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Abstract. It is shown that an extension of the Hilbert integral inequality can be established by
introducing two parameters and a proper logarithm function. The constant factor expressed by
product of the gamma function and the Hurwitz Zeta function is proved to be the best possible.
And base on it, some interesting special results are enumerated. As applications, some equivalent
forms are given.

1. Introduction and Lemmas
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They are the famous Hilbert integral inequalities, where the constant factors π2

and π are the best possible. And the equalities in (1.1) and (1.2) hold if and only if
f (x) = 0, or g(x) = 0. These results can be found in papers [1] and [2]. Owing to the
importance of the Hilbert inequality and the Hilbert type inequality in Mathematical
analysis and applications, some mathematicians have been studying them. Recently,
various refinements, extensions and generalizations of (1.2) appear in a great deal of
the articles (such as [3]–[10] etc.). However, the research articles of (1.1) are few. The
aim of the present paper is to build an inequality of the form
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where α,λ > 0, to discuss the constant factor of which is related to Riemann Zeta
function, to give some important and especial results, and then to study some equivalent
forms.

In order to prove our main results, we need to introduce the Hurwitz Zeta functions
and some lemmas.

Let Rez > 0 and 0 < q < 1. Then the Hurwitz Zeta function is defined by

ζ (z,q) =
1

Γ(z)

∞∫
0

tz−1e−qt

1− e−t dt, (1.4)

where Γ(z) is the gamma function.
The Hurwitz Zeta function can be expressed by the series as follows:

ζ (z,q) =
∞

∑
k=0

1
(k+q)z , (1.5)

where Rez > 1, q �= 0,−1,−2, · · · .
When q = 1, we obtain from (15) the Riemann Zeta function:

ζ (z) =
∞

∑
k=1

1
kz . (1.6)

LEMMA 1.1. Let α and λ be positive numbers. Then

∞∫
0

sαe
− λ s

2
1−e−λs ds =

Γ(α +1)
λ α+1 ζ (α +1, 1

2 ), (1.7)

where Γ(z) is the gamma function and ζ (z,q) is the Hurwitz Zeta function, and that
Rez > 0 and 0 < q < 1 .

Proof. By substitution t = λ s , we can obtain
∞∫
0

sα e
− λ s

2
1−e−λs ds = 1

λ α+1

∞∫
0

tα e
− t

2
1−e−t dt . It

follows from (1.4) that the relation (1.7) holds. �

LEMMA 1.2. Let α be a positive number. Then

ζ
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2

)
=
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)
ζ (α +1) (1.8)

where ζ (z) =
∞
∑

k=1

1
kz , (Rez > 1) is the Riemann Zeta function.

Proof. When α > 0, it is known from (1.5) that
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Based on (1.6), we have ζ (α +1) =
∞
∑

k=0

1
(k+1)α+1 and 1

2α+1 ζ (α +1) =
∞
∑

k=1
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It is obvious that

∞

∑
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1

(2k+1)α+1 = ζ (α +1)− 1
2α+1 ζ (α) =

2α+1−1
2α+1 ζ (α +1) .

It follows that the equality (1.8) holds. �

LEMMA 1.3. With the assumptions as Lemma 1.1, and define C (α,λ ) by

C (α,λ ) =
2
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)
λ α+1 Γ(α +1)ζ (α +1). (1.9)
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Proof. It is easy to deduce that
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From (1.7), (1.8) and (1.11), it follows that the relation (1.10) holds. �

LEMMA 1.4. With the assumptions as Lemma 1.1, define a function by

ω(α,λ ,x) =
∞∫

0

∣∣∣ln( x
y

)∣∣∣α
|xλ−yλ |

(
x
y

)1− λ
2 dy.

Then
ω (α,λ ,x) = C (α,λ )x1−λ , (1.12)

where C (α,λ ) is defined by (1.9).
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Proof. It is easy to deduce that
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It follows from (1.10) that the equality (1.12) holds. �

2. Main Results

In this section, we will prove our assertions by using the above Lemmas.

THEOREM 2.1. Let α and λ be two positive numbers, f and g be two real
functions. If

∫ ∞
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(2.1)
where C (α,λ ) is defined by (1.9), and C (α,λ ) in (2.1) is the best possible. And the
equality in (2.1) holds if and only if f (x) = 0 , or g(x) = 0 .

Proof. We may apply the Cauchy inequality to estimate the left-hand side of (2.1)
as follows:
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where ω(α,λ ,x) =
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0

∣∣∣ln x
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It follows from (1.12) and (2.2) that the inequality (2.1) is valid. �

REMARK 1. The paper [11] provides a unified treatment of a general Hilbert-type
inequality with a special emphasis to a homogeneous kernel, hence the relation (2.1)
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can be deduced by it. In fact, according to Corollary 4 in the paper [11], we can put

A1 = A2 = 2−λ
4 , λ ∈ (0,2] , p = q = 2, K(x,y) =

∣∣∣ln x
y

∣∣∣α
|xλ−yλ | , and by substitution u = y

x ,

we obtain

L = k(pA2)
1
p k(2−λ −qA1)

1
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2 ) =
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Therefore, the relation (2.1) is obtained immediately by the relation (29) in the
paper [11].

