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ON GENERALIZATIONS OF SOME

CLASSICAL INTEGRAL INEQUALITIES

ZHENG LIU

(Communicated by A. Vukelić)

Abstract. A unified treatment for generalizations of the midpoint, trapezoid, averaged midpoint-
trapezoid and Simpson type inequalities is obtained. Various error bounds for these generaliza-
tions are established.

1. Introduction and preliminary results

Let f : [a,b]→R be such that the (n−1) th derivative f (n−1) (n � 1) is absolutely
continuous on [a,b] . Then we have the identities (see e. g., [2], [3], [4], [8], [9], [16]):

∫ b

a
f (x)dx = (b−a) f

(a+b
2

)
+

[ n−1
2 ]

∑
k=1

(b−a)2k+1

(2k+1)!22k f (2k)
(a+b

2

)

+(−1)n
∫ b

a
Mn(x)d f (n−1)(x),

(1)

where [ n−1
2 ] denotes the integer part of n−1

2 and

Mn(x) :=

⎧⎪⎪⎨
⎪⎪⎩

(x−a)n

n!
, if x ∈

[
a,

a+b
2

]
,

(x−b)n

n!
, if x ∈

(a+b
2

,b
]
;

(2)

∫ b

a
f (x)dx =

b−a
2

[ f (a)+ f (b)]−
[ n−1

2 ]

∑
k=1

k(b−a)2k+1

(2k+1)!22k−1 f (2k)
(a+b

2

)

+(−1)n
∫ b

a
Tn(x)d f (n−1)(x),

(3)

where

Tn(x) :=

⎧⎪⎪⎨
⎪⎪⎩

(x−a)n

n!
− (b−a)(x−a)n−1

2(n−1)!
if x ∈

[
a,

a+b
2

]
,

(x−b)n

n!
+

(b−a)(x−b)n−1

2(n−1)!
if x ∈

(a+b
2

,b
]
,

(4)
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and

∫ b

a
f (x)dx =

b−a
6

[
f (a)+4 f

(a+b
2

)
+ f (b)

]

+
[ n−1

2 ]

∑
k=1

(k−1)(b−a)2k+1

3(2k+1)!22k−1 f (2k)
(a+b

2

)

+(−1)n
∫ b

a
Sn(x)d f (n−1)(x),

(5)

where

Sn(x) :=

⎧⎪⎪⎨
⎪⎪⎩

(x−a)n

n!
− (b−a)(x−a)n−1

6(n−1)!
if x ∈

[
a,

a+b
2

]
,

(x−b)n

n!
+

(b−a)(x−b)n−1

6(n−1)!
if x ∈

(a+b
2

,b
]
.

(6)

In general, it is not difficult to get

∫ b

a
f (x)dx =

b−a
2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]

+
[ n−1

2 ]

∑
k=1

[1− (2k+1)θ ](b−a)2k+1

(2k+1)!22k f (2k)
(a+b

2

)

+(−1)n
∫ b

a
Kn(x,θ )d f (n−1)(x),

(7)

where θ ∈ [0,1] and

Kn(x,θ ) :=

⎧⎪⎪⎨
⎪⎪⎩

(x−a)n

n!
− θ (b−a)(x−a)n−1

2(n−1)!
if x ∈

[
a,

a+b
2

]
,

(x−b)n

n!
+

θ (b−a)(x−b)n−1

2(n−1)!
if x ∈

(a+b
2

,b
]
.

(8)

The purpose of this paper is to provide a unified treatment for generalizations of
some classical integral inequalities by using the integral identity (7).

For convenience,we shall first collect some technical results related to the function
Kn(x,θ ) which will be used in the proofs of our theorems.

