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n–EXPONENTIAL CONVEXITY FOR JENSEN–TYPE INEQUALITIES

ASIF R. KHAN, JOSIP PEČARIĆ AND MIRNA RODIĆ LIPANOVIĆ

(Communicated by A. Vukelić)

Abstract. Starting from the results given in [14] where the uniform treatment of the Jensen type
inequalities and its converses is given, we investigate the exponential convexity of differences of
the left-hand and the right-hand side of these inequalities. Using these differences, we produce
new exponentially convex functions. Finally, we give several examples of the families of func-
tions for which the obtained results can be applied, and we get some generalized Cauchy means.
Results from this paper present the generalization of the results from [2].

1. Introduction

Starting from the discrete Jensen inequality, A. McD. Mercer gave in [8] and [9]
two mean-value theorems, of the Lagrange and of the Cauchy type. Having in mind the
integral Jensen inequality, the authors in [13] gave similar results in integral form.

The generalization of these results, for the real Stieltjes measure, is given in [14]
using the Green function G defined on [α,β ]× [α,β ] by

G(t,s) =

⎧⎨
⎩

(t−β )(s−α)
β−α for α � s � t,

(s−β )(t−α)
β−α for t � s � β .

(1.1)

The function G is convex and continuous with respect to both s and t .
For any function ϕ : [α,β ] → R , ϕ ∈C2([α,β ]) , it can be easily shown by inte-

grating by parts that the following is valid

ϕ(x) =
β − x
β −α

ϕ(α)+
x−α
β −α

ϕ(β )+
∫ β

α
G(x,s)ϕ ′′(s)ds,

where the function G is defined as above in (1.1) (see also [16]). Using this, several
interesting results concerning the Jensen type inequalities are derived in [14].

First of all, the following theorem gave the conditions on the real Stieltjes measure
dλ (not necessarily positive!), such that λ (a) �= λ (b) , under which for continuous
convex function ϕ the Jensen inequality holds.
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THEOREM 1.1. [14] Let g : [a,b]→R be continuous function and [α,β ] interval
such that the image of g is a subset of [α,β ] . Let λ : [a,b]→ R be continuous function
or the function of bounded variation, such that λ (a) �= λ (b) and

∫ b
a g(x)dλ (x)∫ b

a dλ (x)
∈ [α,β ].

Then the following two statements are equivalent:

(1) For every continuous convex function ϕ : [α,β ] → R

ϕ

(∫ b
a g(x)dλ (x)∫ b

a dλ (x)

)
�
∫ b
a ϕ (g(x))dλ (x)∫ b

a dλ (x)
(1.2)

holds.

(2) For all s ∈ [α,β ]

G

(∫ b
a g(x)dλ (x)∫ b

a dλ (x)
,s

)
�
∫ b
a G(g(x),s)dλ (x)∫ b

a dλ (x)
(1.3)

holds, where the function G : [α,β ]× [α,β ]→ R is defined in (1.1).

Furthermore, the statements (1) and (2) are also equivalent if we change the sign of
inequality in both (1.2) and (1.3). Also note that for every continuous concave function
ϕ : [α,β ] → R the inequality (1.2) is reversed.

and ∫ b
a g(x)dλ (x)∫ b

a dλ (x)
∈ [α,β ].

REMARK 1.1. For the case of positive measure dλ , we get the well known re-
sults. If the function λ is increasing and bounded, with λ (a) �= λ (b) , then inequality
(1.2) becomes Jensen’s integral inequality. On the other hand, if the function g is con-
tinuous and monotonic, and λ is either continuous or of bounded variation, satisfying

λ (a) � λ (x) � λ (b) for all x ∈ [a,b], and λ (a) < λ (b),

then inequality (1.2) becomes the Jensen-Steffensen inequality given by Boas in [3] (see
also [15, p. 59]). Several other theorems when inequality (1.2) or the reverse inequality
in (1.2) holds, can be found in [15].

2. n-exponential convexity for Jensen-type inequalities

Throughout this paper we shall use the notation

g =
∫ b
a g(x)dλ (x)∫ b

a dλ (x)
.
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Motivated by the inequality (1.2), for continuous convex function ϕ : [α,β ] → R

we define the functional Φ1(g,λ ,ϕ) by

Φ1(g,λ ,ϕ) =
∫ b
a ϕ (g(x))dλ (x)∫ b

a dλ (x)
−ϕ (g) (2.1)

where g : [a,b] → R is continuous function, the image of g is a subset of [α,β ] , λ :
[a,b]→R is continuous function or the function of bounded variation, such that λ (a) �=
λ (b) , and g ∈ [α,β ] .

Using this, we define the functional A1(g,λ ,ϕ) by

A1(g,λ ,ϕ)=

{
Φ1(g,λ ,ϕ), if for all s ∈ [α,β ] inequality (1.3) holds,

−Φ1(g,λ ,ϕ), if for all s ∈ [α,β ] the reverse inequality in (1.3) holds.
(2.2)

Now, for our functional A1 we have that whenever it is defined, for every contin-
uous convex function ϕ , A1(g,λ ,ϕ) � 0 holds.

REMARK 2.1. For the functions g and λ with some specific properties we al-
ready know that for all s ∈ [α,β ] inequality (1.3) or the reverse inequality in (1.3)
holds.

If the function g : [a,b] → R is continuous, and the function λ : [a,b] → R is
increasing, bounded and such that λ (a) �= λ (b) , by the integral Jensen inequality, we
have that for all s ∈ [α,β ] inequality (1.3) holds.

If g : [a,b] → R is continuous and monotonic function, λ : [a,b] → R either con-
tinuous function or the function of bounded variation, such that λ (a) � λ (x) � λ (b)
for all x ∈ [a,b] , and λ (b) > λ (a) , by the integral Jensen-Steffensen inequality (see
[15, p. 59]) we have that for all s ∈ [α,β ] the inequality (1.3) holds.

Analogous result is obtained under assumptions on the functions g and λ as given
in the Boas generalization of the Jensen-Steffensen inequality (the Jensen-Boas inequal-
ity, see [3] or [15, p. 59]), the Brunk generalization of the Jensen-Steffensen inequality
(the Jensen-Brunk inequality, see [4] or [15, p. 60]) or the generalization of the Jensen-
Steffensen inequality (see [10] or [15, p. 62]).

On the other hand, if g is continuous function, and λ is the function of bounded
variation, decreasing on the intervals [a,c] and (c,b] , and such that λ (b) > λ (a) , by
the reverse Jensen inequality (see [11] or [15, p. 84]), we have that for all s ∈ [α,β ]
the reverse inequality in (1.3) holds. Analogous result is obtained under assumptions
on the functions g and λ as given in the reverse Jensen-Steffensen inequality (see [11]
or [15, p. 84]), or the reverse Jensen-Brunk inequality (see [11] or [15, p. 85]), or the
reverse Jensen-Boas inequality (see [11] or [15, p. 86]).