It is noticeable that the relation (2.1) can be extended for non-negative conjugate
parameters p and q by the relation (29) in the paper [11].

If (2.2) takes the form of the equality, then there exist a pair of non-zero con-

stants c1 and c2 such that c1
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(0,+∞)× (0,+∞) .
Thereupon we have c1x2−λ f 2 (x) = c2y2−λg2 (y) = C0 (constant) a.e. on (0,+∞)

× (0,+∞) .
Without losing the generality, we can suppose that c1 �= 0, then∫ ∞

0
x1−λ f 2 (x)dx = C0

c1

∫ ∞
0 x−1dx.

This contradicts that 0 <
∫ ∞
0 x1−λ f 2 (x)dx < +∞ . Hence it is impossible to take the

equality in (2.2). It shows that the equality in (2.1) holds if and only if f (x) = 0, or
g(x) = 0. So the inequality (2.1) is valid.

It remains to need only to show that C (α,λ ) in (2.1) is the best possible, ∀0 <
ε < λ .

Define two functions by
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If C (α,λ ) is not the best possible, then there exists K > 0, such that
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On the other hand, we have
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When ε is sufficiently small, we obtain from (2.4) that
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Evidently, the inequality (2.5) is in contradiction with (2.3). Therefore, the con-
stant factor C(α,λ ) in (2.1) is the best possible. Thus the proof of Theorem is com-
pleted.

REMARK 2. The papers [12] and [13] deal with the best possible constant factors
in Hilbert-type inequalities, where the paper [12] deals with a particular homogeneous
kernel K(x,y) = (x+ y)−s .

It proves that if the parameters A1 and A2 satisfy condition pA2 + qA1 = 2−λ ,
then the constant L is the best possible. The constant factor C(α,λ ) in relation (2.1)
is obviously the best possible, because the above-mentioned condition is satisfied (see
Remark 1). The paper [13] adopts Fubini’s theorem to prove the best possible constant
in Hilbert-type inequalities for a wide class of homogeneous functions, this method is
recommendable, and its technique is worthy.

Let x,y > 0 and λ be a positive number. If α is odd, then we have the following
result.

THEOREM 2.2. Let n be a positive integer and λ > 0 . If
∞∫
0

x1−λ f 2(x)dx < +∞

and
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(2.6)

where C (2n−1,λ) =
22n−1(22n−1)

n

( π
λ
)2n

Bn , and the Bn′s are the Bernoulli numbers,
viz. B1 = 1

6 , B2 = 1
30 , B3 = 1

42 , B4 = 1
30 , B5 = 5

66 , etc., and the constant factor
C (2n−1,λ) is the best possible. And then the equality in (2.6) holds if and only if
f (x) = 0 , or g(x) = 0 .

Proof. We need only to verify the constant factor C (2n−1,λ) in (2.6). When
α = 2n−1, it is known from (2.1) and (1.9) that

C (2n−1,λ) =
2
(
22n−1

)
λ 2n Γ(2n)ζ (2n). =

2
(
22n−1

)
λ 2n (2n−1)!

∞

∑
k=1

1
k2n .

It is known from the paper [14] that

∞

∑
k=1

1
k2n =

22n−1π2n

(2n)!
Bn,

where the Bn′s are the Bernoulli numbers, viz. B1 = 1
6 , B2 = 1

30 , B3 = 1
42 , B4 = 1

30 ,
etc.

It follows that the constant factor C (2n−1,λ) in (2.6) is correct. �

Based on (2.6), we can list some important and especial results.
When n = 1, according to (2.6) we obtain the following result:



384 HE LEPING AND GAO MINGZHE

COROLLARY 2.1. If
∞∫
0

x1−λ f 2(x)dx < +∞ and
∞∫
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where the constant factor
( π

λ
)2

is the best possible. And the equality in (2.7) holds if
and only if f (x) = 0 , or g(x) = 0 .

In particular, when λ = 1, the inequality (2.7) is reduced to (1.1). It follows that
inequalities (2.1), (2.6) and (2.7) are extensions of (1.1).

When n = 2 and λ = 1, the following result is gotten by (2.6).
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where the constant factor 2π4 is the best possible. And the equality in (2.8) holds if
and only if f (x) = 0 , or g(x) = 0 .

When n = λ = 2 , the following result is obtained by (2.6).

COROLLARY 2.3. If
∞∫
0

x−1 f 2(x)dx < +∞ and
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x−1g2(x)dx < +∞ , then
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where the constant factor π4

8 in (2.9) is the best possible. And the equality in (2.9)
holds if and only if f (x) = 0 , or g(x) = 0 .

Similarly, we can also establish a great deal of new inequalities, which are omitted
here.

3. Some equivalent forms

As applications, we will build some new inequalities.

