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MINKOWSKI AND BECKENBACH—DRESHER
INEQUALITIES AND FUNCTIONALS ON TIME SCALES

RABIA BIBI, MARTIN BOHNER, JOSIP PECARIC AND SANJA VAROSANEC

(Communicated by A. Peterson)

Abstract. We obtain integral forms of the Minkowski inequality and Beckenbach—Dresher in-
equality on time scales. Also, we investigate a converse of Minkowski’s inequality and several
functionals arising from the Minkowski inequality and the Beckenbach—Dresher inequality.

1. Introduction and preliminaries

A time scale T is an arbitrary nonempty closed subset of the real numbers. The
theory of time scales was introduced by Stefan Hilger [6] in order to unify the theory
of difference equations and the theory of differential equations. For an introduction
to the theory of dynamic equations on time scales, we refer to [2, 7]. Martin Bohner
and Gusein Sh. Guseinov [3, 4] defined the multiple Riemann and multiple Lebesgue
integration on time scales and compared the Lebesgue A-integral with the Riemann
A-integral.

Let n € N be fixed. Foreach i € {1,...,n}, let T; denote a time scale and

AN'=Tx..xT,={t=(t1,....tn) : ; € Ti, 1 <i<n}

an n-dimensional time scale. Let ta be the o-additive Lebesgue A-measure on A”
and .# be the family of A-measurable subsets of A". Let E € .¥# and (E,.Z,Ua)
be a time scale measure space. Then for a A-measurable function f : E — R, the
corresponding A-integral of f over E will be denoted according to [4, (3.18)] by

/E Flt1,eo )Mty - Aty /E F(0)A, /E fdus, o /E F(0)dua().

By [4, Section 3], all theorems of the general Lebesgue integration theory, including
the Lebesgue dominated convergence theorem, hold also for Lebesgue A-integrals on
A". Here we state Fubini’s theorem for integrals on time scales. It is used in the proofs
of our main results.
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THEOREM 1.1. (Fubini’s theorem) Let (X,.# ,up) and (Y, £, va) be two finite-
dimensional time scale measure spaces. If f: X xY — R is a A-integrable function
and if we define the functions

(p(y):/Xf(x7y)d[,LA(x) fora.e. yevY

and

y(x) Z/Yf(x,y)dvA(y) forae. xeX,
then @ is A-integrable on Y and y is A-integrable on X and

[ aus@) [ ree)avatn) = [ava®s) [ £ey)dus. (L.1)

Some classical inequalities, including Jensen’s inequality, Holder’s inequality, Min-
kowski’s inequality and their converses for multiple integration on time scales were
investigated in [1]. These inequalities hold for both Riemann integrals and Lebesgue
integrals on time scales. For completeness, let us recall these inequalities from [1].

THEOREM 1.2. (Jensen’s inequality [1, Theorem 4.2]) Assume ® € C(I,R) is
convex, where I C R is an interval. Let (E,.Z,lp) be a time scale measure space
and suppose f is A-integrable on E such that f(E) = 1. Moreover, let h: E — R be
nonnegative A-integrable such that [ hdus > 0. Then

[ FOR®)Aus()\ _ [ ®(f(2)h(t)dua(?)
(D< Jeh(t)dua(t) )< [ h(2)dua(r) . (1.2)

If © is concave, then (1.2) is reversed.

THEOREM 1.3. (Holder’s inequality [1, Theorem 6.2]) For p # 1, define q =
p/(p—1). Let (E,%,up) be a time scale measure space. Assume w, f, g are
nonnegative functions such that wf?, wg4, wfg are A-integrable on E. If p > 1,
then

1/p 1/q
[ wor0sooe < ( [voroosn) " ([voeomo) . 0
If0<p<1land [pwgidus >0, orif p<0and [pwfPdus >0, then (1.3) is reversed.
THEOREM 1.4. (Minkowski’s inequality [1, Theorem 7.2]) Let (E,%,ua) be a

time scale measure space. For p € R, assume w, f, g, are nonnegative functions
such that wf?, wg?, w(f +g)P are A-integrableon E. If p > 1, then

(f000-+sw)ram )

< ( / w(z)fﬂ(t)duA<z>) ", ( / w(z)gﬂ(z)dmt)) R
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If0<p<1orp<O, then (1.4) is reversed provided each of the two terms on the
right-hand side is positive.

