
Journal of
Mathematical

Inequalities

Volume 7, Number 3 (2013), 357–375 doi:10.7153/jmi-07-32

A DIMENSIONALITY REDUCTION PRINCIPLE
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Abstract. In this paper, we put out a dimensionality reduction principle on the optimization of
function, in other words, we show that infa∈R

n
+
{ f (a)} = 0 if and only if

inf
a∈[0,1]m,k∈Km+1

{
f
(
a1Ik1 , . . . ,amIkm ,Ikm+1 ,On−k1−···−km+1

)}
= 0

under the proper hypotheses. As applications, we study the optimal problems of linear in-
equalities involving function power means. In order to show the significance of our results, we
give an example for a discrete case by means of the software Mathematica and another example
involving space science.

1. Introduction

We shall use the following some notations and symbols throughout the paper:

aθ = (aθ
1 , . . . ,aθ

n ); a = a1; α = (α1, . . . ,αm) ; λ = (λ1, . . . ,λm) ;

min{α} = min{α1, . . . ,αm}; max{α} = max{α1, . . . ,αm};
On = (0, . . . ,0︸ ︷︷ ︸

n

); In = (1, . . . ,1︸ ︷︷ ︸
n

); In = I×·· ·× I︸ ︷︷ ︸
n

; R = (−∞,∞);

R
n
+ = [0,∞)n; R

n
++ = (0,∞)n; N = {1, . . . ,n, . . .};

Km =

{
k ∈ N

m : 1 � k1 � · · · � km−1,
m

∑
j=1

k j � n,m < n

}
;

Ωn =

{
t ∈ R

n
++ : 0 < t1 � . . . � tn−1,

n

∑
i=1

ti � 1

}
.

If A = {a1, . . . ,an} is a finite set, where ai �= a j , 1 � i �= j � n, then we define that

|A| = n.
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Recall the definition of the t–th power mean for a sequence a ∈ R
n
++ :

M[t]
n (a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( 1
n ∑n

i=1 at
i)

1/t , if t ∈ R\{0}
(∏n

i=1 ai)
1/n , if t = 0

min{a} , if t = −∞
max{a} , if t = ∞

.

Let E ⊂ R
l, where l ∈ N, be a measurable set with the measure ( l -dimension volume)

|E| ∈ (0,∞) and the function f : E → (0,∞) be bounded. If the Lebesgue integrals of
f t and ln f exist, we call the functional

M[t]( f ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( 1
|E|

∫
E f t )1/t , if t ∈ R\{0}

exp( 1
|E|

∫
E ln f ), if t = 0

min{ f} , if t = −∞
max{ f} , if t = ∞

the t–th power mean of the function f , or function power mean. In particular,

f = M[1]( f )

is the mean of the function f .
As pointed out in [1], the means play many important and vital roles in several

different mathematical and scientific specialized areas. The power mean is the most
one in all the means. Many inequalities involving the power means or function power
mean and the related problems are established (see [2, 3, 4, 5, 6]). For example, the
literatures [2, 3] gave the applications of the function power mean in geometry and
space science.

Assume an inequality includes some parameters. If we get that these parameters
should satisfy necessary and sufficient conditions that the inequality holds, then we call
that the inequality is optimized.

In this paper, we put out a dimensionality reduction principle on the optimization
of the function. As the applications, we study the optimal problems of linear inequali-
ties involving function power means, as well as we give an example for a discrete case
by means of the software Mathematica and another example involving space science,
the aim is to show the significance of our results.

2. A dimensionality reduction principle

We first introduce a dimensionality reduction principle on the optimization of
function as follows.

THEOREM 2.1. (Dimensionality reduction principle, abbreviated as DRP) Let
f : R

n
+ → R be a homogeneous, symmetrical and continuous function with degree γ ,

where n ∈ N , n � 2 , γ > 0 , and let f be a differentiable function in R
n
++ . If there



A DIMENSIONALITY REDUCTION PRINCIPLE ON THE OPTIMIZATION OF FUNCTION 359

exists m∈ N : m < n such that for any p ∈N : 1 � p � n, and any μ ∈R, the solution
(a1, . . . ,ap) ∈ R

p
++ of the system of the equations

∂
∂al

f (a1, . . . ,ap,On−p)+ μ = 0, l = 1, . . . , p (1)

satisfies the inequality
|{a1, . . . ,ap}| � m+1,

then a necessary and sufficient condition such that

inf
a∈Rn

+
{ f (a)} = 0 (2)

holds is that

inf
a∈[0,1]m,k∈Km+1

{
f
(
a1Ik1 , . . . ,amIkm , Ikm+1 ,On−k1−···−km+1

)}
= 0 (3)

holds.
In (2) and (3), if the infimum inf is replaced by the supremum sup , then the same

conclusion also holds.

