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Abstract. For fixed s � 1 and t1,t2 ∈ (0,1/2) we prove that the inequalities Gs(t1a + (1−
t1)b,t1b+(1− t1)a)A1−s(a,b) > AG(a,b) and Gs(t2a+(1− t2)b,t2b+(1− t2)a)A1−s(a,b) >
L(a,b) hold for all a,b > 0 with a �= b if and only if t1 � 1/2−√

2s/(4s) and t2 � 1/2−√
6s/(6s) . Here G(a,b) , L(a,b) , A(a,b) and AG(a,b) are the geometric, logarithmic, arith-

metic and arithmetic-geometric means of a and b , respectively.

1. Introduction

For a,b > 0 the classical arithmetic-geometric mean AG(a,b) of Gauss is defined
as the common limit of sequences {an} and {bn} , which are given by

a0 = a, b0 = b,
an+1 = (an +bn)/2 = A(an,bn), bn+1 =

√
anbn = G(an,bn).

(1.1)

Let H(a,b) = 2ab/(a+b) , G(a,b) =
√

ab , L(a,b) = (b−a)/(loga− logb) and
A(a,b) = (a+ b)/2 be the classical harmonic, geometric, logarithmic and arithmetic
means of two distinct positive real numbers a and b , respectively. Then it is well
known that the inequalities H(a,b) < G(a,b) < L(a,b) < A(a,b) hold for all a,b > 0
with a �= b .

Recently, the harmonic, geometric, logarithmic, arithmetic-geometric and arith-
metic means have been the subject of intensive research. In particular, many remarkable
inequalities for these means can be found in the literature [5, 6, 10–14, 16–18].

Carlson and Vuorinen [7], and Brackenn [3] proved that

L(a,b) < AG(a,b) (1.2)

for all a,b > 0 with a �= b . Vamanamurthy and Vuorinen [19] established that

AG(a,b) <
π
2

L(a,b)
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for all a,b > 0 with a �= b .
The following inequalities were proved by Sándor in [17, 18].

√
A(a,b)G(a,b) < AG(a,b) <

(√
A(a,b)+

√
G(a,b)

2

)2

(1.3)

for a,b > 0 with a �= b .
In order to refine inequality (1.2), Neuman and Sándor [15] proved that

L(a,b) < L(an,bn) < AG(a,b), n � 1

for a,b > 0 with a �= b , where {an} and {bn} are defined as in (1.1).
For t1, t2, t3, t4 ∈ (0,1/2) , very recently Chu et al. [8, 9] proved that the inequalities

G(t1a+(1− t1)b,t1b+(1− t1)a) > AG(a,b), (1.4)

H(t2a+(1− t2)b,t2b+(1− t2)a) > AG(a,b), (1.5)

G(t3a+(1− t3)b,t3b+(1− t3)a) > L(a,b) (1.6)

and
H(t4a+(1− t4)b,t4b+(1− t4)a) > L(a,b) (1.7)

hold for all a,b > 0 with a �= b if and only if t1 � 1/2−√
2/4, t2 � 1/4, t3 � 1/2−√

6/6 and t4 � 1/2−√
3/6.

Let t ∈ (0,1/2) , s � 1 and

Qt,s(a,b) = Gs(ta+(1− t)b,tb+(1− t)a)A1−s(a,b). (1.8)

Then it is not difficult to verify that

Qt,1(a,b) = G(ta+(1− t)b,tb+(1− t)a),

Qt,2(a,b) = H(ta+(1− t)b,tb+(1− t)a)

and Qt,s(a,b) is strictly increasing with respect to t ∈ (0,1/2) for fixed a,b > 0 with
a �= b .

It is natural to ask what are the least values t1 = t1(s) and t2 = t2(s) in (0,1/2)
such that inequalities Qt1,s(a,b) > AG(a,b) and Qt2,s(a,b) > L(a,b) hold for all a,b >
0 with a �= b and any s � 1. The aim of this paper is to answer these questions, our
main results are the following Theorems 1.1 and 1.2.

THEOREM 1.1. If t ∈ (0,1/2) and s � 1 , then the inequality

Qt,s(a,b) > AG(a,b)

holds for all a,b > 0 with a �= b if and only if t � t1(s) = 1/2−√
2s/(4s) .
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THEOREM 1.2. If t ∈ (0,1/2) and s � 1 , then the inequality

Qt,s(a,b) > L(a,b)

holds for all a,b > 0 with a �= b if and only if t � t2(s) = 1/2−√
6s/(6s) .

REMARK 1.1. We clearly see that the inequalities (1.4)–(1.7) are the special cases
of Theorems 1.1 and 1.2 with s = 1,2.

