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Abstract. Let L be the infinitesimal generator of an analytic semigroup on L?(R") with Gaus-
sian kernel bound, and let L~%/2 be the fractional integral of L for 0 < a < n. Suppose that
b is a locally integral function, then the commutator generated by b and L~%/2 is defined by
[b,L=%/2)(f) =bL~%/2(f)—L %?(bf). When b belongs to weighted Lipschitz function space,
the boundedness of [b,L~%/2] from LP(w,R") to LI(w'~(1-®/"4 R") is established, where
I<p<e,0<fB<land 1/g=1/p—(0e+f)/n with 1/p > (a+B)/n.

1. Introduction

In this paper, we investigate the weighted estimates for the commutator of frac-
tional integral operator L~%/% where L is a linear operator on L?(R") which generates
an analytic semigroup e~ with a kernel p,(x,y) satisfying a Gaussian upper bound,
that is,

e le—y[?

C
‘pt(x7y)| < We Loy (11)

for x,y € R" and all > 0.

As Deng, Duong, Sikora and Yan point out in [1,2], the Gaussian upper bound
condition (1.1) is satisfied by a large class of differential operators. Here we give two
examples:

(1) Let V € L} .(R") be a nonnegative function on R"(n > 3). The Schrédinger
operator with potential V is defined by

L=—-A+V(x) onR"

From the Feynman-Kac formula, it is known that the kernels p;(x,y) of the semigroup
e 'L satisfy the estimate (1.1);
(2) For the n x n order matrix A = (a;;(x))1<i<j<n With complex entries a;; €

L=(R"). Assume that
AEP < ReY aij&i&;
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forall xe R", & = (&,&,---,&,) € C" and for some A > 0. Let L be the divergence
form operator
Lf = —div(AVf),

in the usual weak sense via a sesquilinear form. It turns out that Gaussian bound (1.1)
on the heat kernel ¢~ holds in the case of real entries, or in the case of complex entries
when n=1,2.

For our purpose, it is convenient to introduce some notation. For 0 < or < n, the
fractional power L~%/2 of the operator L is defined by

1 dt

L0 = o7y ) N0 (12)

Note that if L = —A is the Laplacian on R”, then L~%2 is the Riesz potential I, that
is

dy.

a3 155 )
Io(f)(x) =2"%n (%) /]R" x—y|r @

Let b be a locally integrable function on R”, the commutator of b and L~%/2 is defined
by
[b,L=](£)(x) = bR)L™(f)(x) — L~ (bf) (x).

The area of fractional integral operators has been under intensive research recently.
When b € BUO(R"), Chanillo [3] proved that the commutator [b, 1] is bounded from
LP(R") to L4(R") for 0< ¢ <n, 1 < p<n/o and 1/q=1/p— o /n. Paluszyniski
[4] showed that b € Lipg(R") (homogeneous Lipschitz space) if and only if [b, 1] is
bounded from LP(R") to LY(R") where 0 < f3 <1, 1 < p <n/(aa+f) and 1/q =
1/p—(ac+B)/n. When b belongs to weighted Lipschitz spaces Lipg(®,R"), Hu
and Gu [5] proved that [b, ] is bounded from L?(w,R") to L(w'~(!1=/"4 R™) for
1/g=1/p—(a+p)/n with 1 < p < (a+ ) /n.

Duong and Yan [1] extended the result in [3] from the Laplacian —A to the more
general operator L~%/2 defined by (1.2). They proved that for all 0 < oo < n and
b € BMO(R"), both the operator L~%/2 and the commutator [b,L~%/?] are bounded
from LP(R") to LY(R") with 1 <p<n/a, 1/g=1/p— o/n. Mo and Lu [6] obtained
some boundedness properties of multiplier commutators of L~%/2 for 0 < o < 1 when
b belongs to BMO(RR") or the homogenous Lipschitz space. Auscher and Martell [7]
were concerned with the weighted estimate of L~%/? and its commutator. They showed
that if ® € A, ,(R") and b € BMO(R"), then both the operator L% and the com-
mutator [b,L=%/?] are bounded from L (w”,R") to L9(w?,R") for 0 < o < n and for
l<p<n/a,l/q=1/p—o/n.

The purpose of this paper is to establish the weighted norm estimate of [b,L‘O‘/ 2]
when b belongs to weighted Lipschitz space. Our result is the following:

THEOREM 1.1. Assume that condition (1.1) holds and let b € Lipg(w,R") with
0<B <1, ®€A4(R"). Then for 0 < o < n, the commutator [b,L~%/?| satisfies

|ib,7)(r)

L9(@!-(1-o/mq Rn) S C“b“Lil’ﬁ(‘*’vkn) 1A 1lzr o o)
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for1/qg=1/p—(a+B)/nand 1 < p<n/(o+f).