By elementary calculus, it is not difficult to get the following results:

∫ b

a
Kn(x,θ )dx =

[1+(−1)n][1− (n+1)θ ](b−a)n+1

(n+1)!2n+1

=

⎧⎪⎨
⎪⎩

0, n odd,

[1− (n+1)θ ](b−a)n+1

(n+1)!2n , n even.
(9)
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∫ b

a
|Kn(x,θ )|dx =

⎧⎪⎪⎨
⎪⎪⎩

[1− (n+1)θ +2nnθ n+1](b−a)n+1

(n+1)!2n , n <
1
θ

,

[(n+1)θ −1](b−a)n+1

(n+1)!2n , n � 1
θ

.

(10)

∫ b

a
K2

n (x,θ )dx =
[(2n−1)− (4n2−1)θ +(2n+1)n2θ 2](b−a)2n+1

(4n2−1)(n!)222n . (11)

sup
x∈[a,b]

|Kn(x,θ )| =

⎧⎪⎪⎨
⎪⎪⎩

max{|1−nθ |,(n−1)n−1θ n}(b−a)n

(n!)2n , n <
1
θ

+1,

(nθ −1)(b−a)n

(n!)2n , n � 1
θ

+1.

(12)

In what follows, we will use the notations

Dn :=
f (n−1)(b)− f (n−1)(a)

b−a

and

Gn :=
[ n−1

2 ]

∑
k=1

[1− (2k+1)θ ](b−a)2k+1

(2k+1)!22k f (2k)(
a+b

2
).

2. Bounds in terms of L2 norm

THEOREM 1. Let f : [a,b]→R be such that f (n−1) (n � 1) is absolutely contin-
uous on [a,b] . If f (n) ∈ L2[a,b] , then for any θ ∈ [0,1] we have

∣∣∣∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]
−Gn

∣∣∣
� (b−a)n+ 1

2

n!2n

√
(2n−1)− (4n2−1)θ +(2n+1)n2θ 2

4n2−1
‖ f (n)‖2,

(13)

where ‖ f (n)‖2 := [
∫ b
a | f (n)(x)|2 dx]

1
2 is the usual Lebesgue norm on L2[a,b] .

Proof. By using the identity (7) and Cauchy-Schwarz inequality, we get

∣∣∣∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]
−Gn

∣∣∣
=

∣∣∣∫ b

a
Kn(x,θ ) f (n)(x)dx

∣∣∣ �
[∫ b

a
K2

n (x,θ )dx
] 1

2 ‖ f (n)‖2.

(14)

Consequently, the inequality (13) follows from (14) and (11). �

REMARK 1. It is not difficult to find that the inequality (13) is sharp in the sense
that we can choose f to attain the equality in (13). In fact, we may find a function
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f : [a,b] → R such that f (n−1) is absolutely continuous on [a,b] as

f (n−1)(x) =

⎧⎪⎪⎨
⎪⎪⎩

(x−a)n+1

(n+1)!
− θ (b−a)(x−a)n

2n!
if x ∈

[
a,

a+b
2

]
,

(x−b)n+1

(n+1)!
+

θ (b−a)(x−b)n

2n!
if x ∈

(a+b
2

,b
]

for n is odd and

f (n−1)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x−a)n+1

(n+1)!
− θ (b−a)(x−a)n

2n!
− [1− (n+1)θ ](b−a)n+1

(n+1)!2n+1

if x ∈
[
a,

a+b
2

]
,

(x−b)n+1

(n+1)!
+

θ (b−a)(x−b)n

2n!
+

[1− (n+1)θ ](b−a)n+1

(n+1)!2n+1

if x ∈
(a+b

2
,b

]
for n is even. Both imply that

f (n)(x) =

⎧⎪⎪⎨
⎪⎪⎩

(x−a)n

n!
− θ (b−a)(x−a)n−1

2(n−1)!
if x ∈

[
a,

a+b
2

]
,

(x−b)n

n!
+

θ (b−a)(x−b)n−1

2(n−1)!
if x ∈

(a+b
2

,b
]

which is just the function defined in (8) and satisfies the condition of Theorem 1.