THEOREM 1.5. (Converse of Holder’s inequality [1, Theorem 11.3]) For p # 1,
define q=p/(p—1). Let (E,.%,Up) be a time scale measure space. Assume w, f, g
are nonnegative functions such that wf?, wgi, wfg are A-integrable on E. Suppose

0<m< f(t)gVP(t)<M forall t€E.
If p>1, then

1/p
[ w0s0)s000) > Kpaman) [ wiorr oo

x (/Ew(t)gq(t)duA(t)>l/q, (1.5)

(M —m)Y/P|mMP — Mm?|'/4
M7 =] |

If 0<p<1orp<O0, then (1.5) is reversed provided either [zwgidus >0 or
JewfPdua > 0.

where

K(p,m,M) = |p|"/?|q|"/1 (1.6)

2. Minkowski inequalities

Theorem 1.4 also holds if we have a finite number of functions. The next theorem
gives an inequality of Minkowski type for infinitely many functions. In the sequel, we
assume that all occurring integrals are finite.

THEOREM 2.1. (Integral Minkowski inequality) Let (X,.# ,up) and (Y,.L,Va)

be time scale measure spaces and let u, v, and f be nonnegative functions on X, Y,
and X XY, respectively. If p > 1, then

[/ (/fxy (v)dva(y )) (x>duA(x)]%
/(/ FP 0 y)ulx)dpa (x >>1 v(y)dva(y) 2.1)

holds provided all integrals in (2.1) exists. If 0 < p < 1 and

P
/ </ deVA> udup >0, /deVA >0 (2.2)
x \Jr Y
holds, then (2.1) is reversed. If p < 0 and (2.2) and
/ FPudpiy > 0, 2.3)
X

hold, then (2.1) is reversed as well.
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Proof. Let p > 1. Put

/fxy y)dva(y).

Now, by using Fubini’s theorem (Theorem 1.1) and Holder’s inequality (Theorem 1.3)
on time scales, we have

dua(x) = [ HEH (u(x)dus ()
/Y f<x7y>v<y>dvA<y>) HP ) (4
[ 76 s () ) v)ava)

and hence

(/H” duA) </ (/ £7(ry)ux)dpa(x >)l V(¥)dva ().

For p <0 and 0 < p < 1, the corresponding results can be obtained similarly. [l

THEOREM 2.2. (Converse of integral Minkowski inequality) Let (X,.# ,up) and
(Y,Z,vA) be time scale measure spaces and let u, v, and f be nonnegative functions
on X, Y,and X XY, respectively. Suppose

0<m< <M forall xeX,yeY.

If p>1, then

([ reomoione) (x)duA<x>];
K(pm,) | ( [ A7 e)u)dua(x >)l Wdval) 24

provided all integrals in (2.4) exist, where K(p,m,M) is defined by (1.6). If 0 < p < 1
and (2.2) holds, then (2.4) is reversed. If p <0 and (2.2) and (2.3) hold, then (2.4) is
reversed as well.
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Proof. Let p > 1. Put

/fxy y)dva(y).

Then by using Fubini’s theorem (Theorem 1.1) and the converse Holder inequality
(Theorem 1.5) on time scales, we get

[ = [ ([ 560000500 ) - utaianao
- ( f(x,y>HP1<x>u<x>duA<x>) )dva()
p,mM/</f”xy x)dpa (x >)w
< ([ entoans( >)7v<y>dvA<y>.

