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A HILBERT-TYPE INTEGRAL INEQUALITY IN THE
WHOLE PLANE WITH THE HOMOGENEOUS KERNEL
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(Communicated by M. Krni¢)

Abstract. By using the way of weight functions and the technique of real analysis, a new Hilbert-
type integral inequality with the homogeneous kernel of degree O in the whole plane with the
best constant factor is given. As applications, the equivalent inequalities with the best constant
factors, the reverses and some particular cases are obtained.

1. Introduction

If f(x),g(x) =0, such that 0 < [§” f2(x)dx < e and 0 < [;°g*(x)dx < oo, then
we have (cf. [1]):

/Ow/ow%g)(]y)dxdy<n(/owfz(x)dx/owgz(x)dxf, (1)

where the constant factor 7 is the best possible. Inequality (1) is well known as
Hilbert’s integral inequality, which is important in Mathematical Analysis and its ap-
plications [2]. In recent years, by using the way of weight functions, a number of
extensions of (1) were given by Yang [3]. Noticing that inequality (1) is a homoge-
nous kernel of degree —1, in 2009, a survey of the study of Hilbert-type inequalities
with the homogenous kernels of degree negative numbers and some parameters were
given by [4]. Recently, some inequalities with the homogenous kernel of degree O and
non-homogenous kernels have been studied [5]-[9], a unified treatment of Hilbert-type
inequalities has been obtained by Krnic [10] and the best constants for a wide class of
homogeneous kernels in R™ have been given by Peric [11]. All of the above inequali-
ties are built in the quarter plane. In 2006, Yang [12] built a new Hilbert-type integral
inequality in the whole plane as follow:

/ /m Tte x+yd dy<”</_°;€xfz(x)dx/_ie"g%x)dx)%, )
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where the constant factor 7 is the best possible. In 2010, Xie et al. [13], [14] and [15]
also gave some new inequalities in the whole plane.

In this paper, by using the way of weight functions and the technique of real anal-
ysis, a new Hilbert-type integral inequality in the whole plane with the homogenous
kernel of degree O and a best constant factor is built. As applications, the equivalent
forms, the reverses and some particular cases are obtained.

2. Some lemmas

LEMMA 1. If 0 < oy < 0 <, define the weight functions ®(y) and & (x) as
follow:

e
=3
<~
&
I

/ i min{|x|, |y[} idx, (y € (—o0,00)), G)
—eie{12} | /X2 +2xycosoy +y2 | 1]

> - min{|x], [y[} 1
O(x) == min dy, Y€ (moo00). (4
) /—wiE{ll}{ /X2 + 2xycos o; + y? Y (el D@

Then we have 0(y) = @(x) =k (x,y #0), where

o “ *
k.—21n{<1+sec 2><1+csc 2)} (5)
Proof. Setting u = |’yc—| in (3), we find
o(y) :/ min _ min{u], 1} Lo, ©6)
—eie{12} | \/u2 +2u(y/Jy[)cos o+ 1 | |ul

For y € (0,00), we have

-1 1 -1 0 du
o(y) :/ —du+/
—eo /U2 4+2ucosop+1 U 1 v/u?2+2ucosop + 1

du

1 du e 1
+/ +/ = )
0 Vu?+2ucosoy+1 J1 \/u?+2ucosoyq+1 U
Setting
-1 1 —1
1 22/ —du,
—oo Ju?4+2ucoson+1 U
0 1
[0)) ::/ du,
—1y/u?+42ucoson +1