REMARK 1.2. Since t1(s) = 1/2−√
2s/(4s) > t2(s) = 1/2−√

6s/(6s) for all
s � 1, we clearly see that the results contained in the Theorems 1.1 and 1.2 are not
compared to each other. In particular, if t � t1(s) , then Qt,s(a,b) > AG(a,b) > L(a,b) ,
so the inequality of Theorem 1.1 implies the one from Theorem 1.2.

2. Preliminaries

In order to prove Theorems 1.1 and 1.2 we need some basic knowledge of hyper-
geometric function and two lemmas, which we present in this section.

For real numbers a,b and c with c �= 0,−1,−2, · · · , the Gaussian hypergeometric
function is defined by

F(a,b;c;x) = 2F1(a,b;c;x) =
∞

∑
n=0

(a,n)(b,n)
(c,n)

xn

n!
, |x| < 1. (2.1)

Here (a,0) = 1 for a �= 0, and (a,n) = a(a + 1)(a + 2)(a + 3) · · ·(a + n− 1) is the
shifted factorial function for n = 1,2, · · · . In connection with the Gaussian hypergeo-
metric function, the well-known complete elliptic integrals K (r) and E (r)(0 < r < 1)
of the first and second kinds [2, 4] are defined by{

K (r) = πF(1/2,1/2;1;r2)/2 =
∫ π/2
0 (1− r2 sin2 θ )−1/2dθ ,

K (0) = π/2, K (1) = ∞
(2.2)

and {
E (r) = πF(−1/2,1/2;1;r2)/2 =

∫ π/2
0 (1− r2 sin2 θ )1/2dθ ,

E (0) = π/2, E (1) = 1,
(2.3)

respectively. The following formulas for K (r) were presented in [1]:

dK (r)
dr

=
E (r)− (1− r2)K (r)

r(1− r2)
, (2.4)

K

(
2
√

r
1+ r

)
= (1+ r)K (r). (2.5)

The Gaussian identity [1] shows that

AG(1,r)K (
√

1− r2) =
π
2

(2.6)

for all r ∈ (0,1) .



352 YU-MING CHU, MIAO-KUN WANG, YE-FANG QIU AND XIAO-YAN MA

LEMMA 2.1. Let u ∈ [0,1] , s � 1 and

fu,s(x) =
s
2

log(1−ux2)− log

(
π

2K (x)

)
. (2.7)

Then fu,s > 0 for all x ∈ (0,1) if and only if 2su � 1 .

Proof. From (2.4) and (2.7) one has

f ′u,s(x) = − usx
1−ux2 +

E (x)− (1− x2)K (x)
x(1− x2)K (x)

=
Fu,s(x)

x(1− x2)(1−ux2)K (x)
, (2.8)

where

Fu,s(x) = −sux2(1− x2)K (x)+ (1−ux2)[E (x)− (1− x2)K (x)]. (2.9)

It follows from (2.1)–(2.3) and (2.9) together with elaborated computations that

E (x)− (1− x2)K (x)

=
π
2

[
∞

∑
n=0

(−1/2,n)(1/2,n)
(n!)2 x2n− (1− x2)

∞

∑
n=0

(1/2,n)2

(n!)2 x2n

]

=
π
2

∞

∑
n=0

(1/2,n)2

2n!(n+1)!
x2n+2,

2
π

Fu,s(x) =− sux2(1− x2)
∞

∑
n=0

(1/2,n)2

(n!)2 x2n +(1−ux2)
∞

∑
n=0

(1/2,n)2

2n!(n+1)!
x2n+2

=− su
∞

∑
n=0

(1/2,n)2

(n!)2 x2n+2 + su
∞

∑
n=0

(1/2,n)2

(n!)2 x2n+4

+
∞

∑
n=0

(1/2,n)2

2n!(n+1)!
x2n+2−u

∞

∑
n=0

(1/2,n)2

2n!(n+1)!
x2n+4

=− sux2− su
∞

∑
n=0

(1/2,n+1)2

[(n+1)!]2
x2n+4 + su

∞

∑
n=0

(1/2,n)2

(n!)2 x2n+4

+
x2

2
+

∞

∑
n=0

(1/2,n+1)2

2(n+1)!(n+2)!
x2n+4−u

∞

∑
n=0

(1/2,n)2

2n!(n+1)!
x2n+4

=x2

[
1
2
− su+

∞

∑
n=0

(1/2,n)2An

2(n+1)!(n+2)!
x2n+2

]
, (2.10)

where

An = su(n+2)(2n+
3
2
)+ (n+

1
2
)2 −u(n+1)(n+2)> 0. (2.11)

We divide the proof into two cases.
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Case 1.1. 2su � 1. Then (2.8)–(2.11) lead to the conclusion that fu,s(x) is strictly
increasing on (0,1) . Therefore, fu,s(x) > fu,s(0+) = 0 for all x ∈ (0,1) follows from
(2.2) and (2.7) together with the monotonicity of fu,s(x) on (0,1) .