Dividing both sides by ( [y H” (x)u(x)dua(x ))pl’ we obtain (2.4). For 0 < p <1 and
p < 0, the corresponding results can be obtained similarly. [J

Let the functions f, u, v be defined as in Theorem 2.1. Now we define the rth
power mean MU"/(f, 1) of the function f with respect to the measure Ly by

Sy /() u(x)dpa(e) \ i
( Teu(x)dia(x) ) £ r#0,
(g fryudun Y
ep( T u(x)dpa(x) ) B r=0,

MV(f pa) = 2.5)

where [y udpa > 0.

COROLLARY 2.3. Let 0 < s <r. Then

MU (F,dva). dpa) > K (Zom M) MO (MY (7, dpy) v,

Proof. By putting p =r/s and replacing f by f* in (2.4), raising to the power of

1 and dividing by
(futanso) % (fvoravst) g

we get the above result. [
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3. Minkowski functionals

In this section, we will consider some functionals which arise from the Minkowski
inequality. Similar results (but not for time scales measure spaces) can be found in [8].

Let f and v be fixed functions satisfying the assumptions of Theorem 2.1. Let us
consider the functional M; defined by

[/ (/ JP(x,y)u(x)dpalx ))1 (y)dvA(y)r
/ </ FEry)r(y)dvaly >> u(x)da (),

where u is a nonnegative function on X such that all occurring integrals exist. Also, if
we fix the functions f and u, then we can consider the functional

0=, (/ £ e,y )ue()dpta(x >)1 v(y)dva(y)
U (/fxy (y)dva(y )) (x)duA(x)]%,

where v is a nonnegative function on Y such that all occurring integrals exist.

REMARK 3.1. (i) It is obvious that M; and M, are positive homogeneous,
ie., Mi(au) = aM;(u), and My (av) = aM,(v), forany a > 0.

(ii)) If p>1or p<0,then M{(x) >0, and if 0 < p < 1, then M;(u) < 0.

(iii) If p > 1, then M,(v) >0, and if p < 1 and p # 0, then M, (v) <O0.

THEOREM 3.2. (i) If p=>1 or p <0, then My is superadditive. If 0 < p < 1,
then M1 is subadditive.

(i) If p = 1, then My is superadditive. If p <1 and p # 0, then My is subadditive.

(iii) Suppose uy and up are nonnegative functions such that uy > uy. If p > 1 or
p <0, then
0< My (u1) <My (u2), (3.1)

and if 0 < p < 1, then (3.1) is reversed.
(iv) Suppose vy and v, are nonnegative functions such that vy > vy. If p > 1, then
0.< Ma(v1) < Ma(v2), (3.2)

and if p <1 and p # 0, then (3.2) is reversed.
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Proof. First we show (i). We have

M (u1 +u2) — My (1) — My (u2)

_ l [ (e +u2><x>duA<x>) % v(y)dvA<y>] ,,
/(/ ) ()dvaly )<u1+u2><x>dm<x>
) [ / ( / fp(x,y)ul(x)d#A(x)> : v(y)dvm)] ,,
o (/ Flo)y dvA> 1 (6)dHa (3
) [ / ( / fp(x,y)uz(x)d#A(x)> : v(y)dvm)] p
. /(/fxy dvA) 2 (3)da (x)

— /Y (/Xfp(x,y)(ul +u2)(x)dllA(x)> : V(Y)dVA(Y)] p

- [/Y (/Xfp(x,)’)m(x)duA(x)) : v(y)dvA(y)] !
- [/Y (/Xfp(x,)’)uz(x)duA(x)> : v(y)dvA(y)] 1"

Using the Minkowski inequality (1.4) for integrals (Theorem 1.4) with p replaced by
1/p, we have

>0 if >lorp<oO,
Ml(u1+u2)—M1(u1)—M1(u2){<0 ;f g<p<f (3.3)

So, M is superadditive for p > 1 or p < 0, and it is subadditive for 0 < p < 1. The
proof of (ii) is similar: After a simple calculation, we have

