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NEW REFINEMENTS OF TWO INEQUALITIES FOR MEANS

JÓZSEF SÁNDOR

(Communicated by I. Raşa)

Abstract. In paper [2] H. Alzer proved that the logarithmic mean of two distinct positive real
numbers lies between the geometric mean and the arithmetic mean of the geometric and identric
means of these numbers. Refinements of these inequalities were provided in [11]. In this note
we offer refinements of a new type.

1. Introduction

The logarithmic and identric means of two positive numbers a and b are defined
by

L = L(a,b) :=
b−a

lnb− lna
(a �= b); L(a,a) = a

and

I = I(a,b) :=
1
e
(bb/aa)1/(b−a) (a �= b); I(a,a) = a,

respectively.

Let A = A(a,b) :=
a+b

2
and G = G(a,b) :=

√
ab denote the arithmetic and ge-

ometric means of a and b , respectively. For these means many interesting inequalities
have been proved. For a survey of results, see [1], [3], [7], [11], [12]. It may be surpris-
ing that the means of two arguments have applications in physics, economics, statistics,
or even in meteorology. See e.g. [3], [6] and the references therein. For connections of
such means with Ky Fan, or Huygens type inequalities; or with Seiffert and Gini type
means, we quote papers [13] and [14]; as well as [5], [8], or [12].

In what follows we shall assume that a �= b . In paper [2] H. Alzer proved that

√
GI < L <

G+ I
2

(1)

and in [1] he proved that

AG < LI and L+ I < A+G. (2)
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In paper [8] the author proved that the first inequality of (2) is weaker than the left
side of (1), while the second inequality of (2) is stronger than the right side of (1). In
fact, these statements are consequences of

I >
3
√

A2G (3)

and

I >
2A+G

3
. (4)

Clearly, by the weighted arithmetic-geometric mean inequality, (4) implies (3), but
one can obtain different methods of proof for these results (see [8]). In [7] J. Sándor
has proved that

ln
I
L

> 1− G
L

(5)

and this was used in [11] to obtain the following refinement of right side of (1):

L <
I +aG
1+a

<
I +G

2
, (6)

where a =
√

I/
√

L > 1.
In paper [11] the following refinements of left side of (1) has been also proved:

√
IG <

I−G
A−L

·L < L. (7)

The aim of this paper is to offer certain new refinements of other type for inequal-
ities (1).

2. Main results

The main result of this paper is contained in the following:

THEOREM. One has

L <

√
(A+G)(L+G)

4
<

A+L+2G
4

<
I +G

2
(8)

and

L >
3

√
G

(
A+G

2

)2

>
√

GI. (9)

Proof. First we note that the second inequality of (8) follows by
√

xy <
x+ y

2
,

applied to x :=
A+G

2
and y :=

L+G
2

, while the last inequality can be written as

I >
A+L

2
. (10)
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This appears in [7], but we note that follows also by (4) and

2A+G
3

>
A+L

2
, (11)

which can be written equivalently as

L <
2G+A

3
, (12)

due to B. C. Carlson [4] and G. Pólya and G. Szegö [6].
Thus we have to prove only the first inequality of (8).
For this purpose, we shall use inequality (5) combined with the identity

ln
I
G

=
A−L

L
, (13)

due to H. J. Seiffert [15]. See also [9] for this and related identities.

Since lnx >
2(x−1)
x+1

for x > 1 (equivalent in fact with the classical inequality

L(x,1) < A(x,1)), by letting x =
L
G

, and by

ln
I
L

= ln
I
G
− ln

L
G

, ln
L
G

> 2 · L−G
L+G

and (13) combined with (5) gives the following inequality:

2 · L−G
L+G

<
A+G

L
−2, (14)

which after some elementary computations gives the first inequality of (8). �

REMARK. The first and third term of (8) is exactly inequality (12). Therefore, the
first two inequalities provide also a refinement of (12).

Now, for the proof of relation (9) remark first that the first inequality has been
proved by the author in paper [10]. The second inequality will be reduced to an in-
equality involving hyperbolic functions. Put a = exG , b = e−xG , where x > 0 (for this
method see e.g. [1]). Then the inequality to be proved becomes equivalent to

ln

(
coshx+1

2

)
>

3
4

(
xcoshx− sinhx

sinhx

)
. (15)

Let us introduce the function

f (x) = 4ln

(
coshx+1

2

)
−3xcothx+3, x > 0.

An immediate computation gives

(coshx+1)sinh2 x · f ′(x) = sinh3 x−3sinhx+3xcoshx+3x−3sinhxcoshx = g(x).
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One has
g′(x) = 3sinhx(sinhxcoshx+ x−2sinhx).

Now, as it is well known that sinhx < xcoshx , we can remark that

sinhx <
√

xsinhxcoshx � x+ sinhxcoshx
2

by
√

uv � u+ v
2

.

This in turn implies g′(x) > 0, and as g(x) can be defined for x � 0 and g(0) = 0,
we get g(x) � 0, and g(x) > 0 for x > 0. Thus f ′(x) > 0 for x > 0, so f is strictly
increasing and as lim

x→0
f (x) = 0, inequality (15) follows.

This finishes the proof of the Theorem.
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