Now we can reformulate Theorem 2.3. from [14] in which there are given the
conditions on the real Stieltjes measure dλ , with λ (a) �= λ (b) , so that for the functions
of the class C2 , the Cauchy-type mean value theorem holds.
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THEOREM 2.1. Let g : [a,b] → R be a continuous function such that the image
of g is a subset of [α,β ] , and ϕ ,ψ : [α,β ] → R , ϕ ,ψ ∈C2([α,β ]) . Let λ : [a,b]→ R

be continuous function or the function of bounded variation such that λ (a) �= λ (b) ,
and g ∈ [α,β ] , and let A1 be the functional defined in (2.2). Then there exists some
ξ ∈ [α,β ] such that

A1(g,λ ,ϕ)
A1(g,λ ,ψ)

=
ϕ ′′(ξ )
ψ ′′(ξ )

, (2.3)

provided that the denominator of the left-hand side is nonzero.

REMARK 2.2. If the inverse of the function ϕ ′′/ψ ′′ exists, then (2.3) gives

ξ =
(

ϕ ′′

ψ ′′

)−1(A1(g,λ ,ϕ)
A1(g,λ ,ψ)

)
. (2.4)

Now, let us recall some definitions and facts about exponentially convex functions
(see [7]).

DEFINITION 2.1. A function f : I → R is n -exponentially convex in the Jensen
sense on I if

n

∑
i, j=1

pip j f

(
xi + x j

2

)
� 0

holds for all pi ∈ R and xi ∈ I , i = 1, . . . ,n .
A function f : I → R is n -exponentially convex if it is n -exponentially convex in

the Jensen sense and continuous on I .

REMARK 2.3. We can see from the definition that 1-exponentially convex func-
tions in the Jensen sense are in fact non-negative functions. Also, n -exponentially
convex functions in the Jensen sense are k -exponentially convex in the Jensen sense
for every k ∈ N , k � n .

By definition of the positive semi-definite matrices and some basic linear algebra,
we have the following result.

LEMMA 2.1. If f is an n-exponentially convex function in the Jensen sense, then

the matrix

[
f

(
xi + x j

2

)]k

i, j=1
is positive semi-definite for all k ∈ N,k � n. Particu-

larly, det

[
f

(
xi + x j

2

)]k

i, j=1
� 0 for all k ∈ N , k � n.

DEFINITION 2.2. A function f : I → R is exponentially convex in the Jensen
sense on I , if it is n -exponentially convex in the Jensen sense for all n ∈ N .

A function f : I → R is exponentially convex if it is exponentially convex in the
Jensen sense and continuous.
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REMARK 2.4. Some examples of exponentially convex functions are (see [6]):

(i) f : I → R defined by f (x) = cekx , where c � 0 and k ∈ R .

(ii) f : R
+ → R defined by f (x) = x−k , where k > 0.

(iii) f : R
+ → R

+ defined by f (x) = e−k
√

x , where k > 0.

REMARK 2.5. It is known that a function f : I → R
+ is log-convex in the Jensen

sense on I if and only if the relation

α2 f (x)+2αβ f

(
x+ y

2

)
+ β 2 f (y) � 0

holds for every α,β ∈ R and x,y ∈ I . It follows that a positive function is log-convex
in the Jensen-sense if and only if it is 2-exponentially convex in the Jensen sense. Also,
using basic theory of convex functions, it follows that a positive function is log-convex
if and only if it is 2-exponentially convex.

We will also need the following result (see [15, p. 2]).

LEMMA 2.2. If f : I → R is a convex function and x1,x2,y1,y2 ∈ I are such that
x1 � y1, x2 � y2, x1 �= x2, y1 �= y2 , then the following inequality is valid

f (x2)− f (x1)
x2− x1

� f (y2)− f (y1)
y2− y1

. (2.5)

If the function f is concave, then the reverse inequality in (2.5) holds.

When dealing with functions with different degree of smoothness, divided differ-
ences are found to be very useful.

DEFINITION 2.3. The second order divided difference of a function f : I → R at
mutually different points y0,y1,y2 ∈ I is defined recursively by

[yi] f = f (yi) , i = 0,1,2

[yi,yi+1] f =
f (yi+1)− f (yi)

yi+1− yi
, i = 0,1

[y0,y1,y2] f =
[y1,y2] f − [y0,y1] f

y2− y0
. (2.6)

REMARK 2.6. The value [y0,y1,y2] f is independent of the order of the points
y0,y1 and y2 . This definition may be extended to include the case in which some or all
the points coincide (see [15, p. 16]) . Taking the limit y1 → y0 in (2.6) , we get

lim
y1→y0

[y0,y1,y2] f = [y0,y0,y2] f =
f (y2)− f (y0)− f ′(y0)(y2 − y0)

(y2 − y0)2 , y2 �= y0
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provided that f ′ exists. Furthermore, taking the limits yi → y0, i = 1,2 in (2.6) , we
get

lim
y2→y0

lim
y1→y0

[y0,y1,y2] f = [y0,y0,y0] f =
f ′′(y0)

2

provided that f ′′ exists.
A function f : I → R is convex if and only if for every choice of three mutually

different points y0,y1,y2 ∈ I [y0,y1,y2] f � 0 holds.

Now, we use an idea from [6] to give an elegant method of producing n−expo-
nentially convex functions and exponentially convex functions, applying the functional
A1 on a given family of functions with the same property.

THEOREM 2.2. Let g : [a,b]→R be continuous function such that the image of g
is a subset of [α,β ] . Let Ω = {ϕp : p ∈ I} (where I is an interval in R) be a family of
functions ϕp : [α,β ] → R , ϕp ∈C([α,β ]) , such that the function p �→ [y0,y1,y2]ϕp is
n-exponentially convex in the Jensen sense on I for every three mutually different points
y0,y1,y2 ∈ [α,β ] . Let λ : [a,b]→ R be continuous function or the function of bounded
variation, such that λ (a) �= λ (b) , and g ∈ [α,β ] , and let A1 be the linear functional
defined in (2.2). Then the function p �→ A1(g,λ ,ϕp) is n-exponentially convex in the
Jensen sense on I . If the function p �→ A1(g,λ ,ϕp) is continuous on I , then it is n-
exponentially convex on I .

Proof. For qi ∈ R (i = 1, . . . ,n) we define the function

h(x) =
n

∑
i, j=1

qiq jϕ pi+p j
2

(x),

where pi, p j ∈ I , 1 � i , j � n and ϕ pi+p j
2

∈Ω. For every three mutually different points

y0,y1,y2 ∈ [α,β ] we have

[y0,y1,y2]h =
n

∑
i, j=1

qiq j[y0,y1,y2]ϕ pi+p j
2

� 0,

since p → [y0,y1,y2]ϕp is n -exponentially convex in the Jensen sense by assumption.
It follows that h is convex (and continuous) function on I , so it is

A1 (g,λ ,h) � 0,

hence
n

∑
i, j=1

qiq jA1

(
g,λ ,ϕ pi+p j

2

)
� 0.

We conclude that the function p �→ A1 (g,λ ,ϕp) is n -exponentially convex on I in the
Jensen sense.

If the function p �→A1 (g,λ ,ϕp) is also continuous on I , then it is n -exponentially
convex by definition. �
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COROLLARY 2.1. Let g : [a,b] → R be continuous function such that the image
of g is a subset of [α,β ] . Let Ω = {ϕp : p∈ I} (where I is an interval in R) be a family
of functions ϕp : [α,β ] → R , ϕp ∈C([α,β ]) , such that the function p �→ [y0,y1,y2]ϕp

is exponentially convex in the Jensen sense on I for every three mutually different points
y0,y1,y2 ∈ [α,β ] . Let λ : [a,b]→ R be continuous function or the function of bounded
variation, such that λ (a) �= λ (b) , and g ∈ [α,β ] , and let A1 be the linear functional
defined in (2.2). Then the function p �→ A1(g,λ ,ϕp) is exponentially convex in the
Jensen sense on I . If the function p �→ A1(g,λ ,ϕp) is continuous on I , then it is
exponentially convex on I .