THEOREM 3.1. Let α and λ be two positive numbers, and f be a real function.
If
∫ ∞
0 x1−λ f 2(x)dx < +∞, then

∞∫
0
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⎧⎨
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x1−λ f 2 (x)dx, (3.1)
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where C (α,λ ) is defined by (1.9), and C (α,λ ) in (3.1) is the best possible, and the
equality in (3.1) holds if and only if f (x) = 0 . And the inequalities (3.1) and (2.1) are
equivalent.

Proof. First, we assume that the inequality (2.1) is valid. Set a real function g(y)
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∣∣∣ln x
y

∣∣∣α
|xλ−yλ | f (x)dx, y ∈ (0,+∞)

and using (2.1), we have

∞∫
0

yλ−1

⎧⎨
⎩

∞∫
0

∣∣∣ln x
y

∣∣∣α
|xλ−yλ | f (x)dx

⎫⎬
⎭

2

dy =
∞∫

0

∞∫
0

∣∣∣ln x
y

∣∣∣α
|xλ−yλ | f (x)g(y)dxdy

� C (α,λ )

⎧⎨
⎩

∞∫
0

x1−λ f 2(x)dx

⎫⎬
⎭

1
2
⎧⎨
⎩

∞∫
0

y1−λ g2(y)dy

⎫⎬
⎭

1
2

= C (α,λ )

⎧⎨
⎩

∞∫
0

x1−λ f 2(x)dx

⎫⎬
⎭

1
2
⎧⎨
⎩

∞∫
0

yλ−1

(∫ ∞

0

∣∣∣ln x
y

∣∣∣α
|xλ−yλ | f (x)dx

)2

dy

⎫⎬
⎭

1
2

(3.2)

It follows from (3.2) that the inequality (3.1) is valid after some simplifications.
On the other hand, assume that the inequality (3.1) keeps valid. ApplyingCauchy’s

inequality and (3.1) in turn, we have
∞∫

0

∞∫
0

∣∣∣ln x
y

∣∣∣α
|xλ−yλ | f (x)g(y)dxdy

=
∞∫

0

y
λ−1

2

⎧⎨
⎩

∞∫
0

∣∣∣ln x
y

∣∣∣α
|xλ−yλ | f (x)dx

⎫⎬
⎭y

1−λ
2 g(y)dy

�

⎧⎪⎨
⎪⎩

∞∫
0

yλ−1

⎛
⎝ ∞∫

0

∣∣∣ln x
y

∣∣∣α
|xλ−yλ | f (x)dx

⎞
⎠

2

dy

⎫⎪⎬
⎪⎭

1
2 ⎧⎨
⎩

∞∫
0

y1−λ g2 (y)dy

⎫⎬
⎭

1
2

�

⎧⎨
⎩(C(α,λ ))2

∞∫
0

x1−λ f 2 (x)dx

⎫⎬
⎭

1
2
⎧⎨
⎩

∞∫
0

y1−λg2 (y)dy

⎫⎬
⎭

1
2

= (C (α,λ ))2

⎧⎨
⎩

∞∫
0

x1−λ f 2 (x)dx

⎫⎬
⎭

1
2
⎧⎨
⎩

∞∫
0

y1−λg2 (y)dy

⎫⎬
⎭

1
2

(3.3)

If the constant factor (C (α,λ ))2 in (3.1) is not the best possible, then it is known from
(3.3) that the constant factor C (α,λ ) in (2.1) is also not the best possible. This is a
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contradiction. It is obvious that the equality in (3.1) holds if and only if f (x) = 0.
Therefore, the inequalities (3.1) and (2.1) are equivalent. The proof of Theorem is
completed. �

REMARK 3. The relations (3.1) can be also deduced and extended for non-negative
conjugate parameters p and q by the relation (30) in the paper [11] (see Remark 1.).

THEOREM 3.1. Let f be a real function, and n be a positive integer and λ be a
positive number.

If
∫ ∞
0 x1−λ f 2(x)dx < +∞ , then

∞∫
0

yλ−1

⎧⎨
⎩

∞∫
0

(ln( x
y ))

2n−1

xλ−yλ f (x)dx

⎫⎬
⎭

2

dy � (C (2n−1,λ))2
∞∫

0

x1−λ f 2 (x)dx, (3.4)

where C (2n−1,λ) =
22n−1(22n−1)

n

( π
λ
)2n

Bn , and the Bn′s are the Bernoulli numbers,
viz. B1 = 1

6 , B2 = 1
30 , B3 = 1

42 , B4 = 1
30 , B5 = 5

66 , etc., and the constant factor
C (2n−1,λ) in (3.4) is the best possible, and then the equality in (3.4) holds if and
only if f (x) = 0 . And the inequalities (3.4) and (2.6) are equivalent.

Its proof is similar to one of Theorem 3.1. Hence it is omitted.
Similarly, we can also establish some new inequalities which are respectively

equivalent to the inequalities (2.7), (2.8) and (2.9). And they are omitted here.
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