1 1
w3 ::/ du,
0 /u?+2ucosoy +1
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Wy _/ —du
u?+2ucosoy +1u

we find

o =t /°° dv
: 1 vy/v2+2vcos(m— o) + 1

z:_l/V/ dz
0 /22 +2zcos(m—on)+ 1
dv

V=—u

=y,
/0 V2 +2vcos(m— o) + 1

z=1/u dz
0 \/22+2zcosoy + 1

Then, we have

y) =2(w + w3)
du

/ +/1 du
\/u2+2ucos7r o)+l Jo \Jul+2ucosoy +1

2

Il
Y

1 1
{ du—l—/ du}
0 \/u+cos o)) 4-sin* (T —a) \/ (u+cos o )2+ sin® oy

n<1+cm——)+m<r+mc%g}
BTN Tt

For y € (—e0,0), we still have

-1 1 —du 0 du
wa/ +/
—oo 4/ 2—2ucoso¢1+l u —1 4/ 2—2ucosa1+
+/ / du
Vus—2ucosop +1 \Vus—2ucosop+1 U4

= 2(601—|—CO3) =k.

By the same way, we still can find that @ (x) = ©o(y) =k (x, y #0). The lemma
is proved. [

LEMMA 2. If p> 1, Il—7+$ =1, 0< 0y <op<m, f(x)is a nonnegative mea-
surable function in (—oo,00), then we have

. P
J ::/ ! / min min{ix|, b} x)dx| d
oo ‘y‘ [ wi€{1,2}{ \/xz—l—ZXyCOSO(i—l—yz f( ) y

<K [ . ®)
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Proof. By Lemma 1 and Holder’s inequality [16], we have

- min{|x, |} ’
/ min d f(x)dx
—eoi€{12} | /x2 + 2xycos o + y?

/°° i min{ x|, |y} I
—i€{12} | /x2 +2xycos a; + y? 7!

lMW] )
i x|/
" i { il b
—eoic{1,2} \/x +2xycos @ +y? b"
- . qg—1 p-1
o ()
—eoi€{1,2} \/x +2xycos 0; + y? [

oo . p—1
iy minfpel o} VB, ]
0) i [ ooler?llg}{ \/x +2xycos o +y? 1yl f*(x)dx ®

Then by (4), (9) and Fubini theorem [17], it follows

. p—1
sewt | min{i by} 0T
0016{12} \/x +2xycos o; + y? Iyl

- 1 min{|x], [y[} idy lx|P~1 P (x)dx
0016{12} \/x +2xycos o + y? 1yl

_ ! / x) 7 P ()

=17 [

The lemma is proved. [J

N

3. Main results and applications

THEOREM 1. If p > 1, %—l—é =1, 0<o<m<m, f(x), glx) >0, satisfying
0 < [= |x[P~! fP(x)dx < oo and 0 < [ |y|9" " g9(y)dy < o, then we have

min{ x|, [y[}
! _/ /wle{lz}{\/szrzxycosalﬂ }f(x)g(y)dxdy
k(/_w |x|P—1fP(x)dx> : (/_Z yq_lgq(y)dy> , (10)

: p
b [ [ e {mintbh VT
—oo b [ wi€{172}{\/x2+2xycosai+y2 f) '

e [l g (11)

_—=

A

N
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where the constant factor k and kP are the best possible (k is defined by (5) ). Inequal-
ity (10) and (11) are equivalent.

Proof. 1f (9) takes the form of equality fora y € (—e0,0)U(0,), then there exists
constants M and N, such that they are not all zero, and

|x|p/q |q/p
Iyl x|

Hence, there exists a constant C, such that

MIx|P fP(x) =N|y|?=C a.e. in (—oo,00).

1) =NE

a.e. in (—oo,00).

We suppose M # 0 (otherwise N =M = 0). Then it follows

c
—1 .
|x” fp(x)zw a.e. in (—oo,00),

which contradicts the fact that 0 < [_|x|?~" f7(x)dx < . Hence (9) takes the form
of strict inequality; so does (8), and we have (11).
By the Holder’s inequality [16], we have

il I L min{|x|, [y[} L
I= / P min Xx)dx P d
_w[y _wiem}{\/x2+2xycosai+y2 f@)dx| [[y17 g(y)dy]

1

<JP (/_i Iqulgq(y)dy> : (12)

