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CHEBYSHEV TYPE INEQUALITIES FOR THE SAIGO

FRACTIONAL INTEGRALS AND THEIR q–ANALOGUES
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(Communicated by S. Samko)

Abstract. The aim of the present paper is to obtain certain new integral inequalities involving
the Saigo fractional integral operator. It is also shown how the various inequalities considered in
this paper admit themselves of q -extensions which are capable of yielding various results in the
theory of q -integral inequalities.

1. Introduction

Our work in the present paper is based on a celebrated functional introduced by
Chebyshev [4], which is defined by

T ( f ,g) =
1

b−a

∫ b

a
f (x)g(x)dx−

(
1

b−a

∫ b

a
f (x)dx

)(
1

b−a

∫ b

a
g(x)dx

)
, (1.1)

where f and g are two integrable functions which are synchronous on [a,b] , i.e.

{( f (x)− f (y)) (g(x)−g(y))} � 0, (1.2)

for any x,y ∈ [a,b] .
The functional (1.1) has applications in numerical quadrature, transform theory,

probability and in statistical problems. Motivated by these applications, researchers
have used the functional (1.1) in the theory of fractional integral inequalities (see [3],
[5] and [7]). Recently, Belarbi and Dahmani [3], Dahmani et al. [5], and Kalla and
Rao [7] established certain integral inequalities by using known fractional integral op-
erators. Also, Öǧünmez and Özkan [9] derived certain integral inequalities involving
the fractional q -integral operators.

The object of the present investigation is to obtain certain Chebyshev type integral
inequalities involving the Saigo fractional integral operators ([12]). Further, we con-
sider the q -extensions of the main results, and point out also their relevances with other
related results.

Before stating the fractional integral inequalities, we mention below the definitions
and notations of some well-known operators of fractional calculus.
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DEFINITION 1. A real-valued function f (t) (t > 0) is said to be in the space
Cμ (μ ∈ R) , if there exists a real number p > μ such that f (t) = t pφ(t) ; where φ(t) ∈
C(0,∞) .

DEFINITION 2. Let α > 0, β ,η ∈ R , then the Saigo fractional integral Iα ,β ,η
0,t of

order α for a real-valued continuous function f (t) is defined by ([12], see also [8, p.
19], [11]):

Iα ,β ,η
0,t { f (t)} =

t−α−β

Γ(α)

∫ t

0
(t− τ)α−1

2F1

(
α + β ,−η ;α;1− τ

t

)
f (τ)dτ, (1.3)

where, the function 2F1(−) in the right-hand side of (1.3) is the Gaussian hypergeo-
metric function defined by

2F1 (a,b;c;t) =
∞

∑
n=0

(a)n(b)n

(c)n

tn

n!
, (1.4)

and (a)n is the Pochhammer symbol

(a)n = a(a+1) · · ·(a+n−1), (a)0 = 1.

The integral operator Iα ,β ,η
0,t includes both the Riemann-Liouville and the Erdélyi-

Kober fractional integral operators given by the following relationships:

Rα { f (t)} = Iα ,−α ,η
0,t { f (t)} =

1
Γ(α)

∫ t

0
(t − τ)α−1 f (τ)dτ (α > 0) (1.5)

and

Iα ,η { f (t)} = Iα ,0,η
0,t { f (t)} =

t−α−η

Γ(α)

∫ t

0
(t− τ)α−1 τη f (τ)dτ (1.6)

(α > 0, η ∈ R).

For f (t) = tμ in (1.3), we get the known formula [12]:

Iα ,β ,η
0,t {tμ} =

Γ(μ +1)Γ(μ +1−β + η)
Γ(μ +1−β )Γ(μ +1+ α + η)

tμ−β , (1.7)

(α > 0, min(μ ,μ −β + η) > −1, t > 0)

which shall be used in the sequel.
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2. Fractional integral inequalities

In this section, we establish Chebyshev type integral inequalities for the syn-
chronous functions involving the Saigo fractional integral operator (1.3).

