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INEQUALITIES AND FUNCTIONALS ON TIME SCALES

RABIA BIBI, MARTIN BOHNER, JOSIP PEČARIĆ AND SANJA VAROŠANEC

(Communicated by A. Peterson)

Abstract. We obtain integral forms of the Minkowski inequality and Beckenbach–Dresher in-
equality on time scales. Also, we investigate a converse of Minkowski’s inequality and several
functionals arising from the Minkowski inequality and the Beckenbach–Dresher inequality.

1. Introduction and preliminaries

A time scale T is an arbitrary nonempty closed subset of the real numbers. The
theory of time scales was introduced by Stefan Hilger [6] in order to unify the theory
of difference equations and the theory of differential equations. For an introduction
to the theory of dynamic equations on time scales, we refer to [2, 7]. Martin Bohner
and Gusein Sh. Guseinov [3, 4] defined the multiple Riemann and multiple Lebesgue
integration on time scales and compared the Lebesgue Δ-integral with the Riemann
Δ-integral.

Let n ∈ N be fixed. For each i ∈ {1, . . . ,n} , let Ti denote a time scale and

Λn = T1× . . .×Tn = {t = (t1, . . . ,tn) : ti ∈ Ti, 1 � i � n}

an n -dimensional time scale. Let μΔ be the σ -additive Lebesgue Δ-measure on Λn

and F be the family of Δ-measurable subsets of Λn . Let E ∈ F and (E,F ,μΔ)
be a time scale measure space. Then for a Δ-measurable function f : E → R , the
corresponding Δ-integral of f over E will be denoted according to [4, (3.18)] by∫

E
f (t1, . . . ,tn)Δ1t1 . . .Δntn,

∫
E

f (t)Δt,
∫

E
fdμΔ, or

∫
E

f (t)dμΔ(t).

By [4, Section 3], all theorems of the general Lebesgue integration theory, including
the Lebesgue dominated convergence theorem, hold also for Lebesgue Δ-integrals on
Λn . Here we state Fubini’s theorem for integrals on time scales. It is used in the proofs
of our main results.
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THEOREM 1.1. (Fubini’s theorem) Let (X ,M ,μΔ) and (Y,L ,νΔ) be two finite-
dimensional time scale measure spaces. If f : X ×Y → R is a Δ-integrable function
and if we define the functions

ϕ(y) =
∫

X
f (x,y)dμΔ(x) for a.e. y ∈ Y

and
ψ(x) =

∫
Y

f (x,y)dνΔ(y) for a.e. x ∈ X ,

then ϕ is Δ-integrable on Y and ψ is Δ-integrable on X and∫
X

dμΔ(x)
∫
Y

f (x,y)dνΔ(y) =
∫
Y

dνΔ(y)
∫

X
f (x,y)dμΔ(x). (1.1)

Some classical inequalities, including Jensen’s inequality, Hölder’s inequality, Min-
kowski’s inequality and their converses for multiple integration on time scales were
investigated in [1]. These inequalities hold for both Riemann integrals and Lebesgue
integrals on time scales. For completeness, let us recall these inequalities from [1].

THEOREM 1.2. (Jensen’s inequality [1, Theorem 4.2]) Assume Φ ∈ C(I,R) is
convex, where I ⊆ R is an interval. Let (E,F ,μΔ) be a time scale measure space
and suppose f is Δ-integrable on E such that f (E) = I . Moreover, let h : E → R be
nonnegative Δ-integrable such that

∫
E hdμΔ > 0 . Then

Φ
(∫

E f (t)h(t)dμΔ(t)∫
E h(t)dμΔ(t)

)
�
∫
E Φ( f (t))h(t)dμΔ(t)∫

E h(t)dμΔ(t)
. (1.2)

If Φ is concave, then (1.2) is reversed.