By (11), we have (10). On the other hand, suppose that (10) is valid. Setting

(o} 1 1771
[ min  mLDD A g
—ei€{12} | \/x2 +2xycos oy + y?

then J = [ |y|? ' g%(y)dy. By (8), it follows J < eo. If J =0, then (11) is naturally
valid. Assuming that 0 < J < oo, by (10), we obtain

1 1
/. y‘“gq<y>dy=1=z<k< /. xf”ff’<x>dx> ( /. ngq(y>dy> L (3)

1

Jﬁ:(/iy“gq(y)dy> <k</Z|XI’”f”(X)dX> : (14)

Hence we have (11), which is equivalent to (10).
If the constant factor k in (10) is not the best possible, then there exists a positive
constant K with K < k, such that (10) is still valid as we replace k by K, then we have

gv) =™

==

I <K< /. |x|P—1fp<x>dx> ( /. yq—lg%y)dy) . (1)
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For & > 0, define functions f(x),&(y) as follows:

_2e_
x v, xe(le),

flx):=40, xe[-1,1],

Replacing f(x), g(v) by f(x), &(y) in (15), we obtain

min{|x], |y} £s
/ /ootE{lZ}{\/x2+2xycosal+y }f(x)g(y)dxdy

(/ [~ 7 (0 ) ( /. yq—lg%y)dy)q

A

K
- K
g’
i — / / mln{‘x‘ ‘y‘} f dxdy 2117
wt€{12} /X2 + 2xycos o+ y2
where,
Il :: 28 -1 m1n{|x\ |y|} (_x)—%g—ldx dy,
wl€{12} VX2 + 2xycos o + 2
bem [ mingle b)) %1 ]
1 i) /X2 4+ 2xycos o; + 2

£ 1 i >
—oo i€{12} \/x2 +2xycos o + y?
I —/ yf%sfl / min min{jx|, 1} x 7 ldx dy.
1 ie{12} | \/x2 + 2xycos oy + y?

By Fubini theorem [17], we obtain

e 2e ©° i
L= 14:/ y_7_1 / min{x,y} x_T_ldx dy
1 1 \/x2 4+ 2xycosoy + y?

u= X/y/ e 1{ min{u,1}

v u2+2ucosoy + 1

_E_l
P du|dy

(16)

a7)
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< o] (1 W
= / yooET /1 dul|d
1 ¥ Vu?+2ucoso +1
S —1

[ [ e
1 u? 4+ 2ucosoyg + 1

2£1

du

1 P zf?du
— / 1 y 2e ldy = 2 /
1 u? +2ucosoy + 1 € Vu? 4+ 2ucosoy +1

28[/ \/u2+2ucosa1+ /\/u2+2ucosa1+

2e i 25
12 = 13 / y_7_1 / mln{x’y} ldx dy
\/x —2xycos oy +y

28_1
23[/ v u?—2ucoson + 1 /\/ —2ucosop +1

In view of the above results and by using (16) and (17), it follows

28_1

25
/\/ +2uc0soc1+ /\/ +2uc0soc1+

281

/ du+/
\/ —2ucosop + 1 \us—2ucoson + 1

=¢el<e- E_K (18)

By Fatou lemma [17] and (18), we find

/°° min{u, 1} /°° min{u, 1} d
= u
0 ur/u?+2ucosoy + 1 u\/u? —2ucosop + 1

_2e_
u 7 du

uq du e
hm / lim
0 e—0" \/u2+2ucosa1+ 1 e=0"y/u2 +2ucosoy + 1
2 _2e_

u ‘1 du < u 7 du
+ hm / lim
0 =0t \/y 2ucosa2+ 1 e=0"\/y2 —2ucosop + 1

2e _2e
. uqdu ° w ? du
gh_m<5‘4>0+ +
1

0 \/u2+42ucosoy +1 \u? +2ucosoq + 1
2e

1 udu = u Ldu
+ / + / (19)
0 v/u?—2ucosop+1 J1 \/u?—2ucoson+1
which contradicts the fact that K < k. Hence the constant factor £ in (10) is the best
possible. If the constant factor in (11) is not the best possible, then by (12), we may get
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a contradiction that the constant factor in (10) is not the best possible. Thus the theorem
is proved. [

THEOREM 2. As the assumptions of Theorem 1, replacing p > 1 by 0 < p <1,
we have the equivalent reverse of (10) and (11) with the best constant factors.