THEOREM 1. Let f and g be two synchronous functions on [0,∞) , then

Iα ,β ,η
0,t { f (t)g(t)} � Γ(1−β )Γ(1+ α + η) tβ

Γ(1−β + η)
Iα ,β ,η
0,t { f (t)} Iα ,β ,η

0,t {g(t)} , (2.1)

for all t > 0 , α > max{0,−β} , β < 1 , β −1 < η < 0 .

Proof. By hypothesis, the functions f and g are synchronous functions on [0,∞) ,
therefore, for all τ , ρ � 0, we have

{( f (τ)− f (ρ)) (g(τ)−g(ρ))} � 0, (2.2)

which implies that

f (τ)g(τ)+ f (ρ)g(ρ) � f (τ)g(ρ)+ f (ρ)g(τ). (2.3)

Consider

F(t,τ) =
t−α−β (t − τ)α−1

Γ(α) 2F1

(
α + β ,−η ;α;1− τ

t

)
(τ ∈ (0,t) ; t > 0) (2.4)

=
1

Γ(α)
(t− τ)α−1

tα+β +
(α + β )(−η)

Γ(α +1)
(t− τ)α

tα+β+1

+
(α + β )(α + β +1)(−η)(−η +1)

Γ(α +2)
(t− τ)α+1

tα+β+2
+ · · · .

We observe that the function F(t,τ) remains positive, for all τ ∈ (0,t) (t > 0) since
each term of the above series is positive in view of the conditions stated with Theorem 1.

Multiplying both sides of (2.3) by F(t,τ) (defined above by (2.4)) and integrating
with respect to τ from 0 to t , and using (1.3), we get

Iα ,β ,η
0,t { f (t)g(t)}+ f (ρ)g(ρ) Iα ,β ,η

0,t {1} � g(ρ) Iα ,β ,η
0,t { f (t)}+ f (ρ) Iα ,β ,η

0,t {g(t)} .
(2.5)

Next, multiplying both sides of (2.5) by F(t,ρ) (ρ ∈ (0, t) , t > 0) , where F(t,ρ) is
given by (2.4), and integrating with respect to ρ from 0 to t , and using formula (1.7),
we arrive at the desired result (2.1). �

THEOREM 2. Let f and g be two synchronous functions on [0,∞) , then

Γ(1−β+η)
Γ(1−β )Γ(1+α+η) tβ Iγ,δ ,ζ

0,t { f (t)g(t)}+
Γ(1−δ+ζ )

Γ(1−δ )Γ(1+γ+ζ ) tδ Iα ,β ,η
0,t { f (t)g(t)}

� Iα ,β ,η
0,t { f (t)} Iγ,δ ,ζ

0,t {g(t)}+ Iγ,δ ,ζ
0,t { f (t)} Iα ,β ,η

0,t {g(t)} , (2.6)
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for all t > 0 , α > max{0,−β} , γ > max{0,−δ} , β , δ < 1 , β −1 < η < 0 , δ −1 <
ζ < 0 .

Proof. Multiplying both sides of (2.5) by

t−γ−δ (t−ρ)γ−1

Γ(γ) 2F1

(
γ + δ ,−ζ ;γ;1− ρ

t

)
(ρ ∈ (0,t) ; t > 0),

which (in view of the arguments mentioned above in the proof of Theorem 1) remains
positive under the conditions stated with Theorem 2. Integrating the resulting inequality
so obtained with respect to ρ from 0 to t , we get

Iγ,δ ,ζ
0,t {1} Iα ,β ,η

0,t { f (t)g(t)}+ Iα ,β ,η
0,t {1} Iγ,δ ,ζ

0,t { f (t)g(t)}
� Iα ,β ,η

0,t { f (t)} Iγ,δ ,ζ
0,t {g(t)}+ Iγ,δ ,ζ

0,t { f (t)} Iα ,β ,η
0,t {g(t)} ,

which on using (1.7) readily yields the desired result (2.6). �

REMARK 1. It may be noted that the inequalities (2.1) and (2.6) are reversed if
the functions are asynchronous on [0,∞), i.e.

{( f (x)− f (y)) (g(x)−g(y))} � 0, (2.7)

for any x,y ∈ [0,∞) .

REMARK 2. For α = γ , β = δ , η = ζ , Theorem 2 immediately reduces to The-
orem 1.