THEOREM 1.3. (Hölder’s inequality [1, Theorem 6.2]) For p �= 1 , define q =
p/(p− 1) . Let (E,F ,μΔ) be a time scale measure space. Assume w, f , g are
nonnegative functions such that w f p , wgq , w f g are Δ-integrable on E . If p > 1 ,
then

∫
E

w(t) f (t)g(t)dμΔ(t) �
(∫

E
w(t) f p(t)dμΔ(t)

)1/p(∫
E

w(t)gq(t)dμΔ(t)
)1/q

. (1.3)

If 0 < p < 1 and
∫
E wgqdμΔ > 0 , or if p < 0 and

∫
E w f pdμΔ > 0 , then (1.3) is reversed.

THEOREM 1.4. (Minkowski’s inequality [1, Theorem 7.2]) Let (E,F ,μΔ) be a
time scale measure space. For p ∈ R , assume w, f , g , are nonnegative functions
such that w f p , wgp , w( f +g)p are Δ-integrable on E . If p � 1 , then

(∫
E

w(t)( f (t)+g(t))pdμΔ(t)
) 1

p

�
(∫

E
w(t) f p(t)dμΔ(t)

)1/p

+
(∫

E
w(t)gp(t)dμΔ(t)

)1/p

. (1.4)
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If 0 < p < 1 or p < 0 , then (1.4) is reversed provided each of the two terms on the
right-hand side is positive.

THEOREM 1.5. (Converse of Hölder’s inequality [1, Theorem 11.3]) For p �= 1 ,
define q = p/(p−1) . Let (E,F ,μΔ) be a time scale measure space. Assume w, f , g
are nonnegative functions such that w f p , wgq , w f g are Δ-integrable on E . Suppose

0 < m � f (t)g−q/p(t) � M for all t ∈ E.

If p > 1 , then

∫
E

w(t) f (t)g(t)dμΔ(t) � K(p,m,M)
(∫

E
w(t) f p(t)dμΔ(t)

)1/p

×
(∫

E
w(t)gq(t)dμΔ(t)

)1/q

, (1.5)

where

K(p,m,M) = |p|1/p|q|1/q (M−m)1/p|mMp−Mmp|1/q

|Mp −mp| . (1.6)

If 0 < p < 1 or p < 0 , then (1.5) is reversed provided either
∫
E wgqdμΔ > 0 or∫

E w f pdμΔ > 0 .

2. Minkowski inequalities

Theorem 1.4 also holds if we have a finite number of functions. The next theorem
gives an inequality of Minkowski type for infinitely many functions. In the sequel, we
assume that all occurring integrals are finite.

THEOREM 2.1. (Integral Minkowski inequality) Let (X ,M ,μΔ) and (Y,L ,νΔ)
be time scale measure spaces and let u , v , and f be nonnegative functions on X , Y ,
and X ×Y , respectively. If p � 1 , then

[∫
X

(∫
Y

f (x,y)v(y)dνΔ(y)
)p

u(x)dμΔ(x)
] 1

p

�
∫
Y

(∫
X

f p(x,y)u(x)dμΔ(x)
) 1

p

v(y)dνΔ(y) (2.1)

holds provided all integrals in (2.1) exists. If 0 < p < 1 and∫
X

(∫
Y

f vdνΔ

)p

udμΔ > 0,

∫
Y

f vdνΔ > 0 (2.2)

holds, then (2.1) is reversed. If p < 0 and (2.2) and∫
X

f pudμΔ > 0, (2.3)

hold, then (2.1) is reversed as well.
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Proof. Let p � 1. Put

H(x) =
∫
Y

f (x,y)v(y)dνΔ(y).

