

1
R0

− 1
R

� 2
√

s(s−a)(b2 + c2−a2)(b− c)2

bc(b+ c)2
√

(s−b)(s− c)[a+2
√

(s−b)(s− c)]
. (2.11)

Proof. Identity (2.10) just follows from the well-known formula

r =

√
s(s−a)(s−b)(s− c)

s
.

Now we prove inequality (2.11). From the well-known formula

R =
abc

4
√

s(s−a)(s−b)(s− c)

and

2
√

(s−b)(s− c) � (s−b)+ (s− c) = a,
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we obtain

1
R0

− 1
R

= 4
√

s(s−a)

[
2

(b+ c)2 −
√

(s−b)(s− c)
abc

]

= 4
√

s(s−a)

[
a−2

√
(s−b)(s− c)
2abc

− (b+ c)2−4bc
2bc(b+ c)2

]

= 2
√

s(s−a)

[
(b− c)2

abc[a+2
√

(s−b)(s− c)]
− (b− c)2

bc(b+ c)2

]

=
2
√

s(s−a){(b+ c)2−a[a+2
√

(s−b)(s− c)]}
abc(b+ c)2[a+2

√
(s−b)(s− c)]

· (b− c)2

=
2
√

s(s−a){[(b+ c)2−a2]
√

(s−b)(s− c)−2a(s−b)(s− c)}
abc(b+ c)2[a+2

√
(s−b)(s− c)]

√
(s−b)(s− c)

· (b− c)2

�
2
√

s(s−a){[(b+ c)2−a2] · a
2 − a

2 · [a2− (b− c)2])}
abc(b+ c)2[a+2

√
(s−b)(s− c)]

√
(s−b)(s− c)

· (b− c)2

=
2
√

s(s−a) · (b2 + c2−a2)
bc(b+ c)2[a+2

√
(s−b)(s− c)]

√
(s−b)(s− c)

· (b− c)2.

LEMMA 2.5. In �ABC, let

f (a,b,c) =
1
ma

+
1
mb

+
1
mc

− 1
r

+ k

(
1
r
− 2

R

)
.

Then

f

(
a,

b+ c
2

,
b+ c

2

)
=

1
m1

+
2
m2

− 1
r0

+ k

(
1
r0

− 2
R0

)
.

If a � b � c and 0 < k � 4
9 , then

f (a,b,c) � f

(
a,

b+ c
2

,
b+ c

2

)
. (2.12)

Proof. If a � b � c , then

bc−2a(s−a)= (a−b)(a− c) � 0,

thus

a2 �
(

b+ c
2

)2

� bc � 2a(s−a),

and for 0 < k � 4
9 , hence,

9(b+ c)2
√

2a(s−a)−16(2−3k)s3

�9(b+ c)2 · b+ c
2

−16

(
2−3 · 4

9

)
· 1
8

(
b+ c

2
+b+ c

)3

= 0
(2.13)
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and

8a(s−a)(b2 + c2−a2)−bc(b+ c)2

�8a(s−a)(b2 + c2−a2)−2a(s−a)(b+ c)2

=2a(s−a)(3b2 +3c2−4a2−2bc)

=2a(s−a)[3(b2−a2)+ (c2−a2)+2c(c−b)] � 0.

(2.14)

From Lemmas 2.3–2.4, inequalities (2.13)–(2.14), we obtain that

f (a,b,c)− f

(
a,

b+ c
2

,
b+ c

2

)

=
1
ma

+
1
mb

+
1
mc

− 1
m1

− 2
m2

+(1− k)
(

1
r0

− 1
r

)
+2k

(
1
R0

− 1
R

)

� 9(b+ c)2(b− c)2

32
√

1
2as(s−b)(s− c) · s2[a+2

√
(s−b)(s− c)]

− (1− k)
√

s(b− c)2

a
√

(s−a)(s−b)(s− c)[a+2
√

(s−b)(s− c)]

+
4k
√

s(s−a)(b2 + c2−a2)(b− c)2

bc(b+ c)2
√

(s−b)(s− c)[a+2
√

(s−b)(s− c)]

=
√

s[9(b+ c)2
√

2a(s−a)−16(2−3k)s3](b− c)2

32as3
√

(s−a)(s−b)(s− c)[a+2
√

(s−b)(s− c)]

+
k
√

s[8a(s−a)(b2 + c2−a2)−bc(b+ c)2](b− c)2

2abc(b+ c)2
√

(s−a)(s−b)(s− c)[a+2
√

(s−b)(s− c)]
� 0.