REMARK 2. For θ = 0, 1, 1
3 , 1

2 in (13) we get inequalities related to the midpoint,
trapezoid, Simpson and averaged midpoint-trapezoid quadrature formulae, respectively.

3. For functions whose (n−1)th derivatives are Lipschitzian type

Recall that a function f : [a,b] → R is said to be L -Lipschitzian on [a,b] if

| f (x)− f (y)| � L|x− y|
for all x,y ∈ [a,b] , where L > 0 is given, and, it is said to be (l,L)-Lipschitzian on
[a,b] (see e.g. [11]), if

l(x2− x1) � f (x2)− f (x1) � L(x2 − x1)

for all a � x1 � x2 � b , where l,L ∈R with l < L (the condition has also been consid-
ered in [6] and [7] independently).

Clearly, an L -Lipschitzian function is a (−L,L)-Lipschitzian function.
It is well known (see e.g. [5]) that if h,g : [a,b] → R are such that h is Riemann-

integral on [a,b] and g is L -Lipschitzian on [a,b] , then
∫ b
a h(t)dg(t) exists and

|
∫ b

a
h(x)dg(x)| � L

∫ b

a
|h(x)|dx. (15)
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THEOREM 2. Let f : [a,b]→R be such that f (n−1) (n � 1) is (l,L)-Lipschitzian
on [a,b] . Then for any θ ∈ [0,1] we have

∣∣∣∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]
−Gn

− (l +L)[1+(−1)n][1− (n+1)θ ](b−a)n+1

(n+1)!2n+2

∣∣∣

� L− l
2

×

⎧⎪⎪⎨
⎪⎪⎩

[1− (n+1)θ +2nnθ n+1](b−a)n+1

(n+1)!2n , n <
1
θ

,

[(n+1)θ −1](b−a)n+1

(n+1)!2n , n � 1
θ

.

(16)

Proof. By (7) and (9) we get

(−1)n
∫ b

a
Kn(x,θ )d

[
f (n−1)(x)− l +L

2
x
]

=
∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]

−Gn− (l +L)[1+(−1)n][1− (n+1)θ ](b−a)n+1

(n+1)!2n+2 ,

then notice that f (n−1)(x)− l+L
2 x is L−l

2 -Lipschitzian on [a,b] and by using (15), we
have ∣∣∣∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]
−Gn

− (l +L)[1+(−1)n][1− (n+1)θ ](b−a)n+1

(n+1)!2n+2

∣∣∣
� L− l

2

∫ b

a
|Kn(x,θ )|dx,

(17)

and hence the inequality (16) follows from (17) and (10). �

REMARK 3. It is not difficult to find that the inequality (16) is sharp in the sense
that we can choose f to attain the equality in (16). In fact, if n is odd, we may construct
f , such that

f (n−1)(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l(t−a), a � x < a+
nθ
2

(b−a),

L(t−a)− nθ (L− l)
2

(b−a), a+
nθ
2

(b−a) � x <
a+b
2

,

l
(
t− a+b

2

)
+

(1−nθ )L+nθ l
2

(b−a),
a+b
2

� x < b−nθ
2

(b−a),

L(t−b)+
L+ l

2
(b−a), b−nθ

2
(b−a) � x � b
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for n < 1
θ and

f (n−1)(x) =

⎧⎪⎨
⎪⎩

l(t−a), a � x <
a+b

2
,

L(t−a)− L− l
2

(b−a),
a+b

2
� x � b

for n � 1
θ . If n is even, we may construct f , such that

f (n−1)(x)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

l(t−a), a � x < a+
nθ
2

(b−a),

L(t−a)−nθ (L−l)
2

(b−a), a+
nθ
2

(b−a) � x < b−nθ
2

(b−a),

l(t−b)+[(1−nθ )L+nθ l](b−a), b−nθ
2

(b−a) � x � b

for n < 1
θ and

f (n−1)(x) =

⎧⎪⎨
⎪⎩

l(t −a), a � x <
a+b

2
,

−L(t −a)+
L+ l

2
(b−a),

a+b
2

� x � b

for n � 1
θ .