Proof. We only prove the case of inf , the similar argument for the case sup is
omitted.

Note that the necessary condition is clear, we only need to prove the sufficiency,
that is, assume (3) holds, we will prove that (2) holds.

First, we prove that for any p∈ {1, . . . ,n} , and any (a1, . . . ,ap)∈ R
p
+, the follow-

ing inequality holds by induction on p :

f (a1, . . . ,ap,On−p) � 0. (4)

(A) If 1 � p � m , since

f (On) = f (0In) = 0γ f (In) = 0,

we may assume that some ai among a1, . . . ,ap is not equal to zero and

max{a1, . . . ,ap} = ap > 0.

Set
b j =

a j

ap
, j = 1, . . . , p−1.

Then (b1, . . . ,bp−1) ∈ [0,1]p−1. From (3) we get

f
(
b1Ik1 , . . . ,bp−1Ikp−1 ,0, . . . ,0, Ikm+1 ,On−k1−···−km+1

)
� 0. (5)

Let
k j = 1, j = 1,2, . . . ,m+1
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in (5), we get

f (b1, . . . ,bp−1,1,On−p) = f (b1, . . . ,bp−1,Om−p+1,1,On−m−1) � 0. (6)

By (6), we obtain that

f (a1, . . . ,ap,On−p) = aγ
p f (b1, . . . ,bp−1,1,On−p) � 0.

That is to say, the inequality (4) holds for p : 1 � p � m .
(B) Assume the inequality (4) holds for m � p � n− 1, we will prove that the

inequality
f (a1, . . . ,ap+1,On−p−1) � 0 (7)

also holds.
Note that

(a1, . . . ,ap+1) ∈ R
p+1
+ ,

we may assume that some ai among a1, . . . ,ap+1 is not equal to zero, then

p+1

∑
q=1

aq > 0. (8)

Set

x j =
(p+1)a j

∑p+1
q=1 aq

, j = 1, . . . , p+1,

then we get

f (a1, . . . ,ap+1,On−p−1) =

(
∑p+1

q=1 aq

p+1

)γ

f (x1, . . . ,xp+1,On−p−1) ,

where (x1, · · · ,xp+1) ∈ Dp+1 , and

Dn :=

{
x ∈ R

n
+ :

n

∑
j=1

x j = n

}
.

Thus, the proof of (7) becomes the proof of the following inequality

f (x1, . . . ,xp+1,On−p−1) � 0 (9)

holds when (x1, . . . ,xp+1) ∈ Dp+1.
Next, we divide the proof into two steps as follows.
(I) If (x1, . . . ,xp+1)∈R

p+1
++ is a critical point of f (x1, . . . , xp+1,On−p−1) in Dp+1 ,

we will prove that (9) holds.
We construct the corresponding Lagrange function:

L = f (x1, . . . ,xp+1,On−p−1)+ μ (x1 + · · ·+ xp+1− p−1),



A DIMENSIONALITY REDUCTION PRINCIPLE ON THE OPTIMIZATION OF FUNCTION 361

where μ ∈ R, then

∂L
∂x j

=
∂

∂x j
f (x1, . . . ,xp+1,On−p−1)+ μ = 0, j = 1, · · · , p+1.

Since m+1 � p+1 � n and the hypothesis of Theorem 2.1, we get

|{x1, . . . ,xp+1}| � m+1.

By symmetry, just as well, we may assume that

{x1, . . . ,xp+1} = {y1, . . . ,ym+1},

and
max{y1, . . . ,ym+1} = ym+1 > 0.

By symmetry, we confirm that there is a k = (k1, . . . ,km+1) ∈ Km+1 , where

k1 + · · ·+ km+1 = p+1,

such that

f (x1, . . . ,xp+1,On−p−1) = f
(
y1Ik1 , . . . ,ym+1Ikm+1 ,On−p−1

)
.

Set
z j =

y j

ym+1
, j = 1, · · · ,m.

Since
(x1, . . . ,xp+1) ∈ R

p+1
++ ,

then
(z1, . . . ,zm) ∈ (0,1]m,

and

f (x1, . . . ,xp+1,On−p−1)
= yγ

m+1 f
(
z1Ik1 , . . . ,zmIkm , Ikm+1 ,On−k1−...−km+1

)
. (10)

Since
(z1, . . . ,zm) ∈ (0,1]m ⊂ [0,1]m and (k1, . . . ,km+1) ∈ Km+1,

the (a1, . . . ,am) in (3) may be replaced by (z1, . . . ,zm) , that is,

f
(
z1Ik1 , . . . ,zmIkm , Ikm+1 ,On−k1−...−km+1

)
� 0,

which implies the inequality (9) holds by (10).
(II) If (x1, . . . ,xp+1) is a boundary point of Dp+1 , we will prove that (9) also holds

as follows.
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We know that some component of (x1, . . . ,xp+1) must be zero. Without loss of
generality, we may assume that xp+1 = 0, then the inequality (9) becomes

f (x1, . . . ,xp,On−p) � 0. (11)

Based on (x1, . . . ,xp)∈R
p
+ , m � p � n−1, so the inequality (11) can be deduced from

induction, the inequality (9) holds.
Therefore, the inequality (4) holds for any p ∈ {1, . . . ,n} , and any (a1, . . . ,ap) ∈

R
p
+.