(2.15)

Therefore, inequality (2.12) holds.

LEMMA 2.6. (see [6, 11, 12]) Let

F(x) = a0x
n +a1x

n−1 + · · ·+an,

and
G(x) = b0x

m +b1x
m−1 + · · ·+bm.

If a0 �= 0 or b0 �= 0 , then the polynomials F(x) and G(x) have a common root if and
only if

R(F,G) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · an

a0 a1 · · · an
. . .

. . .
. . .

a0 a1 · · · an

b0 b1 · · · bm

b0 b1 · · · bm

. . .
. . .

. . .
b0 b1 · · · bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎫⎪⎬
⎪⎭m

⎫⎪⎬
⎪⎭ n

= 0
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where R(F,G)((m + n)× (m + n) determinant) is Sylvester’s Resultant of F(x) and
G(x) .

LEMMA 2.7. (see [10, 12]) Given a polynomial f (x) with real coefficients

f (x) = a0x
n +a1x

n−1 + · · ·+an,

if the number of the sign changes of the revised sign list of its discriminant sequence

{D1( f ),D2( f ), · · · ,Dn( f )}
is v , then the number of the pairs of distinct conjugate imaginary roots of f (x) equals
v. Furthermore, if the number of non-vanishing members of the revised sign list is l ,
then the number of the distinct real roots of f (x) equals l−2v.

3. The proof of Theorem 1.1

Proof. If k � 0, then by inequality (1.2), we can easily find that inequality (1.4)
holds. Hence, we only need consider the case k > 0, and by Lemma 2.2, we only need
consider the case 0 < k � 4

9 .
Now we determine the best constant k such that f (a,b,c) � 0. Since the inequal-

ity (1.4) is symmetrical with respect to the side-lengths a , b and c , there is no harm in
supposing a � b � c . Thus, by Lemma 2.5, we only need to determine the best constant
k such that

f

(
a,

b+ c
2

,
b+ c

2

)
� 0.

or, equivalently, that

2√
(b+c)2−a2

+
4√

2a2+
(

b+c
2

)2− 2s

a
√

s(s−a)
+k

(
2s

a
√

s(s−a)
−16

√
s(s−a)

(b+c)2

)
� 0.

(3.1)
Without loss of generality, we can assume that

a = x and
b+ c

2
= 1 (1 � x < 2),

because the inequality (3.1) is homogeneous with respect to a and b+c
2 . Thus, clearly,

the inequality (3.1) is equivalent to the following inequality:

2√
4− x2

+
4√

2x2 +1
− 2(x+2)

x
√

4− x2
+ k

[
2(x+2)
x
√

4− x2
−2
√

4− x2

]
� 0. (3.2)

We consider the following two cases separately.
Case 1. When x = 1, the inequality (3.2) holds true for any k ∈ R := (−∞,+∞) .
Case 2. When 1 < x < 2, the inequality (3.2) is equivalent to the following inequality:

k � 2(x+1)2

(x+2)
√

2x2 +1(
√

2x2 +1+ x
√

4− x2)
. (3.3)
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Define the function

g(x) :=
2(x+1)2

(x+2)
√

2x2 +1(
√

2x2 +1+ x
√

4− x2)
, x ∈ (1,2).

Calculating the derivative of g(x) , we get

g′(x) =
2(x+1)[4x6+12x5+5x4−21x3−28x2−8−(2x3+6x2+7x−3)

√
2x2+1

√
4−x2]

(x+2)2(2x2+1)
3
2 (
√

2x2+1+x
√

4−x2)2
√

4−x2
.