Clearly, the above all f (n−1) are absolutely continuous on [a,b] with

f (n)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l, a < x < a+
nθ
2

(b−a),

L, a+
nθ
2

(b−a) < x <
a+b

2
,

l,
a+b

2
< x < b− nθ

2
(b−a),

L, b− nθ
2

(b−a) < x < b

for n odd and n < 1
θ ,

f (n)(x) =

⎧⎪⎨
⎪⎩

l, a < x <
a+b

2
,

L,
a+b

2
< x < b

for n odd and n � 1
θ as well as

f (n)(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

l, a < x < a+
nθ
2

(b−a),

L, a+
nθ
2

(b−a) < x < b− nθ
2

(b−a),

l, b− nθ
2

(b−a) < x < b
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for n even and n < 1
θ ,

f (n)(x) =

⎧⎪⎨
⎪⎩

l, a < x <
a+b

2
,

−L,
a+b

2
< x � b

for n even and n � 1
θ , which satisfy the condition of Theorem 2.

COROLLARY 1. Let f : [a,b]→ R be such that f (n−1) (n � 1) is L-Lipschitzian
on [a,b] . Then for any θ ∈ [0,1] we have sharp inequalities∣∣∣∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]
−Gn

∣∣∣

� L×

⎧⎪⎪⎨
⎪⎪⎩

[1− (n+1)θ +2nnθ n+1](b−a)n+1

(n+1)!2n , n <
1
θ

,

[(n+1)θ −1](b−a)n+1

(n+1)!2n , n � 1
θ

.

(18)

Proof. It is immediate by taking l = −L in Theorem 2. �

COROLLARY 2. Let f : [a,b]→R be such that f (n−1) (n � 1) is absolutely con-
tinuous on [a,b] . If f (n) ∈ L∞[a,b] , then for any θ ∈ [0,1] we have sharp inequalities∣∣∣∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]
−Gn

∣∣∣

� ‖ f (n)‖∞ ×

⎧⎪⎪⎨
⎪⎪⎩

[1− (n+1)θ +2nnθ n+1](b−a)n+1

(n+1)!2n , n <
1
θ

,

[(n+1)θ −1](b−a)n+1

(n+1)!2n , n � 1
θ

,

(19)

where ‖ f (n)‖∞ := esssupx∈[a,b] | f (n)(x)| is the usual Lebesgue norm on L∞[a,b] .

Proof. It is immediate by taking L = ‖ f (n)‖∞ in Theorem 2. �

REMARK 4. For θ = 0, 1, 1
3 , 1

2 in (16), (18) and (19) we get inequalities re-
lated to the midpoint, trapezoid, Simpson and averaged midpoint-trapezoid quadrature
formulae, respectively.

4. For functions whose (n−1)th derivatives are of bounded variation

It is well known (see e.g. [17]) that if h,g : [a,b]→R are such that h is continuous
on [a,b] and g is of bounded variation on [a,b] , then

∫ b
a h(t)dg(t) exists and

∣∣∣∫ b

a
h(t)dg(t)

∣∣∣ � sup
t∈[a,b]

|h(t)|
b∨
a

(g). (20)

Clearly, it is not difficult to find that the above argument is also valid for h is piecewise
continuous on [a,b] .
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THEOREM 3. Let f : [a,b]→ R be such that f (n−1)(n � 1) is a continuous func-
tion of bounded variation on [a,b] . Then for any θ ∈ [0,1] we have

∣∣∣∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]
−Gn

∣∣∣

�
b∨
a

( f (n−1))×

⎧⎪⎪⎨
⎪⎪⎩

max{|1−nθ |,(n−1)n−1θ n}(b−a)n

(n!)2n , n <
1
θ

+1,

(nθ −1)(b−a)n

(n!)2n , n � 1
θ

+1.