COROLLARY 2.2. Let g : [a,b] → R be continuous function such that the image
of g is a subset of [α,β ] . Let Ω = {ϕp : p∈ I} (where I is an interval in R) be a family
of functions ϕp : [α,β ] → R , ϕp ∈C([α,β ]) , such that the function p �→ [y0,y1,y2]ϕp

is 2 -exponentially convex in the Jensen sense on I for every three mutually different
points y0,y1,y2 ∈ [α,β ] . Let λ : [a,b] → R be continuous function or the function
of bounded variation, such that λ (a) �= λ (b) , and g ∈ [α,β ] . Let A1 be the linear
functional defined in (2.2). Then the following statements hold:

(i) If the function p �→ A1(g,λ ,ϕp) is continuous on I, then it is 2 -exponentially
convex on I . If p �→ A1(g,λ ,ϕp) is additionally strictly positive, then it is also
log-convex on I.

(ii) If the function p �→ A1(g,λ ,ϕp) is strictly positive and differentiable on I, then
for every p,q,u,v ∈ I such that p � u and q � v, we have

μp,q(g,A1,Ω) � μu,v(g,A1,Ω) (2.7)

where

μp,q(g,A1,Ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
A1(g,λ ,ϕp)
A1(g,λ ,ϕq)

) 1
p−q

, p �= q,

exp

(
d
dpA1(g,λ ,ϕp)

A1(g,λ ,ϕp)

)
, p = q

(2.8)

for ϕp,ϕq ∈ Ω .

Proof. (i) This is an immediate consequence of Theorem 2.2 and Remark 2.5.
(ii) Since by (i) the function p �→ A1(g,λ ,ϕp) is log-convex on I , that is, the

function p �→ logA1(g,λ ,ϕp) is convex on I , applying Lemma 2.2 for p � u , q � v ,
p �= q , u �= v , we get

logA1(g,λ ,ϕp)− logA1(g,λ ,ϕq)
p−q

� logA1(g,λ ,ϕu)− logA1(g,λ ,ϕv)
u− v

, (2.9)

and therefore conclude that

μp,q(g,A1,Ω) � μu,v(g,A1,Ω).

The cases p = q and u = v follow from (2.9) as limit cases. �
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REMARK 2.7. Note that the results from Theorem 2.2, Corollary 2.1 and Corol-
lary 2.2 still hold when two of the points y0,y1,y2 ∈ [α,β ] coincide (say y1 = y0 ),
for a family of differentiable functions ϕp such that the function p �→ [y0,y1,y2]ϕp is
n -exponentially convex in the Jensen sense (exponentially convex in the Jensen sense,
log-convex in the Jensen sense). Furthermore, these results still hold when all three
points coincide for a family of twice differentiable functions with the above mentioned
properties. The proofs are obtained by recalling Remark 2.6 and suitable characteriza-
tion of convexity.

3. n-exponential convexity for discrete Jensen-type inequalities

The well known discrete Jensen’s inequality asserts that for convex function ϕ on
interval I ⊆ R

ϕ
(

1
Pn

n

∑
i=1

pixi

)
� 1

Pn

n

∑
i=1

piϕ(xi) (3.1)

holds, where pi are positive real numbers and xi ∈ I ( i = 1, ...,n ), while Pn = ∑n
i=1 pi .

In [14] the generalization of above result is given, allowing that pi can also be
negative, with the sum different from 0, but with a supplementary demand on pi,xi

given using the Green function G : [α,β ]× [α,β ]→ R defined in (1.1).
For pi,xi (i = 1, ...,n) we shall use the common notation: Pk = ∑k

i=1 pi , Pk =
Pn−Pk−1 (k = 1, ...,n ), and x = 1

Pn
∑n

i=1 pixi .
In [14] the following result is derived.

THEOREM 3.1. [14] Let xi ∈ [a,b] ⊆ [α,β ] , pi ∈ R (i = 1, ...,n) , be such that
Pn �= 0 and x ∈ [α,β ] . Then the following two statements are equivalent:

(1) For every continuous convex function ϕ : [α,β ] → R

ϕ(x) � 1
Pn

n

∑
i=1

piϕ(xi) (3.2)

holds.

(2) For all s ∈ [α,β ]

G(x,s) � 1
Pn

n

∑
i=1

piG(xi,s) (3.3)

holds, where the function G : [α,β ]× [α,β ]→ R is defined in (1.1).

Moreover, the statements (1) and (2) are also equivalent if we change the sign of
inequality in both (3.2) and (3.3).

REMARK 3.1. Note that in the case when all pi > 0 (i = 1, ...,n) , inequality (3.2)
becomes discrete Jensen’s inequality (3.1).
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Motivated by the inequality (3.2), for continuous convex function ϕ : [α,β ] → R

we define the functional Φ2(x,p,ϕ) by

Φ2(x,p,ϕ) =
1
Pn

n

∑
i=1

piϕ(xi)−ϕ(x), (3.4)

where x = (x1,x2, ...,xn) , p = (p1, p2, ..., pn) , xi ∈ [a,b]⊆ [α,β ] , pi ∈ R (i = 1, ...,n)
are such that Pn �= 0 and x ∈ [α,β ] .

Using this, we define the functional A2(x,p,ϕ) by

A2(x,p,ϕ)=

{
Φ2(x,p,ϕ), if for all s ∈ [α,β ] inequality (3.3) holds,

−Φ2(x,p,ϕ), if for all s ∈ [α,β ] the reverse inequality in (3.3) holds.
(3.5)

Now, for our functional A2 we have that whenever it is defined, for every contin-
uous convex function ϕ , A2(x,p,ϕ) � 0 holds.

Now we can reformulate the discrete Cauchy mean-value theorem given in [14].

THEOREM 3.2. Let x = (x1,x2, ...,xn) , p = (p1, p2, ..., pn) be such that xi ∈ [a,b]
⊆ [α,β ] , pi ∈ R (i = 1, ...,n), Pn �= 0 and x ∈ [α,β ] . Let ϕ ,ψ : [α,β ] → R , ϕ ,ψ ∈
C2 ([α,β ]) , and let A2 be the functional defined in (3.5). Then there exists some ξ ∈
[α,β ] such that

A2(x,p,ϕ)
A2(x,p,ψ)

=
ϕ ′′(ξ )
ψ ′′(ξ )

(3.6)

provided that the denominator of the left-hand side is nonzero.

REMARK 3.2. If the inverse of the function ϕ ′′/ψ ′′ exists, then (3.6) gives

ξ =
(

ϕ ′′

ψ ′′

)−1(A2(x,p,ϕ)
A2(x,p,ψ)

)
. (3.7)

Let us now consider the n−exponential convexity and exponential convexity. The
proofs are similar to those in the integral case given in the previous section, so we give
these results here without proofs.