The paper is organized as follows. In Section 2, we will introduce some notation
and definitions, and recall some preliminary results and give the proofs of some lemmas.
In Section 3, we will concentrate on the proof of the theorem.

2. Some preliminaries and notation
A non-negative function @ defined on R" is called weight if it is locally inte-

grable. A weight o is said to belong to the Muckenhoupt class A,(R") for 1 < p < oo,
if there exists a constant C such that

ﬁ/}}w(@dx(%/lgw(x)ﬂlldx)pl <C (2.1)

for every ball B C R". The class A;(R") is defined by replacing the above inequality
with

XeB

L / o(y)dy < Cinf o(x) (2.2)
B /5
for every ball B C R".
The classical A,(R") weight theory was first introduced by Muckenhoupt in the
study of weighted L” —boundedness of Hardy-Littlewood maximal function in [8]. We
also need another weight class A, 4(R") introduced by Muckenhoupt and Wheeden in

[9]. Given 1 < p < g <eoo. Let s be the dual of s such that 1/s+1/s' = 1. We say
that @ € A, 4(R") if there exists a constant C such that for every ball B C R", the

inequality
1 RN AV 1/q
(51 oo 7ar) " (G forar) " <c. 23
holds when 1 < p < eo, and the inequality
1 1/q
(51 fjo0rar)  <cino (2.4)

holds when p = 1.
From the Holder inequality and (2.4), we have

A1q(R") CAL(R"). (2.5)

LEMMA 2.1. ([7]) LetO<a<n, 1/g=1/p—a/n and o € A, 4(R"). Then
L=%/" is bounded from LP(w?,R") to L(09,R").

LEMMA 2.2. Lett =50 > | and @ € A{(R"). Then v = 0~ '*1/%0 € Ay ,(R").
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Proof. Since

1 W 1/s(, 1 1/s(, ) 1/s(,
(E/Bv(x) 0dx> - (E/Bw(x)dx> gC(;ggw(x)) ,

and from the fact that (w(x)) ™! < (infiep @(x)) ! fora.e. x € B C R" we have

1 . 1/t 1 (1so—1)t 1/t —1+1/s9
_ Y 50— ;
(B /B v(x) dx> (B /B o(x) dx> < (;ggw(x)) .

Then
1 , 1/sg 1 ) 1/t
— = — <C.
(B /Bv(x) odx) (B /Bv(x) dx) <C

This means v = 0~ T1/%0 c A (R"). O

Let us recall the definition of weighted Lipschitz function space. Following [10],
we say that a locally integrable function b belongs to the weighted Lipschitz function
space Lipg ,(@,R") for 1 < p <o and @ € Awe(R") = Uj<,<0A,(R"), if

1/p
p I=p < oo
up T ﬁ/n[ 5 /\ ~bplPor(x) dx] <C <o, (2.6)
where bp = |B|™! [;b(y)dy, ®(B) = [y (y)dy and the supremum is taken over all
balls B C R".

The Banach space of such functions modulo constants is denoted by Lipg ,(@,R").
The smallest bound C satisfying conditions above is then taken to be the norm of b de-
noted by ||b||Llp J(@R): Put Lipg(w,R") = Lipg (@, R"). Obviously, for the case
o =1, the szﬁ (a) R") space is the classical Lipg(R") space. Let o € Aj(R").
Garc [ a-Cuerva in [11] proved that the spaces Lipg ,(®,R") coincide, and the norms
15| Lipy (@) A€ equivalent with respect to different values of p provided that 1 <

pr

p < oo. Since we always discuss under the assumption ® € A;(R") in the following,
then we denote the norm of Lipg ,(®,R") by ||- HL,-pﬁ(an) for 1 < p <eo. Itis obvious
that Lipo ,(@,R") = BUO(®w,R") for 1 < p <eo,m € Aj(R").

Associated with analytic semigroup {e~'f : ¢ > 0}, Martell [12] introduced the
Sharp maximal function as follows:

M) = sup e [ 170) =)y

B>x

where 3 = r3 and rp is the radius of the ball B. Moreover, by means of the generalized
good-A inequality, Martell [12] also gave an analogue of the classical Fefferman-Stein
inequality for the Sharp maximal function Mg, that is

LEMMA 2.3. Let 0 < p < oo, ® € Ug=1A4(R") and let Ly(R") be the set of
functions in LP(R") with compact support. For every f € L}(®,R") with M(f) €
L’ (w,R"), we have

£l (o) < CIM) o (orn) < CIME ()l (@mm)-
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LEMMA 2.4. ([2]) Assume that the semigroup e~ has a kernel p;(x,y) which
satisfies the upper bound (1.1). Then for 0 < o < n, the difference operator (I —
e YL=%/2 has an associated kernel Ko, (x,y) which satisfies