Proof. The way of proving of Theorem 2 is similar to Theorem 1. By the reverse
Holder’s inequality [16], we have the reverse of (8) and (12). It is easy to obtain the
reverse of (11). In view of the reverses of (11) and (12), we obtain the reverse of (10).
On the other hand, suppose that the reverse of (10) is valid. Setting the same g(y) as
theorem 1, by the reverse of (8), we have J > 0. If J = oo, then the reverse of (11) is
obvious value; if J < oo, then by the reverse of (10), we obtain the reverses of (13) and
(14). Hence we have the reverse of (11), which is equivalent to the reverse of (10).

If the constant factor k& in the reverse of (10) is not the best possible, then there
exists a positive constant K (with K > k), such that the reverse of (10) is still valid as
we replace k by K. By the reverse of (18), we have

! 1 1 2
/ + uddu
0 | /u2+2ucosay +1  +/u?—2ucosop+1
0 1 1 _2e_
+/ + u b du
1| Vu2+2ucosoy +1  /u? —2ucosop + 1
> R. (20)

.2 2¢0
F0r0<£0<|21|, Wehave%ﬂ>—1. For 0 < & < g, we obtain ud < u ¢

(u € (0,1]) and
1 1

1
+
/0 Vi +2ucosoy +1  \/u? —2ucosop + 1

1 1 125 1 1 1
< | = + - / ua du=| — + — . <
sinop  sinoyp | Jo sinogg  sinop | 14 (2&)/q

Then by Lebesgue control convergence theorem [17], we have for € — 07 that

2¢9
ud du

! 1 1 2
/ + uddu
0 | u2+2ucosay+1 /u?2—2ucosop+1
/1 ! + ! duto(l). 1)
- u+o(1).
0 | u2+2ucosay +1 /u2—2ucosop+1
By the Levi’s theorem [17], we find for € — 07 that
°° 1 1 _2e
/ + u 7 Ydu
1| Vu2+2ucosoy +1  /u? —2ucoson + 1
1 1

u'ldu+a(1).  (22)

:/1“’

+
Vi +2ucosoy +1  \/u? —2ucosop + 1
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By (20), (21) and (22), for € — 0™ in (20), we have k > K, which contradicts the
fact that k < K. Hence the constant factor k in the reverse of (10) is the best possible.
If the constant factor in reverse of (11) is not the best possible, then by the reverse of
(12), we may get a contradiction that the constant factor in the reverse of (10) is not the
best possible. Thus the theorem is proved. [

REMARK 1. For oy = op = ¢ € (0,7) in (10) and (11), we have the following
equivalent inequalities:

=7 min{lx, |y}
/_m /_w NE f(x)g(y)dxdy

2 4 2xycosa + y?
1

< ko (/_i xp_lfp(X)dx> ! (/_: yq_lgtI(y)dy> ‘17 (23)
- min{|x], |y|} :
/ b l/ \/x +2xyc0sa+y2f(x)dx] dy

<K [ Bl @, (24)

where ko :=2In[(1+4sec §)(1+csc$)] and k] are the best possible.

REMARK 2. For a; = = 3 , p=¢q=2in(10) and (11), we have the following
equivalent inequalities:

= (= min{|x], |[y[} \y\}
[m[ \/m (x)g(v)dxdy

< 21(3+2v3) ( [ _wlreax [ yg2<y>dy> , ©5)

2
] _min{lx], [y[} .o
[mlyl l i \/m )d] dy

< 2[In(3 +2V/3))? L I F*(x)dx. (26)
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