Finally, set p = n in (4), we can obtain the inequality

f (a) � 0,∀a ∈ R
n
+. (12)

In other words, we show that (2) holds if and only if (3) holds. The proof of
Theorem 2.1 is completed. �

3. Applications of DRP

3.1. Main results

As applications of DRP, we obtain the main results for the optimizations of linear
inequalities involving function power means as follows.

THEOREM 3.1. Let E be a closed and bounded region in R
l , l ∈ N , the function

f : E → (0,∞) be bounded, the Lebesgue integral
∫
E f t of f t exist for any real number

t ∈ (0,∞) , and let

λ ∈ R
m
++,

m

∑
j=1

λ j = 1, α ∈ R
m
++, αi �= α j, 1 � i �= j � m, m � 2, γ, θ ∈ (0,∞).

(13)
Then the necessary and sufficient condition that the inequality

m

∑
j=1

λ j

{
M[α j ]( f )

}γ
�
{

M[θ ]( f )
}γ

(14)

holds is that
θ � max{α} . (15)

The sign of the equality holding in (14) if f ≡ Constant. That is to say, the equation

sup
f>0

{
m

∑
j=1

λ j

{
M[α j ]( f )

}γ −
{

M[θ ]( f )
}γ

}
= 0 (16)

holds if and only if the inequality (15) holds.
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THEOREM 3.2. Under the hypotheses of Theorem 3.1, the necessary and sufficient
condition that the inequality

m

∑
j=1

λ j

{
M[α j ]( f )

}γ
�
{

M[θ ]( f )
}γ

(17)

holds is that

0 < θ �
(

m

∑
j=1

λ j

α j

)−1

. (18)

The sign of the equality holding in (17) if f ≡ Constant. That is to say, the equation

inf
f>0

{
m

∑
j=1

λ j

{
M[α j ]( f )

}γ −
{
M[θ ]( f )

}γ
}

= 0 (19)

holds if and only if the inequality (18) holds.

3.2. Related lemmas

In order to prove Theorem 3.1 and Theorem 3.2, we need four lemmas as follows.

LEMMA 3.1. (see Lemma 3.2 in [6]) Let m ∈ N , b j ∈ R\{0} , γ j ∈ R , j =
0,1, . . . ,m, γi �= γ j , 0 � i �= j � m. Then the number of the zeroes of the function

u : (0,∞) → R, u(t) =
m

∑
j=0

b jt
γ j (20)

is not greater than m, i.e.,

|Um| � m,

where

Um = {t ∈ (0,+∞) : u(t) = 0}.

LEMMA 3.2. Let (13) hold. Then a necessary and sufficient condition that the
inequality

m

∑
j=1

λ j

[
M

[α j ]
n (a)

]γ
�
[
M[θ ]

n (a)
]γ

(21)

holds for any a ∈ R
n
+ , n > m is that the inequality (21) holds under the following

conditions:

(a1, . . . ,am−1) ∈ [0,1]m−1, (k1, . . . ,km) ∈ Km (22)

and

a =
(
a1Ik1 , · · · ,am−1Ikm−1 , Ikm ,On−k1−···−km

)
. (23)
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If the inequality (21) is reversed, the same conclusion also holds.

Proof. Firstly, we prove that the especial case θ = 1. Consider the auxiliary func-
tion:

f (a) :=

⎡
⎣ m

∑
j=1

λ j

(
1
n

n

∑
i=1

a
α j
i

) γ
α j

⎤
⎦

1
γ

− 1
n

n

∑
i=1

ai.

Clearly, the inequality (21) is equivalent to

f (a) � 0, ∀a ∈ R
n
+. (24)

Note that the f : R
n
+ →R is a homogeneous, symmetrical and continuous function with

degree 1 > 0, f is a differentiable function in R
n
++. Combining the fact with Theorem

2.1, we will only prove that for any p ∈ N : 1 � p � n, and any μ ∈ R , the solution
(a1, . . . ,ap) ∈ R

p
++ of the system of equations (1) satisfies that

|{a1, . . . ,ap}| � m.