Now, by using Fubini’s theorem (Theorem 1.1) and Hölder’s inequality (Theorem 1.3)
on time scales, we have

∫
X

Hp(x)u(x)dμΔ(x) =
∫

X
H(x)Hp−1(x)u(x)dμΔ(x)

=
∫

X

(∫
Y

f (x,y)v(y)dνΔ(y)
)

Hp−1(x)u(x)dμΔ(x)

=
∫
Y

(∫
X

f (x,y)Hp−1(x)u(x)dμΔ(x)
)

v(y)dνΔ(y)

�
∫
Y

(∫
X

f p(x,y)u(x)dμΔ(x)
) 1

p
(∫

X
Hp(x)u(x)dμΔ(x)

) p−1
p

v(y)dνΔ(y)

=
∫
Y

(∫
X

f p(x,y)u(x)dμΔ(x)
) 1

p

v(y)dνΔ(y)
(∫

X
Hp(x)u(x)dμΔ(x)

) p−1
p

and hence

(∫
X

Hp(x)u(x)dμΔ(x)
) 1

p

�
∫
Y

(∫
X

f p(x,y)u(x)dμΔ(x)
) 1

p

v(y)dνΔ(y).

For p < 0 and 0 < p < 1, the corresponding results can be obtained similarly. �

THEOREM 2.2. (Converse of integral Minkowski inequality) Let (X ,M ,μΔ) and
(Y,L ,νΔ) be time scale measure spaces and let u , v , and f be nonnegative functions
on X , Y , and X ×Y , respectively. Suppose

0 < m � f (x,y)∫
Y f (x,y)v(y)dνΔ(y)

� M for all x ∈ X , y ∈Y.

If p � 1 , then

[∫
X

(∫
Y

f (x,y)v(y)dνΔ(y)
)p

u(x)dμΔ(x)
] 1

p

� K(p,m,M)
∫
Y

(∫
X

f p(x,y)u(x)dμΔ(x)
) 1

p

v(y)dνΔ(y) (2.4)

provided all integrals in (2.4) exist, where K(p,m,M) is defined by (1.6). If 0 < p < 1
and (2.2) holds, then (2.4) is reversed. If p < 0 and (2.2) and (2.3) hold, then (2.4) is
reversed as well.
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Proof. Let p � 1. Put

H(x) =
∫
Y

f (x,y)v(y)dνΔ(y).

Then by using Fubini’s theorem (Theorem 1.1) and the converse Hölder inequality
(Theorem 1.5) on time scales, we get

∫
X

Hp(x)u(x)dμΔ(x) =
∫

X

(∫
Y

f (x,y)v(y)dνΔ(y)
)

Hp−1(x)u(x)dμΔ(x)

=
∫
Y

(∫
X

f (x,y)Hp−1(x)u(x)dμΔ(x)
)

v(y)dνΔ(y)

�K(p,m,M)
∫
Y

(∫
X

f p(x,y)u(x)dμΔ(x)
)1/p

×
(∫

X
Hp(x)u(x)dμΔ(x)

) p−1
p

v(y)dνΔ(y).

Dividing both sides by (
∫
X Hp(x)u(x)dμΔ(x))

p−1
p , we obtain (2.4). For 0 < p < 1 and

p < 0, the corresponding results can be obtained similarly. �

Let the functions f , u , v be defined as in Theorem 2.1. Now we define the r th
power mean M[r]( f ,μΔ) of the function f with respect to the measure μΔ by

M[r]( f ,μΔ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(∫
X f r(x,y)u(x)dμΔ(x)∫

X u(x)dμΔ(x)

) 1
r

if r �= 0,

exp

(∫
X log f (x,y)u(x)dμΔ(x)∫

X u(x)dμΔ(x)

)
if r = 0,

(2.5)

where
∫
X udμΔ > 0.

COROLLARY 2.3. Let 0 < s � r . Then

M[r](M[s]( f ,dνΔ),dμΔ) � K
( r

s
,m,M

)
M[s](M[r]( f ,dμΔ),dνΔ).

Proof. By putting p = r/s and replacing f by f s in (2.4), raising to the power of
1
s and dividing by (∫

X
u(x)dμΔ(x)

) 1
r
(∫

Y
v(y)dνΔ(y)

) 1
s

,

we get the above result. �
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3. Minkowski functionals

In this section, we will consider some functionals which arise from the Minkowski
inequality. Similar results (but not for time scales measure spaces) can be found in [8].