(21)

Proof. By using the identity (7) and the inequality (20) we get

∣∣∣∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]
−Gn

∣∣∣
=

∣∣∣∫ b

a
Kn(x,θ )d f (n−1)(x)

∣∣∣ � sup
x∈[a,b]

|Kn(x,θ )|
b∨
a

( f (n−1)).
(22)

Consequently, the inequality (21) follows from (22) and (12). �

COROLLARY 3. Let f : [a,b] → R be such that f (n−1) (n � 1) is absolutely
continuous on [a,b] . If f (n) ∈ L1[a,b] , then for any θ ∈ [0,1] we have

∣∣∣∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]
−Gn

∣∣∣

� ‖ f (n)‖1×

⎧⎪⎪⎨
⎪⎪⎩

max{|1−nθ |,(n−1)n−1θ n}(b−a)n

(n!)2n , n <
1
θ

+1,

(nθ −1)(b−a)n

(n!)2n , n � 1
θ

+1

(23)

where ‖ f (n)‖1 :=
∫ b
a | f (n)(x)|dx is the usual Lebesgue norm on L1[a,b] .

Proof. It is immediate from Theorem 3, since if f (n−1)(n � 1) is absolutely con-
tinuous on [a,b] then we certainly have

b∨
a

( f (n−1)) = ‖ f (n)‖1. �

REMARK 5. For θ = 0, 1, 1
3 , 1

2 in (21) and (23) we get inequalities related to the
midpoint, trapezoid, Simpson and averaged midpoint-trapezoid quadrature formulae,
respectively.



ON GENERALIZATIONS OF SOME CLASSICAL INTEGRAL INEQUALITIES 263

5. Non symmetric bounds

THEOREM 4. Let f : [a,b]→R be such that f (n−1) (n � 1) is absolutely contin-
uous with γn � f (n)(x) � Γn a.e. on [a,b] , where γn,Γn ∈ R are constants. Then for
any θ ∈ [0,1] we have

∣∣∣∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]
−Gn

− (γn + Γn)[1+(−1)n][1− (n+1)θ ](b−a)n+1

(n+1)!2n+2

∣∣∣

� Γn − γn

2
×

⎧⎪⎪⎨
⎪⎪⎩

[1− (n+1)θ +2nnθ n+1](b−a)n+1

(n+1)!2n , n <
1
θ

,

[(n+1)θ −1](b−a)n+1

(n+1)!2n , n � 1
θ

.

(24)

Proof. By (7) and (9) we get

(−1)n
∫ b

a
Kn(x,θ )

[
f (n)(x)− γn + Γn

2

]
dx

=
∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]

−Gn− (γn + Γn)[1+(−1)n][1− (n+1)θ ](b−a)n+1

(n+1)!2n+2 ,

then notice that | f (n)(x)− γn+Γn
2 | � Γn−γn

2 a.e. on [a,b] , we have

∣∣∣∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]
−Gn

− (γn + Γn)[1+(−1)n][1− (n+1)θ ](b−a)n+1

(n+1)!2n+2

∣∣∣
� Γn− γn

2

∫ b

a
|Kn(x,θ )|dx,

(25)

and hence the inequality (24) follows from (25) and (10). �

REMARK 6. It is not difficult to find that the inequality (24) is sharp in the sense
that we can choose f to attain the equality in (24). The arguments are similar to that in
Remark 3 and so are omitted here.

THEOREM 5. Let f : [a,b] → R be such that f (n−1) (n � 1) is absolutely con-
tinuous with γn � f (n)(x) a.e. on [a,b] , where γn ∈ R is a constant. Then for any
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θ ∈ [0,1] we have∣∣∣∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]
−Gn

− γn[1+(−1)n][1− (n+1)θ ](b−a)n+1

(n+1)!2n+1

∣∣∣

� (Dn − γn)×

⎧⎪⎪⎨
⎪⎪⎩

max{|1−nθ |,(n−1)n−1θ n}(b−a)n+1

(n!)2n , n <
1
θ

+1,

(nθ −1)(b−a)n+1

(n!)2n , n � 1
θ

+1.