Set
a∗ := (a1, . . . ,ap,On−p) ,

and

M[γ]
m,n(a∗;α;λ ) :=

⎡
⎣ m

∑
j=1

λ j

(
1
n

p

∑
i=1

a
α j
i

) γ
α j

⎤
⎦

1
γ

.

Thus the system (1) simplifies into

∂
∂al

f (a∗)+ μ = 0, l = 1, . . . , p. (25)

Note that

f (a∗) =

⎡
⎣ m

∑
j=1

λ j

(
1
n

p

∑
i=1

a
α j
i

) γ
α j

⎤
⎦

1
γ

− 1
n

p

∑
i=1

ai,

∂ f (a∗)
∂al

=
1
n

[
M[γ]

m,n(a∗;α;λ )
]1−γ m

∑
j=1

⎡
⎢⎣λ j

(
1
n

p

∑
i=1

a
α j
i

) γ−α j
α j

a
α j−1
l

⎤
⎥⎦− 1

n
.

Define the function (20) as follows:

γ0 := 0, γ j := α j −1, j = 1, · · · ,m;

b0 := −1
n

+ μ , b j :=
λ j

n

[
M[γ]

m,n(a∗;α;λ )
]1−γ

(
1
n

p

∑
i=1

a
α j
i

) γ−α j
α j

, j = 1, · · · ,m.
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Thus (25) can be rewritten as

u(al) = 0, l = 1, . . . , p. (26)

(A) Let b0 �= 0. Then

b j ∈ R\{0}, j = 0, . . . ,m.

If γ j �= 0, j = 1, . . . ,m. From

α ∈ R
m
++, αi �= α j, 1 � i �= j � m,

we get
γ j ∈ R, j = 0, . . . ,m, γi �= γ j, 0 � i �= j � m.

From the fact
{a1, . . . ,ap} ⊂Um = {t ∈ (0,+∞) : u(t) = 0}

and Lemma 3.1, we have ∣∣{a1, . . . ,ap}
∣∣ � |Um| � m.

If some γ j = 0,1 � j � m , for example, γm = 0, then

u : (0,∞) → R, u(t) = (b0 +bm)+
m−1

∑
j=1

b jt
γ j .

Based on the above analysis, we get∣∣{a1, . . . ,ap}
∣∣� |Um| � m−1 < m.

(B) If b0 = 0, then we have that∣∣{a1, . . . ,ap}
∣∣ � |Um| � m−1 < m

based on the above analysis. This completes the proof of above assertion.
Secondly, we consider the case of 0 < θ �= 1. Using the transformation:

a∗ = aθ , α∗ =
α
θ

, γ∗ =
γ
θ

,

we can rewrite the inequality (21) in the form

m

∑
j=1

λ j

[
M

[α∗
j ]

n (a∗)
]γ∗

�
[
M[1]

n (a∗)
]γ∗

. (27)

It follows from (27) that the necessary and sufficient condition that the inequality
(21) holds has been transformed into the above case. Hence we obtain the conditional
expression shown as Lemma 3.2.

This completes our proof. �
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REMARK 3.1. In Lemma 3.2, if some λ j < 0 among λ1, . . . ,λm, then Lemma 3.2
still holds by Lemma 3.1 and the proof of Lemma 3.2.

In fact, in the proof of Lemma 3.2, if we define a new auxiliary function as follows:

f (a) =

{
[g(a)]

1
γ − 1

n ∑n
i=1 ai, if g(a) � 0

− [−g(a)]
1
γ − 1

n ∑n
i=1 ai, if g(a) < 0

,

where

g(a) =
m

∑
j=1

λ j

(
1
n

n

∑
i=1

a
α j
i

) γ
α j

,

then the proof of Lemma 3.2 is still correct.
Let E be a bounded and closed region in R

l , l ∈ N, and E ⊂ [c,d]l . Write the
interval

Jk :=
[
c+(k−1)

d− c
m

,c+ k
d− c

m

]
, m ∈ N, k ∈ {1, . . . ,m}.

Define the partition PE of E as follows:

PE : E =

(
n⋃

i=1

Ei

)⋃(
n′⋃

i=1

E ′
i

)
, n,n′ ∈ N,

where there exists Jj1 ×·· ·× Jjl ⊂ E, j1, · · · , jl ∈ {1, . . . ,m} such that

Ei = Jj1 ×·· ·× Jjl , i = 1, . . . ,n,

and there exists Jj1 ×·· ·× Jjl �⊂ E, j1, · · · , jl ∈ {1, . . . ,m} such that

E ′
i =

(
Jj1 ×·· ·× Jjl

)⋂
E �= Φ, i = 1, . . . ,n′,

and the Φ is the empty set.
Here, we need to note that:
(i) If the partition PE exists, then the number of the elements of the finite set

J :=
{
Jj1 ×·· ·× Jjl : j1, · · · , jl ∈ {1, . . . ,m}} satisfies that

|J| = ml � n+n′;

(ii) There exist m ∈ N and ml � n+n′ such that the partition PE exists, and

n → ∞ ⇔ m → ∞;

(iii) If the partition PE exists, the measure
∣∣∣⋃n′

i=1 E ′
i

∣∣∣ may be zero.