Let f and v be fixed functions satisfying the assumptions of Theorem 2.1. Let us
consider the functional M1 defined by

M1(u) =

[∫
Y

(∫
X

f p(x,y)u(x)dμΔ(x)
) 1

p

v(y)dνΔ(y)

]p

−
∫

X

(∫
Y

f (x,y)v(y)dνΔ(y)
)p

u(x)dμΔ(x),

where u is a nonnegative function on X such that all occurring integrals exist. Also, if
we fix the functions f and u , then we can consider the functional

M2(v) =
∫
Y

(∫
X

f p(x,y)u(x)dμΔ(x)
) 1

p

v(y)dνΔ(y)

−
[∫

X

(∫
Y

f (x,y)v(y)dνΔ(y)
)p

u(x)dμΔ(x)
] 1

p

,

where v is a nonnegative function on Y such that all occurring integrals exist.

REMARK 3.1. (i) It is obvious that M1 and M2 are positive homogeneous,
i.e., M1(au) = aM1(u) , and M2(av) = aM2(v) , for any a > 0.

(ii) If p � 1 or p < 0, then M1(u) � 0, and if 0 < p < 1, then M1(u) � 0.

(iii) If p � 1, then M2(v) � 0, and if p < 1 and p �= 0, then M2(v) � 0.

THEOREM 3.2. (i) If p � 1 or p < 0 , then M1 is superadditive. If 0 < p < 1 ,
then M1 is subadditive.

(ii) If p � 1 , then M2 is superadditive. If p < 1 and p �= 0 , then M2 is subadditive.

(iii) Suppose u1 and u2 are nonnegative functions such that u2 � u1 . If p � 1 or
p < 0 , then

0 � M1(u1) � M1(u2), (3.1)

and if 0 < p < 1 , then (3.1) is reversed.

(iv) Suppose v1 and v2 are nonnegative functions such that v2 � v1 . If p � 1 , then

0 � M2(v1) � M2(v2), (3.2)

and if p < 1 and p �= 0 , then (3.2) is reversed.
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Proof. First we show (i). We have

M1(u1 +u2)−M1(u1)−M1(u2)

=

[∫
Y

(∫
X

f p(x,y)(u1 +u2)(x)dμΔ(x)
) 1

p

v(y)dνΔ(y)

]p

−
∫

X

(∫
Y

f (x,y)v(y)dνΔ(y)
)p

(u1 +u2)(x)dμΔ(x)

−
[∫

Y

(∫
X

f p(x,y)u1(x)dμΔ(x)
) 1

p

v(y)dνΔ(y)

]p

+
∫

X

(∫
Y

f (x,y)v(y)dνΔ(y)
)p

u1(x)dμΔ(x)

−
[∫

Y

(∫
X

f p(x,y)u2(x)dμΔ(x)
) 1

p

v(y)dνΔ(y)

]p

+
∫

X

(∫
Y

f (x,y)v(y)dνΔ(y)
)p

u2(x)dμΔ(x)

=

[∫
Y

(∫
X

f p(x,y)(u1 +u2)(x)dμΔ(x)
) 1

p

v(y)dνΔ(y)

]p

−
[∫

Y

(∫
X

f p(x,y)u1(x)dμΔ(x)
) 1

p

v(y)dνΔ(y)

]p

−
[∫

Y

(∫
X

f p(x,y)u2(x)dμΔ(x)
) 1

p

v(y)dνΔ(y)

]p

.

Using the Minkowski inequality (1.4) for integrals (Theorem 1.4) with p replaced by
1/p , we have

M1(u1 +u2)−M1(u1)−M1(u2)
{

� 0 if p � 1 or p < 0,
� 0 if 0 < p � 1.