THEOREM 3. Let ( fi)i=1,···,n be n positive increasing functions on [0,∞) , then

Iα ,β ,η
0,t

{
n

∏
i=1

fi(t)

}
�

[
Γ(1−β )Γ(1+ α + η) tβ

Γ(1−β + η)

]n−1
n

∏
i=1

Iα ,β ,η
0,t { fi(t)} , (2.8)

for all t > 0 , α > max{0,−β} , β < 1 , β −1 < η < 0 .

Proof. We prove this theorem by induction. Clearly, for n = 1 in (2.8), we have

Iα ,β ,η
0,t { f1(t)} � Iα ,β ,η

0,t { f1(t)} (t > 0, α > 0).

Next, for n = 2, in (2.8), we get

Iα ,β ,η
0,t { f1(t) f2(t)} � Γ(1−β )Γ(1+ α + η) tβ

Γ(1−β + η)
Iα ,β ,η
0,t { f1(t)} Iα ,β ,η

0,t { f2(t)}

(t > 0, α > 0),

which holds in view of (2.1) of Theorem 1.
By the induction principle, we suppose that the inequality

Iα ,β ,η
0,t

{
n−1

∏
i=1

fi(t)

}
�

[
Γ(1−β )Γ(1+ α + η) tβ

Γ(1−β + η)

]n−2 n−1

∏
i=1

Iα ,β ,η
0,t { fi(t)} , (2.9)
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holds true for some positive integer n � 2.
Now ( fi)i=1,···,n are increasing functions implies that the function ∏n−1

i=1 fi(t) is
also an increasing function. Therefore, we can apply inequality (2.1) of Theorem 1 to
the functions ∏n−1

i=1 fi(t) = g and fn = f to get

Iα ,β ,η
0,t

{
n

∏
i=1

fi(t)

}
� Γ(1−β )Γ(1+ α + η) tβ

Γ(1−β + η)
Iα ,β ,η
0,t

{
n−1

∏
i=1

fi(t)

}
Iα ,β ,η
0,t { fn(t)} ,

provided that t > 0, α > max{0,−β} , β < 1, β −1 < η < 0.
Making use of (2.9) now, this last inequality above leads to the result (2.8), which

proves Theorem 3. �
By setting β = 0 (and δ = 0 additionally for Theorem 2), and using the relation

(1.6), Theorems 1 to 3 yield the following integral inequalities involving the Erdélyi-
Kober type fractional integral operator defined by (1.6):

COROLLARY 1. Let f and g be two synchronous functions on [0,∞) , then

Iα ,η { f (t)g(t)} � Γ(1+ α + η)
Γ(1+ η)

Iα ,η { f (t)} Iα ,η {g(t)} , (2.10)

for all t > 0 , α > 0 , −1 < η < 0 .

COROLLARY 2. Let f and g be two synchronous on [0,∞) , then

Γ(1+ η)
Γ(1+ α + η)

Iγ,ζ { f (t)g(t)}+
Γ(1+ ζ )

Γ(1+ γ + ζ )
Iα ,η { f (t)g(t)}

� Iα ,η { f (t)} Iγ,ζ {g(t)}+ Iγ,ζ { f (t)} Iα ,η {g(t)} , (2.11)

for all t > 0 , α , γ > 0 , −1 < max(η ,ζ ) < 0 .

COROLLARY 3. Let ( fi)i=1,···,n be n positive increasing functions on [0,∞) , then

Iα ,η

{
n

∏
i=1

fi(t)

}
�

[
Γ(1+ α + η)

Γ(1+ η)

]n−1 n

∏
i=1

Iα ,η { fi(t)} , (2.12)

for all t > 0 , α > 0 , −1 < η < 0 .

Next, if we replace β by −α (and δ by −γ additionally for Theorem 2), and
make use of the relation (1.5), then Theorems 1 to 3 corresponds to the known results
due to Belarbi and Dahmani [3, pp. 2–4, Theorems 3.1 to 3.3].