For the above partition PE , we have the following Lemma 3.3.
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LEMMA 3.3. Let E be a bounded and closed region in R
l , l ∈N, and E ⊂ [c,d]l ,

and the Lebesgue integral
∫
E f of the bounded function f : E → R exist. Then for the

above partition PE , we have that

lim
n→∞

(
1
n

n

∑
i=1

inf
x∈Ei

{ f (x)}
)

= lim
n→∞

(
1
n

n

∑
i=1

sup
x∈Ei

{ f (x)}
)

=
1
|E|

∫
E

f . (28)

Proof. Note that the expression (28) has meaning, because E is a bounded and
closed region in R

l , thus
0 < |E| < ∞.

Consider the above partition PE , where ml � n+n′. Since the Lebesgue integral∫
E f of f : E →R exists, then for any given ε ∈ (0, |E|/2) , there exists a n1 ∈N , when

n > n1 we have

n

∑
i=1

(
sup
x∈Ei

{ f (x)}
)
|Ei|+

n′

∑
i=1

(
sup
x∈E ′

i

{ f (x)}
)
|E ′

i | <
∫

E
f + ε, (29)

and
n

∑
i=1

(
inf
x∈Ei

{ f (x)}
)
|Ei|+

n′

∑
i=1

(
inf
x∈E ′

i

{ f (x)}
)
|E ′

i | >
∫

E
f − ε. (30)

For the above partition PE , it is easy to know that

lim
n→∞

n

∑
i=1

|Ei| = |E|, lim
n→∞

n′

∑
i=1

|E ′
i | = 0, (31)

and
n⋃

i=1

Ei ⊂ E,
n′⋃

i=1

E ′
i ⊂ E,

n

∑
i=1

|Ei|+
n′

∑
i=1

|E ′
i | = |E|. (32)

Thus, there exists a n2 ∈ N , when n > n2 , we have

|E|− ε <
n

∑
i=1

|Ei| � |E|, (33)

and

0 �
n′

∑
i=1

|E ′
i | < ε. (34)

From |E1| = · · · = |En|, we can rewrite the inequality (33) in the form:

|E|− ε
n

< |Ei| � |E|
n

, i = 1, . . . ,n. (35)

Since the function f : E →R is a bounded function, there exists a constant M > 0 such
that

−M � f (x) � M, ∀x ∈ E. (36)
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Then
−M � inf

x∈E ′
i

{ f (x)} � M, i = 1, . . . ,n, (37)

and
−M � sup

x∈E ′
i

{ f (x)} � M, i = 1, . . . ,n′. (38)

Thus, when n > max{n1,n2} , from (29), (34), (35) and (38) we have that

∫
E

f + ε >
n

∑
i=1

(
sup
x∈Ei

{ f (x)}
)
|Ei|+

n′

∑
i=1

(
sup
x∈E ′

i

{ f (x)}
)
|E ′

i |

� |E|− ε
n

n

∑
i=1

sup
x∈Ei

{ f (x)}+
n′

∑
i=1

(
sup
x∈E ′

i

{ f (x)}
)
|E ′

i |

� |E|− ε
n

n

∑
i=1

sup
x∈Ei

{ f (x)}−M
n′

∑
i=1

|E ′
i |

>
|E|− ε

n

n

∑
i=1

sup
x∈Ei

{ f (x)}− εM, (39)

and from (30), (34), (35) and (37), we have that

∫
E

f − ε <
n

∑
i=1

(
inf
x∈Ei

{ f (x)}
)
|Ei|+

n′

∑
i=1

(
inf
x∈E ′

i

{ f (x)}
)
|E ′

i |

� |E|
n

n

∑
i=1

inf
x∈Ei

{ f (x)}+
n′

∑
i=1

(
inf
x∈E ′

i

{ f (x)}
)
|E ′

i |

� |E|
n

n

∑
i=1

inf
x∈Ei

{ f (x)}+M
n′

∑
i=1

|E ′
i |

<
|E|
n

n

∑
i=1

inf
x∈Ei

{ f (x)}+ εM. (40)

From (39–40), we get

1
|E|

∫
E

f − (1+M)ε
|E| <

1
n

n

∑
i=1

inf
x∈Ei

{ f (x)}

� 1
n

n

∑
i=1

sup
x∈Ei

{ f (x)}

<
1

|E|− ε

∫
E

f +
(1+M)ε
|E|− ε

=
1
|E|

∫
E

f +
ε

|E|(|E|− ε)

∫
E

f +
(1+M)ε
|E|− ε

� 1
|E|

∫
E

f +
Mε

|E|− ε
+

(1+M)ε
|E|− ε
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=
1
|E|

∫
E

f +
(1+2M)ε
|E|− ε

<
1
|E|

∫
E

f +
2(1+2M)ε

|E| .