(3.3)

So, M1 is superadditive for p � 1 or p < 0, and it is subadditive for 0 < p � 1. The
proof of (ii) is similar: After a simple calculation, we have

M2(v1 + v2)−M2(v1)−M2(v2)

=
[∫

X

(∫
Y

f (x,y)v1(y)dνΔ(y)
)p

u(x)dμΔ(x)
] 1

p

+
[∫

X

(∫
Y

f (x,y)v2(y)dνΔ(y)
)p

u(x)dμΔ(x)
] 1

p

−
[∫

X

(∫
Y

f (x,y)(v1 + v2)(y)dνΔ(y)
)p

u(x)dμΔ(x)
] 1

p

.
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Using the Minkowski inequality (2.1) for integrals (Theorem 2.1), we have that this is
nonnegative for p � 1 and nonpositive for p < 1 and p �= 0. Now we show (iii). If
p � 1 or p < 0, then using superadditivity and positivity of M1 , u2 � u1 implies

M1(u2) = M1(u1 +(u2−u1)) � M1(u1)+M1(u2−u1) � M1(u1),

and the proof of (3.1) is established. If 0 < p < 1, then using subadditivity and nega-
tivity of M1 , u2 � u1 implies

M1(u2) � M1(u1)+M1(u2−u1) � M1(u1).

The proof of (iv) is similar. �

REMARK 3.3. From Theorem 3.2, we obtain a refinement of the discrete Min-
kowski inequality given in [8]. Namely, put X ,Y ⊆ N and let u be Δ-measurable on X
and v1 and v2 be Δ-measurable on Y such that u(i) = ui � 0, i ∈ X , v1( j) = n j � 0,
v2( j) = p j � 0, j ∈ Y . Then, for fixed f and u , the function M2 has the form

M2(v1) = ∑
j∈Y

n j

(
∑
i∈X

uia
p
i j

)1/p

−
(

∑
i∈X

ui

(
∑
j∈Y

n jai j

)p)1/p

,

where f (i, j) = ai j � 0. If p � 1, then the mapping M2 is superadditive, and p j � n j

for all j ∈ Y implies

0 � ∑
j∈Y

n j

(
∑
i∈X

uia
p
i j

)1/p

−
(

∑
i∈X

ui

(
∑
j∈Y

n jai j

)p)1/p

� ∑
j∈Y

p j

(
∑
i∈X

uia
p
i j

)1/p

−
(

∑
i∈X

ui

(
∑
j∈Y

p jai j

)p)1/p

provided all occurring sums are finite.

COROLLARY 3.4. (i) Suppose u1 and u2 are nonnegative functions such that
Cu2 � u1 � cu2 , where c,C � 0 . If p � 1 or p < 0 , then

cM1(u2) � M1(u1) � CM1(u2),

and if 0 < p < 1 , then the above inequality is reversed.

(ii) Suppose v1 and v2 are nonnegative functions such that Cv2 � v1 � cv2 , where
c,C � 0 . If p � 1 , then

cM2(v2) � M2(v1) � CM2(v2),

and if p < 1 and p �= 0 , then the above inequality is reversed.
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COROLLARY 3.5. If v1 and v2 are nonnegative functions such that v2 � v1 , then

M[0]
(∫

Y
f (x,y)v1(y)dνΔ(y),μΔ

)
−
∫
Y

M[0]( f ,μΔ)v1(y)dνΔ(y)

� M[0]
(∫

Y
f (x,y)v2(y)dνΔ(y),μΔ

)
−
∫
Y

M[0]( f ,μΔ)v2(y)dνΔ(y), (3.4)

where M[0]( f ,μΔ) is defined in (2.5).

REMARK 3.6. If the measures are discrete, then from Corollary 3.5, we get the
following result: Let u j,vi,wi,ai j > 0 for all i = 1, . . . ,n and all j = 1, . . . ,k . Put
U = ∑k

j=1 u j . If vi � wi for all i = 1, . . . ,n , then

k

∏
j=1

(
n

∑
i=1

viai j

) u j
U

−
n

∑
i=1

vi

(
k

∏
j=1

a
u j
U
i j

)
�

k

∏
j=1

(
n

∑
i=1

wiai j

) u j
U

−
n

∑
i=1

wi

(
k

∏
j=1

a
u j
U
i j

)
.