3. Fractional q -integral inequalities

In this section, we establish some fractional q -integral inequalities which may
be regarded as q -extensions of the results derived in the previous section. For the
convenience of the reader, we deem it proper to give here basic definitions and related
details of the q -calculus.
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The q -shifted factorial is defined for α, q ∈ C as a product of n factors by

(α;q)n =
{

1 ; n = 0
(1−α)(1−α q) · · ·(1−α qn−1) ; n ∈ N ,

(3.1)

and in terms of the basic analogue of the gamma function

(qα ;q)n =
Γq(α +n)(1−q)n

Γq(α)
(n > 0), (3.2)

where the q -gamma function is defined by ([6, p. 16, eqn. (1.10.1)])

Γq(t) =
(q;q)∞(1−q)1−t

(qt ;q)∞
(0 < q < 1). (3.3)

We note that

Γq(1+ t) =
(1−qt)Γq(t)

1−q
, (3.4)

and if |q| < 1, the definition (3.1) remains meaningful for n = ∞ , as a convergent
infinite product given by

(α;q)∞ =
∞

∏
j=0

(1−α q j). (3.5)

Also, the q -binomial expansion is given by

(x− y)ν = xν(−y/x;q)ν = xν
∞

∏
n=0

[
1− (y/x)qn

1− (y/x)qν+n

]
. (3.6)

Let t0 ∈ R , then we define a specific time scale

Tt0 = {t;t = t0q
n,n a nonnegative integer}∪{0} , 0 < q < 1, (3.7)

and for convenience sake, we denote Tt0 by T throughout this paper.
The Jackson’s q -derivative and q -integral of a function f defined on T are, re-

spectively, given by (see [6, pp. 19, 22])

Dq,t f (t) =
f (t)− f (tq)

t(1−q)
(t �= 0, q �= 1) (3.8)

and ∫ t

0
f (τ)dqτ = t (1−q)

∞

∑
k=0

qk f (tqk). (3.9)

DEFINITION 3. The Riemann-Liouville fractional q -integral operator of a func-
tion f (t) of order α (due to Agarwal [1]) is given by

Iα
q { f (t)} =

tα−1

Γq(α)

∫ t

0
(qτ/t;q)α−1 f (τ) dqτ (α > 0, 0 < q < 1), (3.10)



CHEBYSHEV TYPE INEQUALITIES FOR THE SAIGO FRACTIONAL INTEGRALS 245

where

(a;q)α =
(a;q)∞

(aqα ;q)∞
(α ∈ R). (3.11)

DEFINITION 4. For α > 0, η ∈R and 0 < q < 1, the basic analogue of the Kober
fractional integral operator (cf. [2]) is given by

Iα ,η
q { f (t)} =

t−η−1

Γq(α)

∫ t

0
(qτ/t;q)α−1τη f (τ) dqτ. (3.12)

DEFINITION 5. For α > 0, β ∈ R , a basic analogue of the Saigo’s fractional
integral operator (introduced by Purohit and Yadav [10]) is given for |τ/t|< 1 by

Iα ,β ,η
q { f (t)} =

t−β−1q−η(α+β )

Γq(α)

×
∫ t

0
(qτ/t;q)α−1 T

q, qα+1τ
t

(
2Φ1

[
qα+β , q−η ;qα ;q,q

])
f (τ) dqτ,

(3.13)

where η is any non-negative integer, and the function 2Φ1(−) (see [6]) and the q -
translation operator occurring in the right-hand side of (3.13) are, respectively, defined
by

2Φ1 [a,b;c;q,t] =
∞

∑
n=0

(a;q)n(b;q)n

(c;q)n(q;q)n
tn (|q| < 1, |t| < 1) (3.14)

and

Tq,τ( f (t)) =
+∞

∑
n=−∞

Ant
n(τ/t;q)n, (3.15)

where (An)n∈Z (Z = 0,±1,±2, · · ·) is any bounded sequence of real or complex num-
bers.

Following [10], when f (t) = tμ , we obtain

Iα ,β ,η
q {tμ} =

Γq(μ +1)Γq(μ +1−β + η)
Γq(μ +1−β )Γq(μ +1+ α + η)

tμ−β , (3.16)

(0 < q < 1, min(μ ,μ −β + η) > −1, t > 0).