For the above inequalities, we get the equalities (28) in Lemma 3.3. The proof of
Lemma 3.3 is completed. �

REMARK 3.2. In Lemma 3.3, if E is a curve segment in R
l (see [8, 9]), and the

partition E =
⋃n

i=1 Ei of E satisfies that

|E1| = · · · = |En| = 1
n
|E|,

then the equalities (28) still holds by the proof of Lemma 3.3, where the integral in (28)
is the curve integral.

LEMMA 3.4. Under the hypotheses of Theorem 3.1, a necessary and sufficient
condition that the inequality (14) holds is that the inequality

m

∑
j=1

λ j

(
tm +

m−1

∑
i=1

tia
α j
i

) γ
α j

�
(

tm +
m−1

∑
i=1

tia
θ
i

) γ
θ

(41)

holds for any (a1, . . . ,am−1) ∈ [0,1]m−1, and any (t1, . . . ,tm) ∈ Ωm.
If both the inequalities (14) and (41) are reversed, then the same conclusion also

holds.

Proof. We only consider the case of � . Since E is a bounded and closed region
in R

l , there exists [c,d]l ⊂ R
l such that E ⊂ [c,d]l . For any positive integral number

n > m , consider the above partition PE of E . Since f (x) > 0 for any x ∈ E, the
infx∈Ei { f (x)} exists for any i ∈ {1, . . . ,n} . Let

a = (a1, . . . ,an) =
(

inf
x∈E1

{ f (x)}, . . . , inf
x∈En

{ f (x)}
)

. (42)

Then a ∈ R
n
+ . By Lemma 3.3, the inequality (14) can be rewritten in the form

lim
n→∞

m

∑
j=1

λ j

[
M

[α j ]
n (a)

]γ
� lim

n→∞

[
M[θ ]

n (a)
]γ

. (43)

Sufficiency. Assume for any a = (a1, . . . ,am−1) ∈ [0,1]m−1 , and any (t1, . . . ,tm) ∈
Ωm , the inequality (41) holds, we prove the inequality (43) also holds as follows.

In the inequality (41), set

(t1, . . . ,tm) =
(

k1

n
, . . . ,

km

n

)
∈ Ωm, n ∈ N, n > m, (44)
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where (k1, . . . ,km) ∈ N
m, then (k1, . . . ,km) ∈ Km and the inequality (21) holds under

the condition (23) by the inequality (41).
According to Theorem 2.1, the inequality (21) holds for any a ∈ R

n
+. In the in-

equality (21), Taking the limit as n → ∞ , we find the inequality (43), therefore the
inequality (14) holds by Lemma 3.3. This ends the proof of the sufficiency.

Necessity. Suppose now that the inequality (43) holds, we will prove that the
inequality (41) also holds as follows.

According to the inequality (43) and the basic properties of the limit , there ex-
ists n0 ∈ N,n0 � m , when n > n0 the inequality (21) holds under the condition (42).
According to the arbitrariness of the function f : E → (0,∞) and Lemma 3.2, the in-
equality (21) holds under the conditions (22) and (23).

Since an arbitrary real number can be approached by a sequence of rational num-
bers, we can assume that (44) hold in (41), then (t1, . . . ,tm) ∈ Ωm in (41). Since (41)
is equivalent with (21), the inequality (41) holds from (21). This ends the proof of the
necessity.

So far, we have proven Lemma 3.4. �

3.3. Proof of Theorem 3.1

Proof. Sufficiency. Assume that (15) holds, then

0 < α j � θ , j = 1, . . . ,m,

and (
1
|E|

∫
E

f α j

) γ
α j �

(
1
|E|

∫
E

f θ
) γ

θ
, j = 1, . . . ,m,

by the famous power mean inequality. Hence

m

∑
j=1

λ j

(
1
|E|

∫
E

f α j

) γ
α j �

m

∑
j=1

λ j

(
1
|E|

∫
E

f θ
) γ

θ
=
(

1
|E|

∫
E

f θ
) γ

θ
.

That is to say, the inequality (14) holds. This ends the proof of the sufficiency.
Necessity. Suppose now that (14) holds, we will prove that (15) holds as follows.
Without loss of generality, we can assume that max{α} = αm.
Assume 0 < θ < max{α} = αm. By Lemma 3.4, the inequality (41) holds. Let

tm > 0. Setting t1 = · · · = tm−1 = 0 in (41), and dividing from both sides of (41) by
(tm)γ/αm , we get

m−1

∑
j=1

λ j (tm)
γ

α j
− γ

αm + λm � (tm)
γ
θ − γ

αm .