This inequality is a refinement of the discrete Hölder inequality

k

∏
j=1

(
n

∑
i=1

wiai j

) u j
U

�
n

∑
i=1

wi

(
k

∏
j=1

a
u j
U
i j

)
.

The next result gives another property of M1 , but a similar result can also be stated
for M2 .

THEOREM 3.7. Let ϕ : [0,∞) → [0,∞) be a concave function. Suppose u1 and
u2 are nonnegative functions such that

ϕ ◦ u1, ϕ ◦ u2, ϕ ◦ (αu1 +(1−α)u2)

are Δ-integrable for α ∈ [0,1] . If p � 1 , then

M1(ϕ ◦ (αu1 +(1−α)u2)) � αM1(ϕ ◦ u1)+ (1−α)M1(ϕ ◦ u2),

and if 0 < p < 1 , then the above inequality is reversed.

Proof. We show this only for p � 1 as the other case follows similarly. Since ϕ
is concave, we have

ϕ(αu1 +(1−α)u2)) � αϕ(u1)+ (1−α)ϕ(u2).

Now, from (3.1) and (3.3), we have

M1(ϕ ◦ (αu1 +(1−α)u2)) � M1(α(ϕ ◦ u1)+ (1−α)(ϕ ◦ u2))
� M1(α(ϕ ◦ u1))+M1((1−α)(ϕ ◦ u2))
� αM1(ϕ ◦ u1)+ (1−α)M1(ϕ ◦ u2),
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and the proof is established. �
Let f , u and v be fixed functions satisfying the assumptions of Theorem 2.1. Let

us define functionals M3 and M4 by

M3(A) =

[∫
Y

(∫
A

f p(x,y)u(x)dμΔ(x)
) 1

p

v(y)dνΔ(y)

]p

−
∫

A

(∫
Y

f (x,y)v(y)dνΔ(y)
)p

u(x)dμΔ(x)

and

M4(B) =
∫

B

(∫
X

f p(x,y)u(x)dμΔ(x)
) 1

p

v(y)dνΔ(y)

−
[∫

X

(∫
B

f (x,y)v(y)dνΔ(y)
)p

u(x)dμΔ(x)
] 1

p

,

where A ⊆ X and B ⊆ Y .
The following theorem establishes superadditivity and monotonicity of the map-

pings M3 and M4 .

THEOREM 3.8. (i) Suppose A1,A2 ⊆ X and A1 ∩A2 = /0 . If p � 1 or p < 0 ,
then

M3(A1∪A2) � M3(A1)+M3(A2),

and if 0 < p < 1 , then the above inequality is reversed.

(ii) Suppose A1,A2 ⊆ X and A1 ⊆ A2 . If p � 1 or p < 0 , then

M3(A1) � M3(A2),

and if 0 < p < 1 , then the above inequality is reversed.

(iii) Suppose B1,B2 ⊆ Y and B1∩B2 = /0 . If p � 1 , then

M4(B1∪B2) � M4(B1)+M4(B2),

and if p < 1 and p �= 0 , then the above inequality is reversed.

(iv) Suppose B1,B2 ⊆ Y and B1 ⊆ B2 . If p � 1 , then

M4(B1) � M4(B2),

and if p < 1 and p �= 0 , then the above inequality is reversed.

The proof of Theorem 3.8 is omitted as it is similar to the proof of Theorem 3.2.