(26)

Proof. By (7) and (9) we get

(−1)n
∫ b

a
Kn(x,θ )[ f (n)(x)− γn]dx

=
∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]

−Gn− γn[1+(−1)n][1− (n+1)θ ](b−a)n+1

(n+1)!2n+1 ,

then we have∣∣∣∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]
−Gn

− γn[1+(−1)n][1− (n+1)θ ](b−a)n+1

(n+1)!2n+1

∣∣∣
� sup

x∈[a,b]
|Kn(x,θ )|

∫ b

a
| f (n)(x)− γn|dx,

(27)

and notice that f (n)(x)− γn � 0 a.e. on [a,b] , the inequality (26) follows from (27) and
(12). �

THEOREM 6. Let f : [a,b] → R be such that f (n−1) (n � 1) is absolutely con-
tinuous with f (n)(x) � Γn a.e. on [a,b] , where Γn ∈ R is a constant. Then for any
θ ∈ [0,1] we have∣∣∣∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]
−Gn

∣∣∣

� (Γn −Dn)×

⎧⎪⎪⎨
⎪⎪⎩

max{|1−nθ |,(n−1)n−1θ n}(b−a)n+1

(n!)2n , n <
1
θ

+1,

(nθ −1)(b−a)n+1

(n!)2n , n � 1
θ

+1.

(28)



ON GENERALIZATIONS OF SOME CLASSICAL INTEGRAL INEQUALITIES 265

Proof. By (7) and (9) we get

(−1)n
∫ b

a
Kn(x,θ )[ f (n)(x)−Γn]dx

=
∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]

−Gn− Γn[1+(−1)n][1− (n+1)θ ](b−a)n+1

(n+1)!2n+1 ,

then we have∣∣∣∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]
−Gn

− Γn[1+(−1)n][1− (n+1)θ ](b−a)n+1

(n+1)!2n+1

∣∣∣
� sup

x∈[a,b]
|Kn(x,θ )|

∫ b

a
| f (n)(x)−Γn|dx,

(29)

and notice that Γn− f (n)(x) � 0 a.e. on [a,b] , the inequality (28) follows from (29) and
(12). �

REMARK 7. For θ = 0, 1, 1
3 , 1

2 in (24), (26) and (28) we get inequalities re-
lated to the midpoint, trapezoid, Simpson and averaged midpoint-trapezoid quadrature
formulae, respectively.

6. Another sharp bound

Now we turn to consider another sharp bound which was first appeared in [1] in
2001, then in [18, 10, 12, 13, 14, 15] in recent years. Put

σ( f ) := ‖ f‖2
2−

1
b−a

(
∫ b

a
f (t)dt)2. (30)

We have

THEOREM 7. Let f : [a,b] → R be such that f (n−1) is absolutely continuous on
[a,b] and f (n) ∈ L2[a,b] where n is an odd integer. Then for any θ ∈ [0,1] we have∣∣∣∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]
−Gn

∣∣∣
� (b−a)n+ 1

2

2nn!

√
(2n−1)− (4n2−1)θ +(2n+1)n2θ 2

4n2−1

√
σ( f (n)).

(31)

Inequality (31) is the best possible in the sense that the constant

1
2nn!

√
(2n−1)− (4n2−1)θ +(2n+1)n2θ 2

4n2−1
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cannot be replaced by a smaller one.