By setting g′(x) = 0, we obtain

4x6 +12x5+5x4−21x3−28x2−8−(2x3+6x2+7x−3)
√

2x2 +1
√

4− x2 = 0. (3.4)

It is easy to see that the roots of the equation (3.4) are also solutions of the following
equation:

(4x6 +12x5 +5x4−21x3−28x2−8)2− (2x3 +6x2 +7x−3)2(2x2 +1)(4− x2) = 0,

that is
(x−1)(x+2)(x+1)4ϕ(x) = 0, (3.5)

where
ϕ(x) = 16x6 +16x5−16x4−80x3 +5x2−35x−14.

It is obvious that the following equation:

(x−1)(x+2)(x+1)4 = 0 (3.6)

has no real root on the interval (1,2) .
The revised sign list of the discriminant sequence of ϕ(x) is given by

[1, 1, −1, −1, 1, 1]. (3.7)

So the number of the sign changes of the revised sign list of (3.7) is 2 . Thus, by
applying Lemma 2.7, we find that the equation:

ϕ(x) = 0 (3.8)

has 2 distinct real roots. Moreover, it is not difficult to check that

ϕ(−1) =90 > 0,

ϕ(0) =−14 < 0,

ϕ(1) =−108 < 0

and
ϕ(2) = 576 > 0.
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We can conclude that the equation (3.8) has 2 distinct real roots in the following inter-
vals:

(−1,0) and (1,2).

So that the equation (3.4) has only one real root x0 given by x0 = 1.67073609778 · · ·
in the interval (1, 2) , and

g(x)min = g(x0) ≈ 0.3440653∈
(

1
3
,

2
5

)
. (3.9)

Now we prove that g(x0) is the root of the equation (1.5). For this purpose, we consider
the following system of nonlinear algebraic equations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ϕ(x0) = 0,

2x2
0 +1−u2

0 = 0,

4− x2
0− v2

0 = 0,

2(x+1)2− (x+2) u0 (u0 + x v0) k = 0.

(3.10)

It is easy to see that g(x0) is also the solution of the nonlinear algebraic equation system
(3.10). If we eliminate the v0 , u0 and x0 ordinal by resultant (by using Lemma 2.6),
then we get

348285173760000 ·φ2
1(k) ·φ2

2 (k) = 0. (3.11)

where

φ1(k) = 472392k6−2182626k5+4000527k4

−4119168k3 +2375744k2−690176k+76800

and

φ2(k) = 354294k6−509571k5 +1927260k4

−2145600k3 +133376k2 +99328k+12288.

The revised sign list of the discriminant sequence of φ1(k) is given by

[1, 1, −1, −1, −1, 1]. (3.12)

The revised sign list of the discriminant sequence of φ2(k) is given by

[1, −1, −1, −1, −1, 1]. (3.13)

So the number of the sign changes of the revised sign list of (3.12) and (3.13) are both
2, Thus, by applying Lemma 2.6, we find that each of the equations:

φ1(k) = 0 (3.14)

and
φ2(k) = 0 (3.15)
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has 2 distinct real roots. In addition, it is easy to check that

φ1

(
1
5

)
=

102716437
15625

> 0; φ2

(
1
3

)
=

26393
9

> 0,

φ1

(
1
3

)
= −2381

3
< 0; φ2

(
2
5

)
= −287312544

15625
< 0,

φ1(2) = −356432 < 0; φ2(1) = −128625 < 0

and
φ1(3) = 46208769 > 0; φ2(2) = 20784352 > 0.

We can thus find that the equation (3.14) has 2 distinct real roots in the following
intervals: (

1
5
,

1
3

)
and (2, 3).

And the equation (3.15) has 2 distinct real roots in the following intervals:(
1
3
,

2
5

)
and (1, 2).

Hence, by (3.9), we can conclude that g(x0) is the root of the equation (1.5). The proof
of Theorem 1.1 is thus completed.
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