REMARK 3.9. For p � 1, if Sm is a subset of Y with m elements and if Sm ⊇
Sm−1 ⊇ . . . ⊇ S2 , then we have

M4(Sm) � M4(Sm−1) � . . . � M4(S2) � 0

and M4(Sm) � max{M4(S2) : S2 is any subset of Sm with 2 elements} .
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4. Beckenbach–Dresher inequalities

THEOREM 4.1. Let (X ,M ,μΔ) , (X ,M ,λΔ) and (Y,L ,νΔ) be time scale mea-
sure spaces. Suppose u and w are nonnegative functions on X , v is a nonnegative
function on Y , f is a nonnegative function on X ×Y with respect to the measure
(μΔ × νΔ) , and g is a nonnegative function on X ×Y with respect to the measure
(λΔ ×νΔ) . If

s � 1, q � 1 � p, and q �= 0 (4.1)

or
s < 0, p � 1 � q, and p �= 0, (4.2)

then

[
∫
X (
∫
Y f (x,y)v(y)dνΔ(y))p u(x)dμΔ(x)]

s
p

[
∫
X (
∫
Y g(x,y)v(y)dνΔ(y))q w(x)dλΔ(x)]

s−1
q

�
∫
Y

(
∫
X f p(x,y)u(x)dμΔ(x))

s
p

(
∫
X gq(x,y)w(x)dλΔ(x))

s−1
q

v(y)dνΔ(y) (4.3)

provided all occurring integrals in (4.3) exist. If

0 < s � 1, p � 1, q � 1, and q �= 0, (4.4)

then (4.3) is reversed.

Proof. Assume (4.1) or (4.2). By using the integral Minkowski inequality (2.1)
and Hölder’s inequality (1.3), we have

[
∫
X (
∫
Y f (x,y)v(y)dνΔ(y))p u(x)dμΔ(x)]

s
p

[
∫
X (
∫
Y g(x,y)v(y)dνΔ(y))q w(x)dλΔ(x)]

s−1
q

�

[∫
Y (
∫
X f p(x,y)u(x)dμΔ(x))

1
p v(y)dνΔ(y)

]s
[∫

Y (
∫
X gq(x,y)w(x)dλΔ(x))

1
q v(y)dνΔ(y)

]s−1

=

⎡
⎣∫

Y

((∫
X

f p(x,y)u(x)dμΔ(x)
) s

p
) 1

s

v(y)dνΔ(y)

⎤
⎦

s

×

⎡
⎢⎣∫

Y

((∫
X

gq(x,y)w(x)dλΔ(x)
) 1−s

q
) 1

1−s

v(y)dνΔ(y)

⎤
⎥⎦

1−s

�
∫
Y

(∫
X

f p(x,y)u(x)dμΔ(x)
) s

p
(∫

X
gq(x,y)w(x)dλΔ(x)

) 1−s
q

v(y)dνΔ(y).

If (4.4) holds, then the reversed inequality in (4.3) can be proved in a similar way. �



310 R. BIBI, M. BOHNER, J. PEČARIĆ AND S. VAROŠANEC

REMARK 4.2. If X ,Y ⊆ R
n , then Theorem 4.1 is a generalization of the well-

known Beckenbach–Dresher inequality which states that for nonnegative real functions
f , g and for p � 1 � q � 0, we have

(∫
E( f +g)pdϕ∫
E( f +g)qdϕ

) 1
p−q

�
(∫

E f pdϕ∫
E f qdϕ

) 1
p−q

+
(∫

E gpdϕ∫
E gqdϕ

) 1
p−q

. (4.5)

Some historical facts about (4.5) and new results which generalize (4.5) are given in
[5, 9]. For a time scale analogue of (4.5), see [1, Theorem 8.2].

5. Beckenbach–Dresher functionals

Let f , g , u , w be fixed functions satisfying the assumptions of Theorem 4.1. We
define the Beckenbach–Dresher functional BD(v) by

BD(v) =
∫
Y

(
∫
X f p(x,y)u(x)dμΔ(x))

s
p

(
∫
X gq(x,y)w(x)dλΔ(x))

s−1
q

v(y)dνΔ(y)

− [
∫
X (
∫
Y f (x,y)v(y)dνΔ(y))p u(x)dμΔ(x)]

s
p

[
∫
X (
∫
Y g(x,y)v(y)dνΔ(y))q w(x)dλΔ(x)]

s−1
q

,

where we suppose that all occurring integrals exist.