Proof. From (7), (9), (11) and (30),we can easily get∣∣∣∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]
−Gn

∣∣∣
=

∣∣∣∫ b

a
Kn(x,θ ) f (n)(x)dx

∣∣∣
=

∣∣∣∫ b

a
Kn(x,θ )

[
f (n)(x)− 1

b−a

∫ b

a
f (n)(t)dt

]
dx

∣∣∣
�

(∫ b

a
K2

n (x,θ )dx
) 1

2
(∫ b

a

[
f (n)(x)− f (n−1)(b)− f (n−1)(a)

b−a

]2
dx

) 1
2

=
( [(2n−1)− (4n2−1)θ +(2n+1)n2θ 2](b−a)2n+1

(4n2−1)(n!)222n

) 1
2

×
(
‖ f (n)‖2

2−
[ f (n−1)(b)− f (n−1)(a)]2

b−a

) 1
2

=
(b−a)n+ 1

2

2nn!

√
(2n−1)− (4n2−1)θ +(2n+1)n2θ 2

4n2−1

√
σ( f (n)).

We now suppose that (31) holds with a constant C > 0 as∣∣∣∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]
−Gn

∣∣∣
� C(b−a)n+ 1

2

√
σ( f (n)).

(32)

We may find a function f : [a,b] → R such that f (n−1) is absolutely continuous on
[a,b] as

f (n−1)(x) =

⎧⎪⎪⎨
⎪⎪⎩

(x−a)n+1

(n+1)!
− θ (b−a)(x−a)n

2n!
if x ∈

[
a,

a+b
2

]
,

(x−b)n+1

(n+1)!
+

θ (b−a)(x−b)n

2n!
if x ∈

(a+b
2

,b
]
.

It follows that

f (n)(x) =

⎧⎪⎪⎨
⎪⎪⎩

(x−a)n

n!
− θ (b−a)(x−a)n−1

2(n−1)!
if x ∈

[
a,

a+b
2

]
,

(x−b)n

n!
+

θ (b−a)(x−b)n−1

2(n−1)!
if x ∈

(a+b
2

,b
]

which is just the function defined in (8). Thus by (7),(8) and (11), it is not difficult to
find that the left-hand side of the inequality (32) becomes

L.H.S.(32) =
[(2n−1)− (4n2−1)θ +(2n+1)n2θ 2](b−a)2n+1

(4n2−1)(n!)222n , (33)
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and the right-hand side of the inequality (32) is

R.H.S.(32) =
C(b−a)2n+1

2nn!

√
(2n−1)− (4n2−1)θ +(2n+1)n2θ 2

4n2−1
. (34)

From (32), (33) and (34), we find that C � 1
2nn!

√
(2n−1)−(4n2−1)θ+(2n+1)n2θ2

4n2−1
, prov-

ing that the constant 1
2nn!

√
(2n−1)−(4n2−1)θ+(2n+1)n2θ2

4n2−1
is the best possible in (31).

THEOREM 8. Let f : [a,b] → R be such that f (n−1) is absolutely continuous on
[a,b] and f (n) ∈ L2[a,b] where n is an even integer. Then for any θ ∈ [0,1] we have∣∣∣∫ b

a
f (x)dx−b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+θ f (b)

]
−Gn− [1−(n+1)θ ](b−a)n+1

(n+1)!2n Dn

∣∣∣
� (b−a)n+ 1

2

2n(n+1)!

√
2n3−n2−(4n4−5n2+1)θ+(2n5+n4−4n3−2n2+2n+1)θ 2

4n2−1

√
σ( f (n)).

(35)

Inequality (35) is the best possible in the sense that the constant

1
2n(n+1)!

√
2n3−n2− (4n4−5n2 +1)θ +(2n5 +n4−4n3−2n2 +2n+1)θ 2

4n2−1

cannot be replaced by a smaller one.