We now state and prove the q -integral inequalities which can be treated as the
q -analogues of the inequalities (2.1), (2.6) and (2.8).

THEOREM 4. Let f and g be two synchronous functions on T , then

Iα ,β ,η
q { f (t)g(t)} � Γq(1−β )Γq(1+ α + η) tβ

Γq(1−β + η)
Iα ,β ,η
q { f (t)} Iα ,β ,η

q {g(t)} , (3.17)

for all t > 0 , 0 < q < 1 , α > max{0,−β} , β < 1 , η −β > −1 .

Proof. Since the functions f and g are synchronous functions on T for all τ, ρ �
0, therefore the inequality (1.2) is satisfied. Now, on multiplying both sides of (1.2) (or,
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equivalently (2.3)) by

t−β−1q−η(α+β )

Γq(α)
(qτ/t;q)α−1 T

q, qα+1τ
t

(
2Φ1

[
qα+β , q−η ;qα ;q,q

])
, (3.18)

(τ ∈ (0,t), t > 0),

and taking q -integration with respect to τ from 0 to t , then on using Definition 5, we
get

Iα ,β ,η
q { f (t)g(t)}+ f (ρ)g(ρ) Iα ,β ,η

q {1} � g(ρ) Iα ,β ,η
q { f (t)}+ f (ρ) Iα ,β ,η

q {g(t)} .
(3.19)

It may be observed that the function (3.18) remains positive for all values of τ ∈
(0,t) (t > 0) and under the conditions imposed with Theorem 4.

Next, multiplying both sides of (3.19) by

t−β−1q−η(α+β )

Γq(α)
(qρ/t;q)α−1 T

q, qα+1ρ
t

(
2Φ1

[
qα+β , q−η ;qα ;q,q

])
(3.20)

(ρ ∈ (0,t), t > 0),

and noting that the function (3.20) is also positive for all ρ ∈ (0,t) (t > 0) and un-
der the conditions imposed with Theorem 4, we perform q -integration in the resulting
inequality with respect to ρ from 0 to t , using the formula (3.16), the desired result
(3.17) is thus easily arrived at. �

THEOREM 5. Let f and g be two synchronous functions on T , then

Γq(1−β + η)
Γq(1−β )Γq(1+ α + η) tβ Iγ,δ ,ζ

q { f (t)g(t)}

+
Γq(1− δ + ζ )

Γq(1− δ )Γq(1+ γ + ζ ) tδ Iα ,β ,η
q { f (t)g(t)}

� Iα ,β ,η
q { f (t)} Iγ,δ ,ζ

q {g(t)}+ Iγ,δ ,ζ
q { f (t)} Iα ,β ,η

q {g(t)} , (3.21)

for all t > 0 , 0 < q < 1 , α > max{0,−β} , γ > max{0,−δ} , β , δ < 1 , η − β ,
ζ − δ > −1 .

Proof. To prove the above theorem, we start with the inequality (3.19). On multi-
plying both sides of the inequality (3.19) by

t−δ−1q−ζ (γ+δ )

Γq(γ)
(qρ/t;q)γ−1 T

q,
qγ+1ρ

t

(
2Φ1

[
qγ+δ , q−ζ ;qγ ;q,q

])
, (3.22)

(ρ ∈ (0,t), t > 0),

and taking basic integration with respect to ρ from 0 to t , we get

Iγ,δ ,ζ
q (1) Iα ,β ,η

q { f (t)g(t)}+ Iα ,β ,η
q (1) Iγ,δ ,ζ

q { f (t)g(t)}
� Iα ,β ,η

q f (t) Iγ,δ ,ζ
q g(t)+ Iγ,δ ,ζ

q f (t) Iα ,β ,η
q g(t),



CHEBYSHEV TYPE INEQUALITIES FOR THE SAIGO FRACTIONAL INTEGRALS 247

which yields the desired result by taking into account (3.16). �

REMARK 3. The inequalities (3.17) and (3.21) are reversed if the functions are
asynchronous on T .

REMARK 4. Evidently, when α = γ , β = δ , η = ζ , then Theorem 5 leads to
Theorem 4.