In the above inequality, taking tm → 0+ , from

γ
α j

− γ
αm

> 0, j = 1, . . . ,m−1 and
γ
θ
− γ

αm
> 0
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we find that λm � 0, which is a contradiction with λ ∈ R
m
++. This ends the proof of the

necessity.
Therefore, this completes the proof of Theorem 3.1. �

3.4. Proof of Theorem 3.2

Proof. Sufficiency. Suppose that (18) holds, we will prove the inequality (17)
holds as follows.

Recall the well-known Hölder inequality (see [1] and Lemma 2.2 in [7]): Let(
x( j)
1 , . . . ,x( j)

n

)
∈ R

n
+ , j = 1, . . . ,m, and (p1, . . . , pm) ∈ R

m
++. If

m

∑
j=1

1
p j

� 1, (45)

then we have that

1
n

n

∑
i=1

m

∏
j=1

x( j)
i �

m

∏
j=1

[
1
n

n

∑
i=1

(
x( j)
i

)p j

] 1
p j

. (46)

Set
1
p j

=
λ jθ
α j

, j = 1, . . . ,m,

then (p1, p2, . . . , pm) ∈ R
m
++, and (45) holds by (18). Then for any (x( j)

1 , . . . ,x( j)
n ) ∈

R
n
++ , j = 1, . . . ,m , the inequality (46) holds.

Note that for any y ∈ R
m
+ we have the following AM-GM inequality:

m

∑
j=1

λ j · y j �
m

∏
j=1

y
λ j
j . (47)

Hence for any a ∈ R
n
+ we have that

m

∑
j=1

λ j

(
1
n

n

∑
i=1

a
α j
i

) γ
α j

�
m

∏
j=1

(
1
n

n

∑
i=1

a
α j
i

) γλ j
α j

=

⎧⎨
⎩

m

∏
j=1

[
1
n

n

∑
i=1

(
a

λ jθ
i

)p j

] 1
p j

⎫⎬
⎭

γ
θ

�
[

1
n

n

∑
i=1

(
m

∏
j=1

a
λ jθ
i

)] γ
θ

=

(
1
n

n

∑
i=1

a
∑m

j=1 λ jθ
i

) γ
θ

=

(
1
n

n

∑
i=1

aθ
i

) γ
θ

.
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Therefore,

m

∑
j=1

λ j

(
1
n

n

∑
i=1

a
α j
i

) γ
α j

�
(

1
n

n

∑
i=1

aθ
i

) γ
θ

. (48)

Consider the above partition PE of E . Since f (x) > 0 for any x∈ E, the infx∈Ei { f (x)}
exists for any i ∈ {1, . . . ,n} . Let (42) holds in (48). Then

at
i = inf

x∈Ei
{ f t(x)} � 0, i = 1, . . . ,n

for any t ∈ (0,∞), and

lim
n→∞

m

∑
j=1

λ j

(
1
n

n

∑
i=1

inf
x∈Ei

{ f α j(x)}
) γ

α j

� lim
n→∞

(
1
n

n

∑
i=1

inf
x∈Ei

{ f θ (x)}
) γ

θ

. (49)

According to Lemma 3.3, (49) and the Lebesgue integral
∫
E f t of f t exists for any real

number t ∈ (0,∞) , we get the inequality (17). This ends the proof of the sufficiency.
Necessity. Assume that the inequality (17) holds, we will prove the inequality (18)

holds as follows.
By means of Lemma 3.4, for any (a1, . . . ,am−1)∈ [0,1]m−1, and any (t1, . . . ,tm) ∈

Ωm , the inequality

m

∑
j=1

λ j

(
tm +

m−1

∑
i=1

tia
α j
i

) γ
α j

�
(

tm +
m−1

∑
i=1

tia
θ
i

) γ
θ

(50)

holds. Setting a j = 0, j = 1, . . . ,m−1, 0 < tm < 1 in (50), we get

∑m
j=1 λ j(tm)

γ
α j − (tm)

γ
θ

1− tm
� 0. (51)

In (51), take the limit as tm → 1−. The limit has the 0/0 form, so by L’Hôpital’s Rule,
we have the inequality (18). This ends the proof of the necessity.

Therefore, this completes the proof of Theorem 3.2. �

3.5. Two effective examples

Under the hypotheses of Theorem 3.1, if min{α} < θ < max{α} , then the in-
equality (14) does not hold by Theorem 3.1. However, for any a ∈ R

n
+ , n > m, the

following inequality may hold under the conditions (13):

m

∑
j=1

λ j

(
1
n

n

∑
i=1

a
α j
i

) γ
α j

�
(

1
n

n

∑
i=1

aθ
i

) γ
θ

, (52)
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where
min{α} < θ < max{α} .