Proof. From (7), (9), (11) and (30),we can easily get∣∣∣∫ b

a
f (x)dx−b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+θ f (b)

]
−Gn− [1−(n+1)θ ](b−a)n+1

(n+1)!2n Dn

∣∣∣
=

∣∣∣∫ b

a
Kn(x,θ ) f (n)(x)dx− 1

b−a

∫ b

a
Kn(x,θ )dx

∫ b

a
f (n)(x)dx

∣∣∣
=

1
2(b−a)

∣∣∣∫ b

a

∫ b

a
[Kn(x,θ )−Kn(t,θ )][ f (n)(x)− f (n)(t)]dxdt

∣∣∣
� 1

2(b−a)

{∫ b

a

∫ b

a
[Kn(x,θ )−Kn(t,θ )]2 dxdt

} 1
2
{∫ b

a

∫ b

a
[ f (n)(x)− f (n)(t)]2 dxdt

} 1
2

=
{∫ b

a
K2

n (x,θ )dx− 1
b−a

[∫ b

a
Kn(x,θ )dx

]2} 1
2

×
{∫ b

a
[ f (n)(x)]2 dx− 1

b−a

[∫ b

a
f (n)(x)dx

]2} 1
2

=
{ [2n3−n2−(4n4−5n2+1)θ+(2n5+n4−4n3−2n2+2n+1)θ 2](b−a)2n+1

(4n2−1)[(n+1)!]222n

} 1
2

×
{
‖ f (n)‖2

2−
[ f (n−1)(b)− f (n−1)(a)]2

b−a

} 1
2

=
(b−a)n+ 1

2

2n(n+1)!

√
2n3−n2−(4n4−5n2+1)θ+(2n5+n4−4n3−2n2+2n+1)θ 2

4n2−1

√
σ( f (n)).
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We now suppose that (35) holds with a constant E > 0 as∣∣∣∫ b

a
f (x)dx− b−a

2

[
θ f (a)+2(1−θ ) f

(a+b
2

)
+ θ f (b)

]
−Gn

− [1− (n+1)θ ](b−a)n+1

(n+1)!2n Dn

∣∣∣ � E(b−a)n+ 1
2

√
σ( f (n)).

(36)

We may find a function f : [a,b] → R such that f (n−1) is absolutely continuous on
[a,b] as

f (n−1)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x−a)n+1

(n+1)!
− θ (b−a)(x−a)n

2n!
− [1− (n+1)θ ](b−a)n+1

(n+1)!2n+1

if x ∈
[
a,

a+b
2

]
,

(x−b)n+1

(n+1)!
+

θ (b−a)(x−b)n

2n!
+

[1− (n+1)θ ](b−a)n+1

(n+1)!2n+1

if x ∈
(a+b

2
,b

]
.

It follows that

f (n)(x) =

⎧⎪⎪⎨
⎪⎪⎩

(x−a)n

n!
− θ (b−a)(x−a)n−1

2(n−1)!
if x ∈

[
a,

a+b
2

]
,

(x−b)n

n!
+

θ (b−a)(x−b)n−1

2(n−1)!
if x ∈

(a+b
2

,b
]

which is just the function defined in (8). Thus by (7), (8), (9) and (11), it is not difficult
to find that the left-hand side of the inequality (36) becomes

L.H.S. (36)

=
(2n3−n2− (4n4−5n2 +1)θ +(2n5 +n4−4n3−2n2 +2n+1)θ 2)(b−a)2n+1

(4n2−1)[(n+1)!]222n ,

(37)

and the right-hand side of the inequality (36) is

R.H.S. (36)

=
E(b−a)2n+1

2n(n+1)!

√
2n3−n2− (4n4−5n2 +1)θ +(2n5 +n4−4n3−2n2 +2n+1)θ 2

4n2−1
.

(38)
From (36), (37) and (38), we find that

E � 1
2n(n+1)!

√
2n3−n2− (4n4−5n2 +1)θ +(2n5 +n4−4n3−2n2 +2n+1)θ 2

4n2−1
,

proving that the constant

1
2n(n+1)!

√
2n3−n2− (4n4−5n2 +1)θ +(2n5 +n4−4n3−2n2 +2n+1)θ 2

4n2−1
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is the best possible in (35).

REMARK 8. For θ = 0, 1, 1
3 , 1

2 in (31) and (35) we get inequalities related to the
midpoint, trapezoid, Simpson and averaged midpoint-trapezoid quadrature formulae,
respectively.
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