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INEQUALITIES RELATED TO HEINZ AND HERON MEANS

LIMIN ZOU

(Communicated by M. Fujii)

Abstract. We present a matrix inequality related to Heinz and Heron means, and show that it is
a refinement of some improved Heinz inequalities for matrices.

1. Introduction

Let Mn be the space of n× n complex matrices and ‖·‖ stand for any unitarily
invariant norm on Mn , i.e., ‖UAV‖ = ‖A‖ for all A ∈ Mn and for all unitary matrices
U, V ∈ Mn . For A = [ai j] ∈ Mn , the Hilbert-Schmidt norm of A is defined by

‖A‖2 =

√
n

∑
i, j=1

∣∣ai j
∣∣2.

It is known that the Hilbert-Schmidt norm is unitarily invariant.
In this paper, we always suppose that A, B, X ∈ Mn with A and B positive

semidefinite.
Let a and b be nonnegative real numbers. The Heinz means are defined as

Hv (a,b) =
avb1−v +a1−vbv

2
, 0 � v � 1.

The Heron means [1] are defined as the linear interpolation between the geometric and
the arithmetic means:

Fα (a,b) = (1−α)G(a,b)+ αA(a,b) , 0 � α � 1,

where

G(a,b) =
√

ab, A(a,b) =
a+b

2

are the geometric mean and the arithmetic mean of a and b , respectively.
It is well known that

G(a,b) � Hv (a,b) � A(a,b) , 0 � v � 1 (1.1)
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and
G(a,b) � Fα (a,b) � A(a,b) , 0 � α � 1. (1.2)

After seeing the inequalities (1.1) and (1.2), it is hard not to be curious about the re-
lationship between the Heinz and Heron means. Bhatia [1] proved that if 0 � v � 1,
then

Hv (a,b) � Fα(v) (a,b) , (1.3)

where α (v) = 1−4
(
v− v2

)
.

It is natural to raise the question of whether there exists any matrix version for the
inequality (1.3). A matrix version of the inequality (1.3) is∥∥∥∥AvXB1−v +A1−vXBv

2

∥∥∥∥�
∥∥∥∥(1−α (v))A1/2XB1/2 + α (v)

(
AX +XB

2

)∥∥∥∥ , (1.4)

which was introduced by Bhatia [1]. Unfortunately, as pointed out in [1], the inequality
(1.4) holds only in the trivial cases of v equal to 0, 1/2 and 1. Nevertheless, it is
an interesting issue to know that whether it holds for some special unitarily invariant
norms. This is a part of the motivation for the present paper.

In this paper, we prove that the inequality (1.4) holds at least for the Hilbert-
Schmidt norm. Then we show that it is an improvement of some improved Heinz
inequalities for matrices obtained by Kittaneh [6], Kittaneh and Manasrah [7], Zhan
[9], and Zou [10], which are presented in Section 2.

2. Some improved Heinz inequalities

The matrix version of the inequality (1.1) was proved by Bhatia and Davis [2] says
that if 0 � v � 1, then

∥∥∥A1/2XB1/2
∥∥∥�

∥∥∥∥AvXB1−v +A1−vXBv

2

∥∥∥∥�
∥∥∥∥AX +XB

2

∥∥∥∥ . (2.1)

The second part of the inequality (2.1) is known as Heinz inequality. Let 0 � v � 1,
r0 = min{v, 1− v} , Kittaneh [6] gave a refinement of the Heinz inequality as follows:∥∥∥∥AvXB1−v +A1−vXBv

2

∥∥∥∥� 2r0

∥∥∥A1/2XB1/2
∥∥∥+(1−2r0)

∥∥∥∥AX +XB
2

∥∥∥∥ . (2.2)

Meanwhile, Kittaneh and Manasrah [7] also obtained two refinements of the Heinz
inequality for the Hilbert-Schmidt norm as follows:

∥∥∥∥AvXB1−v +A1−vXBv

2

∥∥∥∥
2

2
�
∥∥∥∥AX +XB

2

∥∥∥∥
2

2
−2r0

∥∥∥∥AX −XB
2

∥∥∥∥
2

2
, (2.3)

∥∥∥∥AvXB1−v +A1−vXBv

2

∥∥∥∥
2
�
∥∥∥∥AX +XB

2

∥∥∥∥
2
− r0

(√
‖AX‖2−

√
‖XB‖2

)2

. (2.4)



INEQUALITIES RELATED TO HEINZ AND HERON MEANS 391

He, Zou and Qaisar [4] proved that∥∥∥∥AvXB1−v +A1−vXBv

2

∥∥∥∥
2

� 2r0

∥∥∥A1/2XB1/2
∥∥∥2

+(1−2r0)
∥∥∥∥AX +XB

2

∥∥∥∥
2

.