EXAMPLE 3.1. Let a ∈ R
5
+ and λ ∈ (0,1). Then the inequality

1−λ
2

⎡
⎣(1

5

5

∑
i=1

a3
i

)7/3

+

(
1
5

5

∑
i=1

a5
i

)7/5
⎤
⎦+ λ

(
1
5

5

∑
i=1

a9
i

)7/9

�
(

1
5

5

∑
i=1

a6
i

)7/6

, (53)

holds if and only if

0 < λ � 0.3517133118615961 . . . . (54)

Proof. By Lemma 3.2, the inequality (53) is equivalent to an inequality of two
variables x,y as follows.

1−λ
2

[(
ix3 + jy3 + k

5

)7/3

+
(

ix5 + jy5 + k
5

)7/5
]

+ λ
(

ix9 + jy9 + k
5

)7/9

�
(

ix6 + jy6 + k
5

)7/6

. (55)

The condition that this inequality holds is that

λ � inf
{

f (x,y; i, j,k) : (x,y) ∈ [0,1]2,1 � i � j,k � 1, i+ j + k � 5
}

, (56)

where

f (x,y; i, j,k) :=
2
(

ix6+ jy6+k
5

)7/6−
(

ix3+ jy3+k
5

)7/3−
(

ix5+ jy5+k
5

)7/5

2
(

ix9+ jy9+k
5

)7/9−
(

ix3+ jy3+k
5

)7/3−
(

ix5+ jy5+k
5

)7/5
.

By means of the software Mathematica, we obtain that

inf{ f (x,y;1,1,1)} = f (0.508003...,0.508003;1,1,1)= 0.388872 . . .;

inf{ f (x,y;1,1,2)} = f (0.634119...,0.634119;1,1,2)= 0.464969 . . .;

inf{ f (x,y;1,1,3)} = f (1,1;1,1,3) = 0.4;

inf{ f (x,y;1,2,1)} = f (0.553056...,0.553084;1,2,1)= 0.378517 . . .;

inf{ f (x,y;1,2,2)} = f (0.901875...,0.901873;1,2,2)= 0.395445 . . .;

inf{ f (x,y;1,3,1)} = f (0.6988211...,0.6988204;1,3,1)= 0.3517133118624215 . . .;

inf{ f (x,y;2,2,1)} = f (0.698822...,0.698822;2,2,1)= 0.3517133118615961 . . ..
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Therefore,

inf
{

f (x,y; i, j,k) : (x,y) ∈ [0,1]2,1 � i � j,k � 1, i+ j + k � 5
}

= 0.3517133118615961 . . .,

that is to say, the inequality (53) holds if and only if the inequality (54) holds.
This completes the proof of Example 3.1. �
Next, we give an application of Theorem 3.2 in space science as follows.

EXAMPLE 3.2. Let the image Γ = γ([a,b]) of the vector function γ : [a,b] → R
3

be a smooth and closed curve (see [2, 3]), P ∈ R
3 be a fixed point, and A ∈ Γ be a

moving point, and let (13) hold. If the inequality (18) holds, then we have that

m

∑
j=1

λ j

(
1
|Γ|

∮
Γ
‖A−P‖−α jds

) γ
α j �

(
1
|Γ|

∮
Γ
‖A−P‖−θds

) γ
θ

(57)

by Remark 3.2 and Theorem 3.2, where
∮

Γ •ds is curve integral of the function • , and
‖A−P‖ is the distance between the point A and the point P .

In Example 3.2, we may regard the P as the earth with the mass M , A as a satellite
with the mass m , and the Γ as the trajectory of the satellite. According to the law of
universal gravity, the norm ‖F(A,P)‖ of gravity F(A,P) between the satellite A and
the earth P is that

‖F(A,P)‖ =
GmM

‖A−P‖2 ,

where G is the gravitational constant of solar system. Without loss of generality, we
can assume that GmM = 1. When the satellite A traverse one cycle along its orbit Γ ,
the average of the norm ‖F(Γ,P)‖ of the gravity F(A,P) between the satellite A and
the earth P is that

‖F(Γ,P)‖ =
1
|Γ|

∮
Γ
‖A−P‖−2ds. (58)

If we define that

‖Fθ (Γ,P)‖ :=
1
|Γ|

∮
Γ
‖A−P‖−θds (59)

is θ -average gravity norm between A and P , where θ ∈ (0,∞), then the inequality
(57) can be rewritten as

m

∑
j=1

λ j
∥∥Fα j(A,P)

∥∥ γ
α j � ‖Fθ (Γ,P)‖

γ
θ . (60)
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