Ms(vi +v2) — Ma(vi) — M2 (v2)

[ [ ([ resmeann) i)’
IAY! ) o)

i Ux ( /Y fxy)va (y)dvA(y)) ' u(x)ditn (x)] ,

- [/x (/Yf(x,)’)(vl +VZ)(}’)dVA(}’)>pu(x)d‘uA(x)] "
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Using the Minkowski inequality (2.1) for integrals (Theorem 2.1), we have that this is
nonnegative for p > 1 and nonpositive for p < 1 and p # 0. Now we show (iii). If
p =1 or p <0, then using superadditivity and positivity of My, uy > u; implies

M (uz) = My (uy + (u2 —uy)) = My (ur) +My(ug —uy) = My(uy),

and the proof of (3.1) is established. If 0 < p < 1, then using subadditivity and nega-
tivity of My, up > u; implies

M (1) < My(ur) +Mi(uo —ur) < My(up).

The proof of (iv) is similar. [

REMARK 3.3. From Theorem 3.2, we obtain a refinement of the discrete Min-
kowski inequality given in [8]. Namely, put X,¥Y C N and let # be A-measurable on X
and v; and v, be A-measurable on Y such that u(i) =u; >0, i€ X, vi(j) =n; >0,
v2(j)=pj =0, j€Y. Then, for fixed f and u, the function M, has the form

1/p p\ Up
Mz(vl):Enj (2”,615) — (2”,‘(21’1]{15/’) ) s
jey ieX ieX jey

where f(i,j) =a;j > 0. If p > 1, then the mapping M, is superadditive, and p; > n;
forall j € Y implies

1/p »\ U/p
0< an (Z‘u,af,) — (Zui<2n./a,~j> )
jey icX ’ icX jey
1/p m /pr
<sn(gut) - (gu(grm) )
jey ieX ieX jey

provided all occurring sums are finite.

COROLLARY 3.4. (i) Suppose u; and uy are nonnegative functions such that
Cuy > uy 2 cup, where ¢,C 2 0. If p>1 or p <0, then

M (u2) < Mi(ur) < CMy(u2),
and if 0 < p < 1, then the above inequality is reversed.

(i) Suppose vy and v, are nonnegative functions such that Cv, > vy = cvy, where
c¢,C=>0.If p>1, then

cM2(v2) < Ma(v1) < CMa(v2),

and if p <1 and p # 0, then the above inequality is reversed.
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COROLLARY 3.5. If vy and v, are nonnegative functions such that v, > vy, then

M (/Yf(x,y)m(y)dvA(y),uA) _/YM[O] (. a)v1 () dva ()
MO [ resma0).as) - [ MO )0, G4

where M\ (f,115) is defined in (2.5).

REMARK 3.6. If the measures are discrete, then from Corollary 3.5, we get the
following result: Let u;,v;,w;,a;; >0 forall i=1,...,n and all j=1,...,k. Put
U zzlj‘-:luj. If vi <w; forall i=1,...,n, then

k n “71 n koouj k n U n kouj
H ( Vi“ij) — Zv,- (Ha}j) < H ( Wiaij> - Zwi <H a[?) .
=1 \i=1 i=1 1 i

i= j=1 j=1 \ui=

This inequality is a refinement of the discrete Holder inequality

u;j

J

k n U k uj
H Widij = > w; Hai;’ .
=1 \i=1 -1 =1

The next result gives another property of M, but a similar result can also be stated
for M,.

M=

THEOREM 3.7. Let @ : [0,00) — [0,00) be a concave function. Suppose u; and
up are nonnegative functions such that

@our, @ouy, @o(ow+(1—0o)u)
are A-integrable for o € [0,1]. If p > 1, then
Mi(po (ouy + (1 = a)uz)) = aMi(@our) + (1 — )M (@ous),

and if 0 < p < 1, then the above inequality is reversed.