It is weaker than the inequality (2.2) and it is equivalent to the inequality (2.3) for the
Hilbert-Schmidt norm [4]. Zhan [9] proved that if 1

4 � v � 3
4 and −2 < t � 2, then∥∥∥∥AvXB1−v +A1−vXBv

2

∥∥∥∥� 1
t +2

∥∥∥tA1/2XB1/2 +AX +XB
∥∥∥ . (2.5)

It is also a refinement of the Heinz inequality for matrices. Zou [10] proved that if
0 � v � 1, then∥∥∥∥AvXB1−v +A1−vXBv

2

∥∥∥∥
2

2
�
∥∥∥∥AX +XB

2

∥∥∥∥
2

2
−4v(1− v)

∥∥∥∥AX −XB
2

∥∥∥∥
2

2
. (2.6)

It is an improvement of (2.3).

3. Main results

In this section, we first present a matrix version of the inequality (1.3) for the
Hilbert-Schmidt norm. And after that, we prove that it is stronger than the inequalities
(2.2), (2.4), (2.5), and (2.6).

THEOREM 3.1. Let α (v) = 1−4
(
v− v2

)
. If 0 � v � 1 , then∥∥∥∥AvXB1−v +A1−vXBv

2

∥∥∥∥
2
�
∥∥∥∥(1−α (v))A1/2XB1/2 + α (v)

AX +XB
2

∥∥∥∥
2
. (3.1)

Proof. Since A and B are positive semidefinite, it follows by the spectral theorem
that there exist unitary matrices U, V ∈ Mn such that

A = UΛ1U∗ and B = VΛ2V ∗ ,

where

Λ1 = diag(λ1, · · · ,λn) , Λ2 = diag(μ1, · · · ,μn) , λi, μi � 0, i = 1, · · · ,n.

Let
Y = U∗XV = [yi j] ,

then

AvXB1−v +A1−vXBv

2
=

(UΛ1U∗)v X (VΛ2V ∗)1−v +(UΛ1U∗)1−v X (VΛ2V ∗)v

2

=
(UΛv

1U
∗)X

(
VΛ1−v

2 V ∗)+ (UΛ1−v
1 U∗)X (VΛv

2V
∗)

2

=
UΛv

1 (U∗XV)Λ1−v
2 V ∗ +UΛ1−v

1 (U∗XV )Λv
2V

∗

2

= U

(
Λv

1YΛ1−v
2 + Λ1−v

1 YΛv
2

2

)
V ∗.
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Therefore,

∥∥∥∥AvXB1−v +A1−vXBv

2

∥∥∥∥
2

2
=

∥∥∥∥∥Λv
1YΛ1−v

2 + Λ1−v
1 YΛv

2

2

∥∥∥∥∥
2

2

=
n

∑
i, j=1

(
λ v

i μ1−v
j + λ 1−v

i μv
j

2

)2 ∣∣yi j
∣∣2 .

(3.2)

Similarly, we have ∥∥∥∥(1−α (v))A1/2XB1/2 + α (v)
AX +XB

2

∥∥∥∥
2

2

=
n

∑
i, j=1

(
(1−α (v))

√
λiμ j + α (v)

λi + μ j

2

)2 ∣∣yi j
∣∣2.

It follows from the inequality (1.3) that

n

∑
i, j=1

(
λ v

i μ1−v
j + λ 1−v

i μv
j

2

)2 ∣∣yi j
∣∣2 �

n

∑
i, j=1

(
(1−α (v))

√
λiμ j + α (v)

λi + μ j

2

)2 ∣∣yi j
∣∣2.

This completes the proof. �
The following result implies that for the Hilbert-Schmidt norm, the inequality (3.1)

is a refinement of the inequality (2.2).

THEOREM 3.2. Let α (v) = 1− 4
(
v− v2

)
, r0 = min{v, 1− v} . If 0 � v � 1 ,

then

(1−α (v))
∥∥∥A1/2XB1/2

∥∥∥
2
+ α (v)

∥∥∥∥AX +XB
2

∥∥∥∥
2

� 2r0

∥∥∥A1/2XB1/2
∥∥∥

2
+(1−2r0)

∥∥∥∥AX +XB
2

∥∥∥∥
2
.

Proof. Let

l1 = (1−α (v))
∥∥∥A1/2XB1/2

∥∥∥
2
+ α (v)

∥∥∥∥AX +XB
2

∥∥∥∥
2

and

l2 = 2r0

∥∥∥A1/2XB1/2
∥∥∥

2
+(1−2r0)

∥∥∥∥AX +XB
2

∥∥∥∥
2
.

By a small calculation, we have

l2− l1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2v(1−2v)
(∥∥∥∥AX +XB

2

∥∥∥∥
2
−
∥∥∥A1/2XB1/2

∥∥∥
2

)
, 0 � v � 1

2

2(2v−1) (1− v)
(∥∥∥∥AX +XB

2

∥∥∥∥
2
−
∥∥∥A1/2XB1/2

∥∥∥
2

)
,

1
2

� v � 1

.
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So, by the inequality (2.1), we have

l2 − l1 � 0.