THEOREM 5.1. If (4.1) or (4.2) holds, then

BD(v1 + v2) � BD(v1)+BD(v2). (5.1)

If v2 � v1 , then
BD(v1) � BD(v2). (5.2)

If C,c � 0 and Cv2 � v1 � cv2 , then

CBD(v2) � BD(v1) � cBD(v1). (5.3)

If (4.4) holds, then (5.1), (5.2) and (5.3) are reversed.

Proof. Assume (4.1) or (4.2). Then we have

BD(v1 + v2)−BD(v1)−BD(v2)

=
[
∫
X (
∫
Y f (x,y)v1(y)dνΔ(y))p u(x)dμΔ(x)]

s
p

[
∫
X (
∫
Y g(x,y)v1(y)dνΔ(y))q w(x)dλΔ(x)]

s−1
q

+
[
∫
X (
∫
Y f (x,y)v2(y)dνΔ(y))p u(x)dμΔ(x)]

s
p

[
∫
X (
∫
Y g(x,y)v2(y)dνΔ(y))q w(x)dλΔ(x)]

s−1
q
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− [
∫
X (
∫
Y f (x,y)v1(y)dνΔ(y)+

∫
Y f (x,y)v2(y)dνΔ(y))p u(x)dμΔ(x)]

s
p

[
∫
X (
∫
Y g(x,y)v1(y)dνΔ(y)+

∫
Y g(x,y)v2(y)dνΔ(y))q w(x)dλΔ(x)]

s−1
q

� 0,

where in the last inequality we used (4.3) from Theorem 4.1. Using Theorem 4.1 again,
v2 � v1 implies

BD(v2) = BD(v1 +(v2− v1)) � BD(v1)+BD(v2− v1) � BD(v1).

The proof of (5.3) is similar. If (4.4) holds, then the reversed inequalities of (5.1), (5.2)
and (5.3) can be proved in a similar way. �

Let f , g , u , v , w be fixed functions. We define a functional BD1 by

BD1(A) =
∫

A

(
∫
X f p(x,y)u(x)dμΔ(x))

s
p

(
∫
X gq(x,y)w(x)dλΔ(x))

s−1
q

v(y)dνΔ(y)

− [
∫
X (
∫
A f (x,y)v(y)dνΔ(y))p u(x)dμΔ(x)]

s
p

[
∫
X (
∫
A g(x,y)v(y)dνΔ(y))q w(x)dλΔ(x)]

s−1
q

,

where A ⊆ Y .
For BD1 , the following result holds.

THEOREM 5.2. (i) Suppose A1,A2 ⊆ Y and A1 ∩ A2 = /0 . If (4.1) or (4.2)
holds, then

BD1(A1∪A2) � BD1(A1)+BD1(A2),

and if (4.4) holds, then the above inequality is reversed.

(ii) Suppose A1,A2 ⊆ Y and A1 ⊆ A2 . If (4.1) or (4.2) holds, then

BD1(A1) � BD1(A2),

and if (4.4) holds, then the above inequality is reversed.

The proof of Theorem 5.2 is omitted as it is similar to the proof of Theorem 5.1.

REMARK 5.3. If Sk ⊆ Y has k elements and if Sm ⊇ Sm−1 ⊇ . . . ⊇ S2 , then (4.1)
or (4.2) implies

BD1(Sm) � BD1(Sm−1) � · · · � BD1(S2) � 0

and BD1(Sm) � max{BD1(S2) : S2 is any subset of Sm with 2 elements} , while (4.4)
implies the reversed inequalities with max replaced by min.
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[8] B. IVANKOVIĆ, J. PEČARIĆ, AND S. VAROŠANEC, Properties of mappings related to the Minkowski
inequality, Mediterranean J. Math., 8 (4): 543–551, 2011.
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