THEOREM 3.3. Let x = (x1,x2, ...,xn) , p = (p1, p2, ..., pn) be such that xi ∈ [a,b]
⊆ [α,β ] , pi ∈ R (i = 1, ...,n), Pn �= 0 and x ∈ [α,β ] . Let Ω = {ϕp : p ∈ I} (where
I is an interval in R) be a family of functions ϕp : [α,β ] → R , ϕp ∈C([α,β ]) , such
that the function p �→ [y0,y1,y2]ϕp is n-exponentially convex in the Jensen sense on
I for every three mutually different points y0,y1,y2 ∈ [α,β ] , and let A2 be the linear
functional defined in (3.5). Then p �→ A2(x,p,ϕp) is a n-exponentially convex function
in the Jensen sense on I . If the function p �→ A2(x,p,ϕp) is continuous on I , then it is
n-exponentially convex on I .

COROLLARY 3.1. Let x = (x1,x2, ...,xn) , p = (p1, p2, ..., pn) be such that xi ∈
[a,b] ⊆ [α,β ] , pi ∈ R (i = 1, ...,n), Pn �= 0 and x ∈ [α,β ] . Let Ω = {ϕp : p ∈ I}
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(where I is an interval in R) be a family of functions ϕp : [α,β ] → R , ϕp ∈C([α,β ]) ,
such that the function p �→ [y0,y1,y2]ϕp is exponentially convex in the Jensen sense on
I for every three mutually different points y0,y1,y2 ∈ [α,β ] , and let A2 be the linear
functional defined in (3.5). Then p �→ A2(x,p,ϕp) is an exponentially convex function
in the Jensen sense on I . If the function p �→ A2(x,p,ϕp) is continuous on I , then it is
exponentially convex on I .

COROLLARY 3.2. Let x = (x1,x2, ...,xn) , p = (p1, p2, ..., pn) be such that xi ∈
[a,b] ⊆ [α,β ] , pi ∈ R (i = 1, ...,n), Pn �= 0 and x ∈ [α,β ] . Let Ω = {ϕp : p ∈ I}
(where I is an interval in R) be a family of functions ϕp : [α,β ] → R , ϕp ∈C([α,β ]) ,
such that the function p �→ [y0,y1,y2]ϕp is 2 -exponentially convex in the Jensen sense
on I for every three mutually different points y0,y1,y2 ∈ [α,β ] . Let A2 be the linear
functional defined in (3.5).

Then the following statements hold:

(i) If the function p �→ A2(x,p,ϕp) is continuous on I, then it is 2 -exponentially
convex on I . If p �→ A2(x,p,ϕp) is additionally strictly positive, then it is also
log-convex on I.

(ii) If the function p �→ A2(x,p,ϕp) is strictly positive and differentiable on I, then
for every p,q,u,v ∈ I such that p � u and q � v, we have

μp,q(x,A2,Ω) � μu,v(x,A2,Ω) (3.8)

where

μp,q(x,A2,Ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
A2(x,p,ϕp)
A2(x,p,ϕq)

) 1
p−q

, p �= q,

exp

(
d
dpA2(x,p,ϕp)

A2(x,p,ϕp)

)
, p = q

(3.9)

for ϕp,ϕq ∈ Ω .

REMARK 3.3. Note that the results from Theorem 3.3, Corollary 3.1 and Corol-
lary 3.2 still hold when two of the points y0,y1,y2 ∈ [α,β ] coincide, for a family of
differentiable functions ϕp such that the function p �→ [y0,y1,y2]ϕp is n -exponentially
convex in the Jensen sense (exponentially convex in the Jensen sense, log-convex in the
Jensen sense), and furthermore, these results still hold when all three points coincide
for a family of twice differentiable functions with the above mentioned properties.

REMARK 3.4. For n-tuples x and p with some specific properties, we already
know that for all s ∈ [α,β ] inequality (3.3) or the reverse inequality in (3.3) holds.

In the case when all pi > 0 (i = 1, ...,n) (or that all pi � 0, i = 1, ...,n , and
Pn > 0), by the discrete Jensen inequality we have that for all s ∈ [α,β ] the inequality
(3.3) holds.

If x = (x1, ...,xn) is monotonous n− tuple (i.e. if it holds x1 � x2 � . . . � xn

or x1 � x2 � . . . � xn ) and if 0 � Pk � Pn , for k = 1, ...,n− 1, and Pn > 0, by the
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discrete Jensen-Steffensen inequality (see [15, p. 57]) we also have that for all s∈ [α,β ]
inequality (3.3) holds.

On the other hand, if p = (p1, ..., pn) is such that p1 > 0, p2, ..., pn � 0 and
Pn > 0, then by the reverse Jensen inequality (see [5, p. 45]) we have that for all s ∈
[α,β ] the reverse inequality in (3.3) holds. If x = (x1, ...,xn) is monotonous n− tuple
and p = (p1, ..., pn) such that there exists m ∈ {1, ...,n} so that Pk � 0 for k < m and
Pk � 0 for k > m, and that it is Pn > 0, then by the reverse Jensen-Steffensen inequality
(see [15, p. 83]) we have that for all s ∈ [α,β ] the reverse inequality in (3.3) holds.

REMARK 3.5. Results for the Jensen-Steffensen inequality regarding exponential
convexity, which are a special case of some of the results given here, were given in [1].

4. n-exponential convexity for converse Jensen-type inequalities

The following theorem from [14] gave the conditions on the real Stieltjes measure
dλ (not necessarily positive!), such that λ (a) �= λ (b) , under which for continuous
convex function ϕ the converse of the Jensen inequality holds.

THEOREM 4.1. [14] Let g : [a,b] → R be continuous function and [α,β ] be an
interval such that the image of g is a subset of [α,β ] . Let m,M ∈ [α,β ] (m �= M) be
such that m � g(t) � M for all t ∈ [a,b] . Let λ : [a,b] → R be continuous function or
the function of bounded variation, and λ (a) �= λ (b) . Then the following two statements
are equivalent:

(1) For every continuous convex function ϕ : [α,β ] → R

∫ b
a ϕ (g(x))dλ (x)∫ b

a dλ (x)
� M−g

M−m
ϕ(m)+

g−m
M−m

ϕ(M) (4.1)

holds.

(2) For all s ∈ [α,β ]
∫ b
a G(g(x),s)dλ (x)∫ b

a dλ (x)
� M−g

M−m
G(m,s)+

g−m
M−m

G(M,s) (4.2)

holds, where the function G : [α,β ]× [α,β ]→ R is defined in (1.1).

Furthermore, the statements (1) and (2) are also equivalent if we change the sign of
inequality in both (4.1) and (4.2).

REMARK 4.1. If we set in Theorem 4.1 m = α and M = β , inequality (4.2)
transforms into (see also [14])

∫ b
a G(g(x),s)dλ (x)∫ b

a dλ (x)
� 0.
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Motivated by inequality (4.1), for continuous convex function ϕ : [α,β ] → R we
define the functional Φ3(g,λ ,ϕ) by

Φ3(g,λ ,ϕ) =
M−g
M−m

ϕ(m)+
g−m
M−m

ϕ(M)−
∫ b
a ϕ (g(x))dλ (x)∫ b

a dλ (x)
, (4.3)

where g : [a,b]→R is continuous function, the image of g is a subset of [α,β ] , m,M ∈
[α,β ] (m �= M) such that m � g(t) � M for all t ∈ [a,b] , λ : [a,b] → R is continuous
function or the function of bounded variation such that λ (a) �= λ (b) .