Proof. We show this only for p > 1 as the other case follows similarly. Since ¢
is concave, we have

p(ouy + (1= a)uz)) > o0@(ur) + (1 — o) (ua).
Now, from (3.1) and (3.3), we have

Mi(@o (aur + (1 = @)uz)) = Mi(a(@our) + (1 - a)(@ous))
> Mi(a(@our)) +Mi((1-oa)(@ou))
= o

Mi(@our)+ (1 —o)Mi(pouy),
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and the proof is established. [

Let f, u and v be fixed functions satisfying the assumptions of Theorem 2.1. Let
us define functionals M3 and My by

)= | [ (frromtansts >)1 <y>dvA<y>r
/Umy mu)www

B)= [ ([ tomteianat ))1 vy)dva(y)

[ (oo <x>duA<x>]%,
where ACX and BCY.

The following theorem establishes superadditivity and monotonicity of the map-
pings M3 and My.

and

THEOREM 3.8. (1) Suppose A1,A CX and AiNA,=0.1If p>1o0r p<O,
then
M3(A; UA2) > M3(Ap) +M;s(Az),

and if 0 < p < 1, then the above inequality is reversed.
(i1) Suppose A1,A» CX and Ay CAy. If p>1 or p<QO, then
M3 (A1) < M3(Az),
and if 0 < p < 1, then the above inequality is reversed.
(iii) Suppose B1,Bo CY and BiNB, =0. If p > 1, then
M4 (B1 UBy) = M4(B1) + My(Bz),
and if p <1 and p # 0, then the above inequality is reversed.
(iv) Suppose B1,Bo CY and By CBy. If p > 1, then
M4(B1) < M4(By),
and if p < 1 and p # 0, then the above inequality is reversed.

The proof of Theorem 3.8 is omitted as it is similar to the proof of Theorem 3.2.

REMARK 3.9. For p > 1, if §,, is a subset of Y with m elements and if S,, O
S—1 2 ... 28>, then we have

Ma(Sm) = Ma(Sm—1) = ... = My(S2) >0
and My(S;;) = max{My(Sy) : S, is any subset of S,, with 2 elements }.
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4. Beckenbach—Dresher inequalities

THEOREM 4.1. Let (X, .4 ,up), (X, 4 ,Apr) and (Y, L, Va) be time scale mea-
sure spaces. Suppose u and w are nonnegative functions on X, v is a nonnegative
function on Y, f is a nonnegative function on X XY with respect to the measure
(Ua X VA), and g is a nonnegative function on X X Y with respect to the measure

(Aa X W) If
s=21, g<1<p, and q#0 4.1)

or
s<0, p<1<gq, and p#0, (4.2)

then

Ui Uy fy)v()dva () u(x)dpa(x)]?
[ Uy gGey)v()dva () wix)dAa (x)] 7

P (x,y)u(x)d ,%
" (x gl (x,y)W(X)dM(X)) ‘
provided all occurring integrals in (4.3) exist. If
0<s<l, p<l, ¢<1, and gq#0, (4.4)

then (4.3) is reversed.

Proof. Assume (4.1) or (4.2). By using the integral Minkowski inequality (2.1)
and Holder’s inequality (1.3), we have

Uy Uy £0ey)v(0)dva())? u(x)dia (x)]?
[x (Jy 8(x,y)v ( )dVA(y))? w(x)dAa(x)] @ |
{fy (S SP (x,y)u(x )dllA(x))%v(y)dvA(y)]

[fy (e g7y >dxA<x>>%v<y>dvA<y>T_l

1—s

/((/g (2, y)w(x)dAa (x )) 1q§>llsv(y)dvA(y)
/(/fp” X)dpia(x ) (/g %, y)w(x)dAa (x )) N v(y)dva(y)-

If (4.4) holds, then the reversed inequality in (4.3) can be proved in a similar way. [l
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REMARK 4.2. If X,Y C R", then Theorem 4.1 is a generalization of the well-
known Beckenbach—Dresher inequality which states that for nonnegative real functions
f,gandfor p>12>¢g >0, wehave

M) (fgfpdqo)"lq (ngpd¢>pu .
(fE(f"’_g)qd(P S Jg fide + [z g%dg : (4.5)

Some historical facts about (4.5) and new results which generalize (4.5) are given in
[5, 9]. For a time scale analogue of (4.5), see [1, Theorem 8.2].