Case 1.2. 2su > 1. Then (2.8)–(2.10) lead to the conclusion that there exists δ1 ∈
(0,1) such that fu,s(x) is strictly decreasing on (0,δ1) . Therefore, fu,s(x) < fu,s(0+) =
0 for all x ∈ (0,δ1) follows from (2.2) and (2.7) together with the monotonicity of
fu,s(x) on (0,δ1) . �

LEMMA 2.2. Let u ∈ [0,1] , s � 1 , arctanh(x) = log[(1 + x)/(1− x)]/2 be the
inverse hyperbolic tangent function, and

gu,s(x) =
s
2

log(1−ux2)+ log

(
arctanh(x)

x

)
. (2.12)

Then gu,s(x) > 0 for all x ∈ (0,1) if and only if 3su � 2 .

Proof. From (2.12) one has

g′u,s(x) = − sux
1−ux2 +

x− (1− x2)arctanh(x)
x(1− x2)arctanh(x)

=
Gu,s(x)

x(1− x2)(1−ux2)arctanh(x)
, (2.13)

where

Gu,s(x) = −sux2(1− x2)arctanh(x)+ (1−ux2)[x− (1− x2)arctanh(x)]. (2.14)

Making use of series expansion and (2.14) we have

Gu,s(x) =− sux2(1− x2)
∞

∑
n=0

x2n+1

2n+1
+(1−ux2)

[
x− (1− x2)

∞

∑
n=0

x2n+1

2n+1

]

=− su
∞

∑
n=0

x2n+3

2n+1
+ su

∞

∑
n=0

x2n+5

2n+1
+(1−ux2)

∞

∑
n=0

2x2n+3

(2n+1)(2n+3)

=x3

[
2
3
− su+

∞

∑
n=0

Bnx2n+2

(2n+1)(2n+3)(2n+5)

]
, (2.15)

where
Bn = 2u(s−1)(2n+5)+2(2n+1)> 0. (2.16)

We divide the proof into two cases.
Case 1.1. 3su � 2. Then (2.13)–(2.16) lead to the conclusion that gu,s(x) is

strictly increasing on (0,1) . Therefore, gu,s(x) > gu,s(0+) = 0 for all x∈ (0,1) follows
from (2.12) together with the monotonicity of gu,s(x) on (0,1) .

Case 1.2. 3su > 2. Then (2.13)–(2.15) lead to the conclusion that there exists
δ2 ∈ (0,1) such that gu,s(x) is strictly decreasing on (0,δ2) . Therefore, gu,s(x) <
gu,s(0+) = 0 for all x ∈ (0,δ2) follows from (2.12) and the monotonicity of gu,s(x) on
(0,δ2) . �
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3. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Since both Qt,s(a,b) and AG(a,b) are symmetric and ho-
mogeneous of degree 1. Without loss of generality, we assume that a > b . Let x =
(a−b)/(a+b)∈ (0,1) . Then from (2.5) and (2.6) together with b/a = (1−x)/(1+x)
we have

AG(a,b)
A(a,b)

=
AG(1,b/a)
A(1,b/a)

=
π

K
√

1− (b/a)2(1+b/a)

=
π(1+ x)

2K (2
√

x/(1+ x))
=

π
2K (x)

. (3.1)

It follows from (1.8) and (3.1) that

log

(
Qt,s(a,b)
AG(a,b)

)
= log

(
Qt,s(a,b)
A(a,b)

)
− log

(
AG(a,b)
A(a,b)

)

=
s
2

log
[
1− (1−2t)2x2]− log

[
π

2K (x)

]
. (3.2)

Therefore, Theorem 1.1 follows from Lemma 2.1 and (3.2). �

Proof of Theorem 1.2. Since both Qt,s(a,b) and L(a,b) are symmetric and ho-
mogeneous of degree 1. Without loss of generality, we assume that a > b . Let x =
(a−b)/(a+b)∈ (0,1) . Then (1.8) leads to

log

(
Qt,s(a,b)
L(a,b)

)
= log

(
Qt,s(a,b)
A(a,b)

)
− log

(
L(a,b)
A(a,b)

)

=
s
2

log
[
1− (1−2t)2x2]+ log

(
arctanh(x)

x

)
. (3.3)

Therefore, Theorem 1.2 follows from Lemma 2.2 and (3.3). �
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