C t

Koi(x,))| € ————.
Koo S Ty pma ooy

LEMMA 2.5. Assume that the semigroup e ' has a kernel p,(x,y) satisfying
(1.1). Let 0 <o <n, l/g=1/s—B/n, 1/s=1/p—a/n, be Lipg(w,R") (0<
B <1)and o € A 4(R"). Then for every f € LP(®,R") with p > 1 and s > 1 we
have

a1 Ll b= b L () )y
—$ n? —
< Clbly 20y @0/ My (L)) )

fora.e. x € BC R, where |t = ®"t%/" and

XEB

1/s
M1 =s0p (i [0 ROIY)

Proof. Since w € Ay 4(R") C A{(R"), then by (2.2), we have

706/2 d / ’ 705/2 ‘ f d
|ZB|/‘ Y= 28] 1nfa) 28 FO)| jnf oby)dy

\m /2 N ’L’“/ °f (y) w(y)dy~ (2.7)

From 1/s+a/n=1/p <1+ Bq/n=q/s,onehas 1+ as/n < q. Hence, by the
Holder inequality and @ € A; 4(IR") we can deduce

1 Lvas/ 1/(1+os/n)
(ﬁ/sz(Z) s ndZ)
1 Ve ¢
<[ — q < = )
< (23 /23w(z) dz) < ] foy @)

Then

1+os/n
w(x dx
|2B| /23“ ‘ZB‘ 2B ()

1 I+oas/n C as/n
SO oo d < == dx ( inf .
<|ZB| 2Ba)(x) x) 12B| 2Ba)(x) X<xl€n23(x)(x))

This means that
1 C C
<

(Xienzgw(x))as/na)(ZB) h 28] (ﬁfzgw(X)d)OHaS/n S u(2B)’
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Therefore,

(%/ﬁ‘ra/zf(y))sdyf <C(ﬁ/ﬂg‘L_a/zf(z)‘xﬂ(Z)dZ>l/s' (2.8)

Fix x € B for some ball B. Let By = 2KB. Then

ﬁ / )e-fBL«b—bB))L—a/zf(y))dy

\B\ / / Prs (3:2) —bp)L” sz(z)‘dzdy
\B\ // Puy (9:2)(b(2) —bp)L™ a/zf(z)’dzdy
=17 /B /Bm\Bk Piy(3:2) (b(2) ~ br)L 1 (2) ‘ dzdy

=M+N.

By (1.1), it holds that
Py (,2)| < CJ2B] ™

forany y € B and z € 2B.
Then by means of the Holder inequality, (2.6) and (2.8), we have

\23\/ ‘ ~be)L (e )’dz

+‘2C—B‘/23\b(z) —b23|dz<%/ 'L“/2f(z)|sdz>l/s

<CbLipﬁ(w,R")(w(2B; 1+ﬁ/n< i /23’ a2l wad >1/5.
From (2.2) we get
w(2B)P/" = (inf co(x)) o (/ o(x) (inf w(x>>0‘5/" dx)ﬁ/n
xX€2B 2B xX€2B
_ )
s C<%> P (2.9)

Since 1/g=1/s—B/n> 0, we have 1 — af3s/n’> > 0. Then

1—afs/n? )
(w%B)) < Cla(x)) B/ (2.10)
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fora.e. x € 2B. Thus
—5 n? —
M < C(o(x)) P/ 181 2ip (0m) M s (L A2f)(x).

Moreover, for any z € B and y € By \ By, we have |z —y| > 28!

r, and
e—cZZ(k’l)zn(k-&-l)

Piy(12)| <C
1Py (22) |Bs1]

from (1.1). Since |bg —bp,| < Ck% o(By)B/", similarly the estimate of M we have

o 67022”"71)2"(](‘“) P
N<C —/ |b(z) = bpy, |IL™*7 f(2)ldz
/Z'l |Bi+1] Br o
oo e—cZZ(k’l)zn(k-&-l)
HOY b bu | [ LA
kg'l Bt 1] o Bt

—5 n? —
< ClIBll iy ey 006) B M (L7 ) (). T

3. Proof of the main result
Let 1/g=1/s—B/n, 1/s=1/p—a/n and u = @'T%/" = ©*/P. Choose two

real numbers s; and sg such that s; > 5o > 1. We will prove that there exists a constant
C such that for all x € R" and for all B 3 x, it holds that

L —a/2 _ gL —a/2
B LRI = (.17 1) )y
< ClIbll iy ey (@) =7 My (L2 ) ()

00 (M 103y (1)) + Mo, (£)(6) ). (3.1)

Since @ € A1 4(R") and s/p = 1+ as/n < g, then u = ©*/? € A;(R") and 0'/? €
Asq(R") (see [9]). From (3.1), Theorem 1.1 will be proved by Lemma 2.1, Lemma 2.2,
Lemma 2.3 and the continuity of the maximal function Mg ,, ,f, that is to say

| [baL_a/z]f"Lq(wl—(l—a/n)q,w)
< CIMEB, L™ g0t )
< ClblLipg (o (1M s L™ F) 10
1Mot 050 s 0 20) + Mo .05, (D)0 30 )