5. Beckenbach-Dresher functionals

Let f, g, u, w be fixed functions satisfying the assumptions of Theorem 4.1. We
define the Beckenbach—Dresher functional BD(v) by

Y (i 8706, ) wlx)dAa(x)) T
U Uy fOey)v(0)dva () ulx)dpa ()]

[ (y e y)v()dva(y))? wix)dia(x)] =

where we suppose that all occurring integrals exist.

BD(V):/ ((fop(x7y) ()d”A( ))’_ V(y)dVA(y)

)

THEOREM 5.1. If (4.1) or (4.2) holds, then
BD(vi +v2) = BD(vy) +BD(»3). 5.1

If vy > vy, then
BD(v;) < BD(»y). 5.2)

If C,c 20 and Cvy 2 vy = cvy, then
CBD(v;) = BD(vy) = ¢BD(vy). (5.3)

If (4.4) holds, then (5.1), (5.2) and (5.3) are reversed.

Proof. Assume (4.1) or (4.2). Then we have

BD(vi +v2) —BD(v;) —BD(v2)

_ (fyﬂx,y)m<y>dvA<y>>Pu<x>duA<x>ﬁ
[y Uy g6 y)vi (6)dva()) wix)da ()] 7
e Uy Fr)va(0)ava ()" u(x)dpas ()7

Ly Uy 8(ry)v2(0)dva(y)? w(x)dAs(x)] 7
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U Uy £ 0)AVAG) + fy £ 3)v2 ()dva(4)” () daa ()] 7

[fx (Jy gCe,y)vi(v)dva(y) + Jy g(x,y)va(y)dva(y))? wix)dAa(x)] 7
2 0,

where in the last inequality we used (4.3) from Theorem 4.1. Using Theorem 4.1 again,
vy > v implies

BD(v,) =BD(vi + (v2 —v1)) = BD(v;) + BD(v; —v{) = BD(vy).

The proof of (5.3) is similar. If (4.4) holds, then the reversed inequalities of (5.1), (5.2)
and (5.3) can be proved in a similar way. [J

Let f, g, u, v, w be fixed functions. We define a functional BD; by

BDl(A) _ / (fX fp(x7y)u(x)d[.1A(x))jl v(y)dvA(y)

A (Jx g(x,y)w(x)dAa(x)) T |
_ Ux a fOay)v()dva(v))” u(x)dyA(x)l;T

—1

[x (Jag(e,y)v(y)dva(y))? w(x)dAa(x)] 7

where ACY.
For BD, the following result holds.

THEOREM 5.2. (i) Suppose A1,A» CY and AyNAy, =0. If (4.1) or (4.2)
holds, then

BD;(A;jUA;) > BD; (A1) +BD;(Az),
and if (4.4) holds, then the above inequality is reversed.
(i) Suppose A1,A> CY and Ay C Ay. If (4.1) or (4.2) holds, then
BD;(A;) < BD;(Az),
and if (4.4) holds, then the above inequality is reversed.

The proof of Theorem 5.2 is omitted as it is similar to the proof of Theorem 5.1.

REMARK 5.3. If Sy CY has k elements and if S,, 2 S,,_1 2 ... D52, then (4.1)
or (4.2) implies
BDi(Sym) = BDi(Su—1) = --- 2 BD(S2) >0

and BD(Sy) > max{BD(S,) : S, is any subset of S,, with 2 elements }, while (4.4)
implies the reversed inequalities with max replaced by min.
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