Using this, we define the functional A3(g,λ ,ϕ) by

A3(g,λ ,ϕ)=

{
Φ3(g,λ ,ϕ), if for all s ∈ [α,β ] inequality (4.2) holds,

−Φ3(g,λ ,ϕ), if for all s ∈ [α,β ] the reverse inequality in (4.2) holds.
(4.4)

Now, for our functional A3 we have that whenever it is defined, for every contin-
uous convex function ϕ , A3(g,λ ,ϕ) � 0 holds.

Now we can reformulate the adequate mean-value theorem given in [14].

THEOREM 4.2. Let g : [a,b] → R be continuous function such that the image of
g is a subset of [α,β ] , and ϕ ,ψ : [α,β ] → R , ϕ ,ψ ∈C2 ([α,β ]) . Let m,M ∈ [α,β ]
(m �= M) be such that m � g(t) � M for all t ∈ [a,b] . Let λ : [a,b]→ R be continuous
function or the function of bounded variation, and λ (a) �= λ (b) , and let A3 be the
functional defined in (4.4). Then there exists some ξ ∈ [α,β ] such that the following
holds

A3(g,λ ,ϕ)
A3(g,λ ,ψ)

=
ϕ ′′(ξ )
ψ ′′(ξ )

, (4.5)

provided that the denominator of the left-hand side of (4.5) is nonzero.

REMARK 4.2. If the inverse of the function ϕ ′′/ψ ′′ exists, then (4.5) gives

ξ =
(

ϕ ′′

ψ ′′

)−1(A3(g,λ ,ϕ)
A3(g,λ ,ψ)

)
. (4.6)

We now consider the n−exponential convexity and exponential convexity, and get
the following results.

THEOREM 4.3. Let g : [a,b] → R be continuous function such that the image
of g is a subset of [α,β ] . Let m,M ∈ [α,β ] (m �= M) be such that m � g(t) � M
for all t ∈ [a,b] . Let Ω = {ϕp : p ∈ I} (where I is an interval in R) be a family of
functions ϕp : [α,β ] → R , ϕp ∈C([α,β ]) , such that the function p �→ [y0,y1,y2]ϕp is
n-exponentially convex in the Jensen sense on I for every three mutually different points
y0,y1,y2 ∈ [α,β ] . Let λ : [a,b]→ R be continuous function or the function of bounded
variation, such that λ (a) �= λ (b) , and let A3 be the linear functional defined in (4.4).
Then the function p �→ A3(g,λ ,ϕp) is n-exponentially convex in the Jensen sense on I .
If the function p �→ A3(g,λ ,ϕp) is continuous on I , then it is n-exponentially convex
on I .
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COROLLARY 4.1. Let g : [a,b] → R be continuous function such that the image
of g is a subset of [α,β ] . Let m,M ∈ [α,β ] (m �= M) be such that m � g(t) � M
for all t ∈ [a,b] . Let Ω = {ϕp : p ∈ I} (where I is an interval in R) be a family of
functions ϕp : [α,β ] → R , ϕp ∈C([α,β ]) , such that the function p �→ [y0,y1,y2]ϕp is
exponentially convex in the Jensen sense on I for every three mutually different points
y0,y1,y2 ∈ [α,β ] . Let λ : [a,b]→ R be continuous function or the function of bounded
variation, such that λ (a) �= λ (b) , and let A3 be the linear functional defined in (4.4).
Then the function p �→ A3(g,λ ,ϕp) is exponentially convex in the Jensen sense on I . If
the function p �→ A3(g,λ ,ϕp) is continuous on I , then it is exponentially convex on I .

COROLLARY 4.2. Let g : [a,b] → R be continuous function such that the image
of g is a subset of [α,β ] . Let m,M ∈ [α,β ] (m �= M) be such that m � g(t) � M
for all t ∈ [a,b] . Let Ω = {ϕp : p ∈ I} (where I is an interval in R) be a family of
functions ϕp : [α,β ] → R , ϕp ∈C([α,β ]) , such that the function p �→ [y0,y1,y2]ϕp

is 2 -exponentially convex in the Jensen sense on I for every three mutually different
points y0,y1,y2 ∈ [α,β ] . Let λ : [a,b] → R be continuous function or the function of
bounded variation, such that λ (a) �= λ (b) . Let A3 be the linear functional defined in
(4.4).

Then the following statements hold:

(i) If the function p �→ A3(g,λ ,ϕp) is continuous on I , then it is 2 -exponentially
convex on I . If p �→ A3(g,λ ,ϕp) is additionally strictly positive, then it is also
log-convex on I .

(ii) If the function p �→ A3(g,λ ,ϕp) is strictly positive and differentiable on I , then
for every p,q,u,v ∈ I such that p � u and q � v, we have

μp,q(g,A3,Ω) � μu,v(g,A3,Ω) (4.7)

where

μp,q(g,A3,Ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
A3(g,λ ,ϕp)
A3(g,λ ,ϕq)

) 1
p−q

, p �= q,

exp

(
d
dpA3(g,λ ,ϕp)

A3(g,λ ,ϕp)

)
, p = q

(4.8)

for ϕp,ϕq ∈ Ω.

REMARK 4.3. Note that the results from Theorem 4.3, Corollary 4.1 and Corol-
lary 4.2 still hold when two of the points y0,y1,y2 ∈ [α,β ] coincide, for a family of
differentiable functions ϕp such that the function p �→ [y0,y1,y2]ϕp is n -exponentially
convex in the Jensen sense (exponentially convex in the Jensen sense, log-convex in the
Jensen sense), and furthermore, these results still hold when all three points coincide
for a family of twice differentiable functions with the above mentioned properties.
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5. n-exponential convexity for discrete converse Jensen-type inequalities

The similar results can also be derived for the converse of the Jensen inequality in
discrete case.

We have the following result from [14].

THEOREM 5.1. [14] Let xi ∈ [a,b]⊆ [α,β ] , a �= b, pi ∈ R (i = 1, ...,n) be such
that Pn �= 0 . Then the following two statements are equivalent:

(1) For every continuous convex function ϕ : [α,β ] → R

1
Pn

n

∑
i=1

piϕ(xi) � b− x
b−a

ϕ(a)+
x−a
b−a

ϕ(b) (5.1)

holds.

(2) For all s ∈ [α,β ]

1
Pn

n

∑
i=1

piG(xi,s) � b− x
b−a

G(a,s)+
x−a
b−a

G(b,s) (5.2)

holds, where the function G : [α,β ]× [α,β ]→ R is defined in (1.1).

Moreover, the statements (1) and (2) are also equivalent if we change the sign of
inequality in both (5.1) and (5.2).

REMARK 5.1. If we set that all pi ∈ R (i = 1, ...,n) are positive, then (5.1) be-
comes classical converse of the Jensen inequality (see for example [12, p. 48]).

REMARK 5.2. If we set in Theorem 5.1 that a = α and b = β , inequality (5.2)
transforms into (see also [14])

1
Pn

n

∑
i=1

piG(xi,s) � 0.

