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SHARP TWO PARAMETER BOUNDS FOR THE LOGARITHMIC

MEAN AND THE ARITHMETIC–GEOMETRIC MEAN OF GAUSS

YU-MING CHU, MIAO-KUN WANG, YE-FANG QIU AND XIAO-YAN MA

Abstract. For fixed s � 1 and t1,t2 ∈ (0,1/2) we prove that the inequalities Gs(t1a + (1−
t1)b,t1b+(1− t1)a)A1−s(a,b) > AG(a,b) and Gs(t2a+(1− t2)b,t2b+(1− t2)a)A1−s(a,b) >
L(a,b) hold for all a,b > 0 with a �= b if and only if t1 � 1/2−√

2s/(4s) and t2 � 1/2−√
6s/(6s) . Here G(a,b) , L(a,b) , A(a,b) and AG(a,b) are the geometric, logarithmic, arith-

metic and arithmetic-geometric means of a and b , respectively.
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