< ClBlLipgomn) (1Ll s st ) + I lep(eo )

< ClIb | zipy (.- f 1|22 (0,R)-
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Now let us prove (3.1). For an arbitrary fixed x € R", choose a ball B which
contains x. Let fi = fy2p and fo = f — f1. We write

b, L% f = (b—bg)L™** f =L~ (b—bp) fi — L~ **(b— bp) 2,

and
e (b, L7 f) = e (b — bp) L2 f) — e H (L2 (b~ bp) fi)
— e BHLT 2 (b —bp) f3).
Then
1
181 J, 0272150 = e (o, L7211 )y
—oc/2 —oc/2
‘B‘/‘ (b—bg)L ‘dy+|B| ‘L (b—bg)f1)(y)|d
+ o7 fo e @ =ba ) ) ay
sy
i )(v“ﬂ — L) (b~ by) ) ()| d
= [I+1I+1I+1V+V.
By the Holder inequality, (2.6), (2.8) and (2.10),we have
1< o |0 =bar ()| ay
1/s 1 1/s
1-5 - —o/2
e f[por-at 00! ar) (s [ om0 eviay)
1/s
(@(B))*B/n 1 a2 gy f
X b i w,R" - d
<Pl | gty ata Ll ntay

—S n? -
< CIbllLipg o7 (@) P My (L4 ) ().

Let 1/t =1/so—o/n and v = @~ '*'/%_ Then from (2.2) we have

1 — L 1 1—at'/n 1
E/B\/(y) dy| < E/Bw(y) dy

—a/n 1/t 1/t —a/n
< < i . .
<C (;gtf;co ) (B /w dy> \Cng(x)) (2.11)
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Suppose s, = s150/(s1 —s0). We have

1/s0

( (b0) — bas) )P a(y) dy
2B

1/32 l/.\'l
([ pr-mpetr) ([roraoa)
2B

1/s51
< CHbHLipﬁ(w.,R”)w(ZB)l/SO_a/n (m/ﬁ f(y)|51w(Y)dy)

< Cl ] Lipg 050 @(2B) M5, (1) ). (2.12)
Notice that

1/so
o= baal ([ 17000y )

-1 14+B/n
. 60(23) 1/so— n
< CHbHLipﬁ(w’Rn) (xlenz%a)(x)> 7‘2& ®(2B) /so—(a+B)/ Mo pos(f)(x)
< CHbHLipﬁ(w,R”)w(ZB)l/tMaJrﬁ,w,so (f)(x). (2.13)

Then by Lemma 2.1 and (2.11)—(2.13), we obtain

- ulgj /B ’Lﬂm((b - bB)f?QB)(y)‘ v(y)v(y) 'dy

s <B| / )L—a/z ((b—ba) f228)(¥) tv(y)tdy>1/t (ﬁ/BV(y)‘f'd})l/t,
<C (inf co(x)> 1/1'—ou/n \Blfl/t (/23 [(b(y) — bp) f ()| w(y)ISody) 1/s0

xeB

' 1/t —a/n " . - 1/s0
gC(;gw(@) Bl {</ [(b(y) = bap) f(¥)| ©(y) 'Od}’>
1/s0
+ |bg — bag| (/23 f(y)l““w(y)l““dy) }

) 1/t'—o/n »(2B) 1/t
b (50) ™ (50)

(Moo 1100+ Mg 000}

< C”b”Lipﬁ(a),R") w(x) 1=afn {Ma+/3,w,so (f) (x) + Moc+[3,a),s (f) (x) } .
Similar to the estimate of Lemma 2.6, we have

—§ }12 -
1T+ 1V <Clbl| iy 050 (©(0) /7 My (L792(1)) ()

00 ™ (Mot .50 (1)) + Mo o, (1)) )-
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Let us see what happens with the term V. Using Lemma 2.4, we have

1
V< /B /(23)6 Koy (3,2)| | (6(2) — bp) f ()| dzdly

1 e
<cC / |(b(2) — bs) £(2)\dz
kgl Bt \Bi [X0 — 2]~ |xo — 2]
> 1
<cyYoh—— |(b(z) — bp) f(2)|dz
,Z‘l |Bi1 | =%/ e,

& 1
+C Y 27 bg, —bgi/ f(2)|dz.
&bl gy, V)

Similar to the estimate of II, we get

V< Cw(x)l_a/n”b”Lipﬁ(w,R")MaJrﬁ,w,so (x).

Combining the above estimates I, IT, III, IV and V, we obtain (3.1). Then the proof

of the Theorem 1.1 is completed.
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