Motivated by inequality (5.1), for continuous convex function ϕ : [α,β ] → R we
define the functional Φ4(x,p,ϕ) by

Φ4(x,p,ϕ) =
b− x
b−a

ϕ(a)+
x−a
b−a

ϕ(b)− 1
Pn

n

∑
i=1

piϕ(xi), (5.3)

where x = (x1,x2, ...,xn) , p = (p1, p2, ..., pn) , xi ∈ [a,b] ⊆ [α,β ] (a �= b ) and pi ∈ R

(i = 1, ...,n) are such that Pn �= 0.
Using this, we define the functional A4(x,p,ϕ) by

A4(x,p,ϕ)=

{
Φ4(x,p,ϕ), if for all s ∈ [α,β ] inequality (5.2) holds,

−Φ4(x,p,ϕ), if for all s ∈ [α,β ] the reverse inequality in (5.2) holds.
(5.4)

Now, for our functional A4 we have that whenever it is defined, for every contin-
uous convex function ϕ , A4(x,p,ϕ) � 0 holds.
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REMARK 5.3. For some n-tuples p with some specific properties, we already
know that for all s ∈ [α,β ] hold (5.2) or the reverse inequality in (5.2).

If all pi (i = 1, ...,n) are positive, then by the discrete form of the converse of the
Jensen inequality (see for example [12, p. 48]) we have that for all s ∈ [α,β ] inequality
(5.2) holds.

Now we can reformulate the discrete Cauchy mean-value theorem given in [14].

THEOREM 5.2. Let xi ∈ [a,b] ⊆ [α,β ] , a �= b, pi ∈ R (i = 1, ...,n) be such that
Pn �= 0 , let ϕ ,ψ : [α,β ] → R , ϕ ,ψ ∈C2 ([α,β ]) , and let A4 be the functional defined
in (5.4). Then there exists some ξ ∈ [α,β ] such that the following is valid

A4(x,p,ϕ)
A4(x,p,ψ)

=
ϕ ′′(ξ )
ψ ′′(ξ )

(5.5)

provided that the denominator of the left-hand side is nonzero.

REMARK 5.4. If the inverse of the function ϕ ′′/ψ ′′ exists, then (5.5) gives

ξ =
(

ϕ ′′

ψ ′′

)−1(A4(x,p,ϕ)
A4(x,p,ψ)

)
. (5.6)

Concluding as before, we get our results concerning the n−exponential convexity
and exponential convexity for our functional A4 .

THEOREM 5.3. Let x = (x1,x2, ...,xn) , p = (p1, p2, ..., pn) be such that xi ∈ [a,b]
⊆ [α,β ] (a �= b), pi ∈R (i = 1, ...,n) and Pn �= 0 . Let Ω = {ϕp : p∈ I} (where I is an
interval in R) be a family of functions ϕp : [α,β ] → R , ϕp ∈C([α,β ]) , such that the
function p �→ [y0,y1,y2]ϕp is n-exponentially convex in the Jensen sense on I for every
three mutually different points y0,y1,y2 ∈ [α,β ] , and let A4 be the linear functional
defined in (5.4). Then the function p �→ A4(x,p,ϕp) is n-exponentially convex in the
Jensen sense on I . If the function p �→ A4(x,p,ϕp) is continuous on I , then it is n-
exponentially convex on I .

COROLLARY 5.1. Let x = (x1,x2, ...,xn) , p = (p1, p2, ..., pn) be such that xi ∈
[a,b] ⊆ [α,β ] (a �= b), pi ∈ R (i = 1, ...,n) and Pn �= 0 . Let Ω = {ϕp : p ∈ I} (where
I is an interval in R) be a family of functions ϕp : [α,β ] → R , ϕp ∈C([α,β ]) , such
that the function p �→ [y0,y1,y2]ϕp is exponentially convex in the Jensen sense on I
for every three mutually different points y0,y1,y2 ∈ [α,β ] , and let A4 be the linear
functional defined in (5.4). Then the function p �→ A4(x,p,ϕp) is exponentially convex
in the Jensen sense on I . If the function p �→ A4(x,p,ϕp) is continuous on I , then it is
exponentially convex on I .

COROLLARY 5.2. Let x = (x1,x2, ...,xn) , p = (p1, p2, ..., pn) be such that xi ∈
[a,b] ⊆ [α,β ] (a �= b), pi ∈ R (i = 1, ...,n) and Pn �= 0 . Let Ω = {ϕp : p ∈ I} (where
I is an interval in R) be a family of functions ϕp : [α,β ] → R , ϕp ∈C([α,β ]) , such
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that the function p �→ [y0,y1,y2]ϕp is 2 -exponentially convex in the Jensen sense on
I for every three mutually different points y0,y1,y2 ∈ [α,β ] . Let A4 be the linear
functional defined in (5.4).

Then the following statements hold:

(i) If the function p �→ A4(x,p,ϕp) is continuous on I , then it is 2 -exponentially
convex on I . If p �→ A4(x,p,ϕp) is additionally strictly positive, then it is also
log-convex on I .

(ii) If the function p �→ A4(x,p,ϕp) is strictly positive and differentiable on I , then
for every p,q,u,v ∈ I such that p � u and q � v, we have

μp,q(x,A4,Ω) � μu,v(x,A4,Ω) (5.7)

where

μp,q(x,A4,Ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
A4(x,p,ϕp)
A4(x,p,ϕq)

) 1
p−q

, p �= q,

exp

(
d
dpA4(x,p,ϕp)

A4(x,p,ϕp)

)
, p = q

(5.8)

for ϕp,ϕq ∈ Ω .

REMARK 5.5. Note that the results from Theorem 5.3, Corollary 5.1 and Corol-
lary 5.2 still hold when two of the points y0,y1,y2 ∈ [α,β ] coincide, for a family of
differentiable functions ϕp such that the function p �→ [y0,y1,y2]ϕp is n -exponentially
convex in the Jensen sense (exponentially convex in the Jensen sense, log-convex in the
Jensen sense), and furthermore, these results still hold when all three points coincide
for a family of twice differentiable functions with the above mentioned properties.

6. Examples

In this section we will vary on choice of a family Ω = {ϕp : p ∈ I} in order
to construct different examples of exponentially convex functions and construct some
means.

EXAMPLE 6.1. Let

Ω1 = {ψp : R → [0,∞) : p ∈ R}
be a family of functions defined by

ψp(x) =

⎧⎨
⎩

1
p2 epx, p �= 0;

1
2 x2, p = 0.

Since d2

dx2 ψp(x) = epx > 0 for x∈R , ψp is convex function on R for every p∈R .

From Remark 2.4 it follows that the function p �→ d2

dx2 ψp(x) is exponentially convex,
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and from [6] we then also have that p �→ [y0,y1,y2]ψp is exponentially convex (and so
exponentially convex in the Jensen sense). So, our family Ω1 of functions ψp fulfills
the condition given in Corollary 2.1, Corollary 3.1, Corollary 4.1 and Corollary 5.1, and
we conclude that p �→ Ak(g,λ ,ψp) (for k = 1,3) and p �→ Ak(x,p,ψp) (for k = 2,4)
are exponentially convex in the Jensen sense. It is easy to verify that these mappings
are continuous (although p �→ ψp is not continuous at p = 0), so they are exponentially
convex.