THEOREM 6. Let ( fi)i=1,···,n be n positive increasing functions on T , then

Iα ,β ,η
q

{
n

∏
i=1

fi(t)

}
�

[
Γq(1−β )Γq(1+ α + η) tβ

Γq(1−β + η)

]n−1 n

∏
i=1

Iα ,β ,η
q { fi(t)} , (3.23)

for all t > 0 , 0 < q < 1 , α > max{0,−β} , β < 1 , η −β > −1 .

Proof. By applying the induction method and Theorem 4, one can easily establish
the above theorem. Therefore, we omit the further details of the proof of this theo-
rem. �

We now, briefly consider some consequences of the theorems derived in this sec-
tion. If we set β = 0 (and additionally δ = 0 for Theorem 5), and make use of the
known result [10, p. 38, eqn. (3.7)], namely

Iα ,0,η
q { f (t)} = Iα ,η

q { f (t)} , (3.24)

(with suitable changes for the parameters in Theorem 5) then Theorems 4 to 6 yield
the following q -integral inequalities involving Erdélyi-Kober type fractional integral
operators:

COROLLARY 4. Let f and g be two synchronous functions on T , then

Iα ,η
q { f (t)g(t)} � Γq(1+ α + η)

Γq(1+ η)
Iα ,η
q { f (t)} Iα ,η

q {g(t)} , (3.25)

for all t > 0 , 0 < q < 1 , α > 0 and η is any non-negative integer.

COROLLARY 5. Let f and g be two synchronous functions on T , then

Γq(1+ η)
Γq(1+ α + η)

Iγ,ζ
q { f (t)g(t)}+

Γq(1+ ζ )
Γq(1+ γ + ζ )

Iα ,η
q { f (t)g(t)}

� Iα ,η
q { f (t)} Iγ,ζ

q {g(t)}+ Iγ,ζ
q { f (t)} Iα ,η

q {g(t)} , (3.26)

where t > 0 , 0 < q < 1 , α , γ > 0 , η , ζ are any non-negative integers.

COROLLARY 6. Let ( fi)i=1,···,n be n positive increasing functions on T , then

Iα ,η
q

{
n

∏
i=1

fi(t)

}
�

[
Γq(1+ α + η)

Γq(1+ η)

]n−1 n

∏
i=1

Iα ,η
q fi(t), (3.27)
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where t > 0 , 0 < q < 1 , α > 0 and η is any non-negative integer.

We observe that, if we replace β by −α and δ by −γ , and make use of the
relation [10, p. 38, eqn. (3.8)], and note the following relations:

Iα ,−α ,η
q { f (t)} = Iα

q { f (t)} (3.28)

and
Iγ,−γ,ζ
q { f (t)} = Iγ

q { f (t)} , (3.29)

then, Theorems 4 to 6 reduce to the known q -integral inequalities due to Öǧünmez
and Özkan [9, pp. 4–6, Theorems 3.1 to 3.3], involving the Riemann-Liouville type of
fractional q -integral operator.

Finally, it is interesting to observe that, if we let q → 1−, and use the limit formu-
las:

Lim
q→1−

(qα ;q)n

(1−q)n = (α)n (3.29)

and
Lim
q→1−

Γq(α) = Γ(α), (3.30)

the results of Section 3 then correspond to the results obtained in Section 2.
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entre les m êmes limites, Proc. Math. Soc. Charkov, 2 (1882), 93–98.

[5] Z. DAHMANI, L. TABHARIT AND S. TAF, New generalizations of Grüss inequality using Riemann-
Liouville fractional integrals, Bull. Math. Anal. Appl., 2 (3) (2010), 93–99.

[6] G. GASPER AND M. RAHMAN, Basic Hypergeometric Series, Cambridge University Press, Cam-
bridge, 1990.

[7] S. L. KALLA AND ALKA RAO, On Grüss type inequality for hypergeometric fractional integrals, Le
Matematiche, 66 (1) (2011), 57–64.

[8] V. S. KIRYAKOVA, Generalized Fractional Calculus and Applications (Pitman Res. Notes Math. Ser.
301), Longman Scientific & Technical, Harlow, 1994.
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