For this family of functions we have the following possible cases for μp,q :

− for k = 1,3 :

μp,q(g,Ak,Ω1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
Ak(g,λ ,ψp)
Ak(g,λ ,ψq)

) 1
p−q

, p �= q;

exp
(

Ak(g,λ ,id·ψp)
Ak(g,λ ,ψp)

− 2
p

)
, p = q �= 0;

exp
(

1
3

Ak(g,λ ,id·ψ0)
Ak(g,λ ,ψ0)

)
, p = q = 0;

− for k = 2,4 :

μp,q(x,Ak,Ω1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
Ak(x,p,ψp)
Ak(x,p,ψq)

) 1
p−q

, p �= q;

exp
(

Ak(x,p,id·ψp)
Ak(x,p,ψp)

− 2
p

)
, p = q �= 0;

exp
(

1
3

Ak(x,p,id·ψ0)
Ak(x,p,ψ0)

)
, p = q = 0.

For μp,q the monotonicity property holds.
If p,q,u,v ∈ R such that p � u, q � v , then by Corollary 2.2, Corollary 3.2,

Corollary 4.2 and Corollary 5.2 we have

μp,q(g,Ak,Ω1) � μu,v(g,Ak,Ω1) , for k = 1,3, (6.1)

μp,q(x,Ak,Ω1) � μu,v(x,Ak,Ω1) , for k = 2,4. (6.2)

If Ak (k = 1,2,3,4) are positive, then using Theorem 2.1, Theorem 3.2, Theo-
rem 4.2 and Theorem 5.2 applied for ϕ = ψp ∈ Ω1 and ψ = ψq ∈ Ω1 , it follows that

Mp,q(g,Ak,Ω1) = logμp,q(g,Ak,Ω1), for k = 1,3,

Mp,q(x,Ak,Ω1) = logμp,q(x,Ak,Ω1), for k = 2,4,

satisfy

α � Mp,q(g,Ak,Ω1) � β , for k = 1,3,

α � Mp,q(x,Ak,Ω1) � β , for k = 2,4.

If we set that the image of the function g is [α,β ] (for k = 1,3), and that α = min
1�i�n

{xi}
and β = max

1�i�n
{xi} (for k = 2,4), then we have
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α = min
t∈[a,b]

{g(t)} � Mp,q(g,Ak,Ω1) � max
t∈[a,b]

{g(t)} = β , for k = 1,3,

α = min
1�i�n

{xi} � Mp,q(x,Ak,Ω1) � max
1�i�n

{xi} = β , for k = 2,4,

which shows that in this case Mp,q(g,Ak,Ω1) are means of g(t) (t ∈ [a,b]) for k = 1,3,
and Mp,q(x,Ak,Ω1) are means of x1, . . . ,xn for k = 2,4. Notice that by (6.1) and (6.2)
these means are monotonic.

EXAMPLE 6.2. Let

Ω2 = {ϕp : R
+ → R : p ∈ R}

be a family of functions defined by

ϕp(x) =

⎧⎨
⎩

xp

p(p−1) , p �= 0,1;
− logx, p = 0;
x logx, p = 1.

(6.3)

Since d2

dx2 ϕp(x) = xp−2 = e(p−2) logx > 0, ϕp is convex function for x > 0. From

Remark 2.4 it follows that p �→ d2

dx2 ϕp(x) is exponentially convex, and from [6] we then
also have that p �→ [y0,y1,y2]ϕp is exponentially convex (and so exponentially convex
in the Jensen sense). So, our family Ω2 of functions ϕp fulfills the condition given in
Corollary 2.1, Corollary 3.1, Corollary 4.1 and Corollary 5.1.

In this example we assume that interval [α,β ] from these corollaries is a subset of
R

+ , and so for our family of functions we have the following possible cases for μp,q :

− for k = 1,3 :

μp,q(g,Ak,Ω2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Ak(g,λ ,ϕp)
Ak(g,λ ,ϕq)

) 1
p−q

, p �= q;

exp
(

1−2p
p(p−1) −

Ak(g,λ ,ϕ0ϕp)
Ak(g,λ ,ϕp)

)
, p = q �= 1,0;

exp
(
1− Ak(g,λ ,ϕ0

2)
2Ak(g,λ ,ϕ0)

)
, p = q = 0;

exp
(
−1− Ak(g,λ ,ϕ0ϕ1)

2Ak(g,λ ,ϕ1)

)
, p = q = 1;

− for k = 2,4 :

μp,q(x,Ak,Ω2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Ak(x,p,ϕp)
Ak(x,p,ϕq)

) 1
p−q

, p �= q;

exp
(

1−2p
p(p−1) −

Ak(x,p,ϕ0ϕp)
Ak(x,p,ϕp)

)
, p = q �= 1,0;

exp
(
1− Ak(x,p,ϕ0

2)
2Ak(x,p,ϕ0)

)
, p = q = 0;

exp
(
−1− Ak(x,p,ϕ0ϕ1)

2Ak(x,p,ϕ1)

)
, p = q = 1;
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where g is positive function, and g,x,xi > 0 (i = 1, ...,n) .
As in the previous example, we conclude that the functions p �→ Ak(g,λ ,ϕp) (for

k = 1,3) and p �→ Ak(x,p,ϕp) (for k = 2,4) are exponentially convex, and for μp,q the
monotonicity property holds.

If p,q,u,v ∈ R such that p � u, q � v , then we have

μp,q(g,Ak,Ω2) � μu,v(g,Ak,Ω2) , for k = 1,3,

μp,q(x,Ak,Ω2) � μu,v(x,Ak,Ω2) , for k = 2,4.

If Ak (k = 1,2,3,4) are positive, then Theorem 2.1, Theorem 3.2, Theorem 4.2
and Theorem 5.2 applied for ϕ = ϕp ∈ Ω2 and ψ = ϕq ∈ Ω2 yield that there exist some

ξk ∈ [α,β ] , for k = 1,2,3,4,

such that

ξ p−q
k =

Ak(g,λ ,ϕp)
Ak(g,λ ,ϕq)

, for k = 1,3,

ξ p−q
k =

Ak(x,p,ϕp)
Ak(x,p,ϕq)

, for k = 2,4.

Since the function ξ �→ ξ p−q is invertible for p �= q , we then have

α �
(

Ak(g,λ ,ϕp)
Ak(g,λ ,ϕq)

) 1
p−q

� β , for k = 1,3, (6.4)

α �
(

Ak(x,p,ϕp)
Ak(x,p,ϕq)

) 1
p−q

� β , for k = 2,4. (6.5)

As in the previous example, if we set that the image of the function g is [α,β ] (for
k = 1,3), and that α = min

1�i�n
{xi} and β = max

1�i�n
{xi} (for k = 2,4), then we have

α = min
t∈[a,b]

{g(t)} �
(

Ak(g,λ ,ϕp)
Ak(g,λ ,ϕq)

) 1
p−q

� max
t∈[a,b]

{g(t)} = β , for k = 1,3, (6.6)

α = min
1�i�n

{xi} �
(

Ak(x,p,ϕp)
Ak(x,p,ϕq)

) 1
p−q

� max
1�i�n

{xi} = β , for k = 2,4, (6.7)

which shows that in this case μp,q(g,Ak,Ω2) (for k = 1,3) and μp,q(x,Ak,Ω2) (for
k = 2,4) are means.

Now, we impose one additional parameter r . For r �= 0 by substituting g → gr ,
xi → xr

i , p → p
r and q → q

r in (6.6) and (6.7), we get

min
t∈[a,b]

{(g(t))r} �
(

Ak(gr,λ ,ϕp)
Ak(gr,λ ,ϕq)

) r
p−q

� max
t∈[a,b]

{(g(t))r} , for k = 1,3, (6.8)
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and

min
1�i�n

{xr
i } �

(
Ak(xr,p,ϕp)
Ak(xr,p,ϕq)

) r
p−q

� max
1�i�n

{xr
i} , for k = 2,4, (6.9)

where xr = (xr
1,x

r
2, ...,x

r
n) .

We define new generalized mean as follows:

− for k = 1,3 :

μp,q;r(g,Ak,Ω2) =

⎧⎨
⎩
(

μ p
r , q

r
(gr,Ak,Ω2)

) 1
r
, r �= 0;

μp,q(logg,Ak,Ω1), r = 0;
(6.10)

− for k = 2,4 :

μp,q;r(x,Ak,Ω2) =

⎧⎨
⎩
(

μ p
r , q

r
(xr,Ak,Ω2)

) 1
r
, r �= 0;

μp,q(logx,Ak,Ω1), r = 0;
(6.11)

where logx = (logx1, logx2, ..., logxn).
These new generalized means are also monotonic. If p,q,u,v∈ R, r �= 0 such that

p � u, q � v , then we have

μp,q;r(g,Ak,Ω2) � μu,v;r(g,Ak,Ω2) , for k = 1,3,

μp,q;r(x,Ak,Ω2) � μu,v;r(x,Ak,Ω2) , for k = 2,4.

The above results follow from the following inequalities:

− for k = 1,3:

μ p
r , q

r
(gr,Ak,Ω2)=

(
Ak(gr,λ ,ϕ p

r
)

Ak(gr,λ ,ϕ q
r
)

) r
p−q

�
(

Ak(gr,λ ,ϕ u
r
)

Ak(gr,λ ,ϕ v
r
)

) r
u−v

= μ u
r , v

r
(gr,Ak,Ω2),

− for k = 2,4:

μ p
r , q

r
(xr,Ak,Ω2)=

(
Ak(xr,p,ϕ p

r
)

Ak(xr,p,ϕ q
r
)

) r
p−q

�
(

Ak(xr,p,ϕ u
r
)

Ak(xr,p,ϕ v
r
)

) r
u−v

= μ u
r , v

r
(xr,Ak,Ω2),

for p,q,u,v ∈ R , r �= 0, such that p
r � u

r ,
q
r � v

r , and the fact that μp,q(g,Ak,Ω2) for
k = 1,3, and μp,q(x,Ak,Ω2) for k = 2,4, are monotonous in both the parameters. For
r = 0, we obtain the required result by taking the limit r → 0.

EXAMPLE 6.3. Let

Ω3 = {θp : R
+ → R

+ : p ∈ R
+}
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be family of functions defined by

θp(x) =
e−x

√
p

p
,

Since d2

dx2 θp(x) = e−x
√

p > 0, θp is convex function for x > 0. From Remark 2.4 we

have that p �→ d2

dx2 θp(x) is exponentially convex, and from [6] we then also have that
p �→ [y0,y1,y2]θp is exponentially convex function. Family Ω3 of functions θp fulfills
the condition given in Corollary 2.1, Corollary 3.1, Corollary 4.1 and Corollary 5.1.
Here in this example we again assume that interval [α,β ] from these corollaries is a
subset of R

+ , and so for our family of functions we have the following possible cases
for μp,q :

− for k = 1,3 :

μp,q(g,Ak,Ω3) =

⎧⎪⎨
⎪⎩
(

Ak(g,λ ,θp)
Ak(g,λ ,θq)

) 1
p−q

, p �= q;

exp
(
− Ak(g,λ ,id·θp)

2
√

p(Ak(g,λ ,θp)
− 1

p

)
, p = q;

− for k = 2,4 :

μp,q(x,Ak,Ω3) =

⎧⎪⎨
⎪⎩
(

Ak(x,p,θp)
Ak(x,p,θq)

) 1
p−q

, p �= q;

exp
(
− Ak(x,p,id·θp)

2
√

pAk(x,p,θp)
− 1

p

)
, p = q;

where g is positive function, and g,x,xi > 0 (i = 1, ...,n) .
As before, we conclude that the functions p �→ Ak(g,λ ,θp) (for k = 1,3) and

p �→ Ak(x,p,θp) (for k = 2,4) are exponentially convex, and for μp,q we get the mono-
tonicity property.

If p,q,u,v ∈ R
+ such that p � u, q � v , then we have

μp,q(g,Ak,Ω3) � μu,v(g,Ak,Ω3) , for k = 1,3,

μp,q(x,Ak,Ω3) � μu,v(x,Ak,Ω3) , for k = 2,4.

EXAMPLE 6.4. Let

Ω4 = {φp : R
+ → R

+ : p ∈ R
+}

be family of functions defined by

φp(x) =

{
p−x

(log p)2 , p �= 1;
x2

2 , p = 1.

Since d2

dx2 φp(x) = p−x > 0, φp is convex function for p > 0. From Remark 2.4 it fol-

lows that p �→ d2

dx2 φp(x) is exponentially convex function, and from [6] we then also
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have that p �→ [y0,y1,y2]φp is exponentially convex. Our family Ω4 of functions φp

fulfills the condition given in Corollary 2.1, Corollary 3.1, Corollary 4.1 and Corol-
lary 5.1. We assume again that interval [α,β ] from these corollaries is a subset of R

+ ,
and so for our family of functions we have the following possible cases for μp,q :

− for k = 1,3 :

μp,q(g,Ak,Ω4) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
Ak(g,λ ,φp)
Ak(g,λ ,φq)

) 1
p−q

, p �= q;

exp
(
− Ak(g,λ ,φp)

pAk(g,λ ,φp)
− 2

p log p

)
, p = q �= 1;

exp
(
− 1

3
Ak(g,λ ,id·φ1)
Ak(g,λ ,φ1)

)
, p = q = 1;

− for k = 2,4 :

μp,q(x,Ak,Ω4) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
Ak(x,p,φp)
A2(x,p,φq)

) 1
p−q

, p �= q;

exp
(
− Ak(x,p,φp)

pAk(x,p,φp)
− 2

p log p

)
, p = q �= 1;

exp
(
− 1

3
Ak(x,p,id·φ1)
Ak(x,p,φ1)

)
, p = q = 1;

where g is positive function, and g,x,xi > 0 (i = 1, ...,n) .
As before, we conclude that the functions p �→ Ak(g,λ ,φp) (for k = 1,3) and

p �→ Ak(x,p,φp) (for k = 2,4) are exponentially convex, and for μp,q we have the
monotonicity property.

If p,q,u,v ∈ R
+ such that p � u, q � v , then we have

μp,q(g,Ak,Ω4) � μu,v(g,Ak,Ω4) , for k = 1,3,

μp,q(x,Ak,Ω4) � μu,v(x,Ak,Ω4) , for k = 2,4.
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Faculty of Textile Technology

University of Zagreb
Prilaz baruna Filipovića 28a
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