This completes the proof. �
In what follows, we present an inequality, by which it follows from Theorem 3.2

that the inequality (3.1) refines the inequality (2.4).

THEOREM 3.3. Let r0 = min{v, 1− v} . If 0 � v � 1 , then

2r0

∥∥∥A1/2XB1/2
∥∥∥

2
+(1−2r0)

∥∥∥∥AX+XB
2

∥∥∥∥
2
�
∥∥∥∥AX+XB

2

∥∥∥∥
2
−r0

(√
‖AX‖2−

√
‖XB‖2

)2

.

Proof. Let

l1 = 2r0

∥∥∥A1/2XB1/2
∥∥∥

2
+(1−2r0)

∥∥∥∥AX +XB
2

∥∥∥∥
2

and

l2 =
∥∥∥∥AX +XB

2

∥∥∥∥
2
− r0

(√
‖AX‖2−

√
‖XB‖2

)2

.

By a small calculation, we have

l2− l1 = 2r0

(∥∥∥∥AX +XB
2

∥∥∥∥
2
−
∥∥∥A1/2XB1/2

∥∥∥
2
− 1

2

(√
‖AX‖2−

√
‖XB‖2

)2
)

.

It is known [7, 8] that∥∥∥∥AX +XB
2

∥∥∥∥
2
−
∥∥∥A1/2XB1/2

∥∥∥
2
− 1

2

(√
‖AX‖2 −

√
‖XB‖2

)2

� 0.

So, we have
l2 − l1 � 0.

This completes the proof. �
The next theorem shows that the inequality (3.1) is a refinement of the inequality

(2.5) for the Hilbert-Schmidt norm.

THEOREM 3.4. Let α (v) = 1−4
(
v− v2

)
. If

2−√
2

4
� v � 2+

√
2

4
and −2 <

t � 2 , then∥∥∥∥(1−α (v))A1/2XB1/2 + α (v)
AX +XB

2

∥∥∥∥
2
� 1

t +2

∥∥∥tA1/2XB1/2 +AX +XB
∥∥∥

2
.

Proof. Let

l1 =
∥∥∥∥(1−α (v))A1/2XB1/2 + α (v)

AX +XB
2

∥∥∥∥
2

2
,
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l2 =
∥∥∥∥ t
t +2

A1/2XB1/2 +
2

t +2

(
AX +XB

2

)∥∥∥∥
2

2
.

In a manner similar to the steps used to obtain (3.2), we have

l1 =
n

∑
i, j=1

(
(1−α (v))

√
λiμ j + α (v)

λi + μ j

2

)2 ∣∣yi j
∣∣2,

l2 =
n

∑
i, j=1

(
t
√

λiμ j

t +2
+

2
t +2

(
λi + μ j

2

))2 ∣∣yi j
∣∣2.

Thus,

l2− l1

=
n

∑
i, j=1

⎛
⎝
(

t
√

λiμ j

t+2
+

2
t+2

(
λi+μ j

2

))2

−
(

(1−α (v))
√

λiμ j+α (v)
λi+μ j

2

)2
⎞
⎠∣∣yi j

∣∣2

=
n

∑
i, j=1

⎛
⎜⎜⎝
((

t
t +2

−1+ α (v)
)√

λiμ j +
(

2
t +2

−α (v)
)

λi + μ j

2

)

×
((

t
t +2

+1−α (v)
)√

λiμ j +
(

2
t +2

+ α (v)
)

λi + μ j

2

)
⎞
⎟⎟⎠∣∣yi j

∣∣2

=
n

∑
i, j=1

⎛
⎜⎜⎝
((

− 2
t +2

+ α (v)
)√

λiμ j +
(

2
t +2

−α (v)
)

λi + μ j

2

)

×
((

2−
(

2
t +2

+ α (v)
))√

λiμ j +
(

2
t +2

+ α (v)
)

λi + μ j

2

)
⎞
⎟⎟⎠∣∣yi j

∣∣2

=
n

∑
i, j=1

⎛
⎜⎜⎝
((

2
t +2

−α (v)
)(

λi + μ j

2
−
√

λiμ j

))

×
(

2
√

λiμ j +
(

2
t +2

+ α (v)
)(

λi + μ j

2
−
√

λiμ j

))
⎞
⎟⎟⎠∣∣yi j

∣∣2.

Since
2−√

2
4

� v � 2+
√

2
4

and −2 < t � 2 , we have

2
t +2

−α (v) � 2
2+2

−α (v) = −4v2 +4v− 1
2

� 0.

So,
l2− l1 � 0.

This completes the proof. �
Combining the triangle inequality and next result, we know that the inequality

(3.1) is a refinement of the inequality (2.6).

THEOREM 3.5. Let α (v) = 1−4
(
v− v2

)
. If 0 � v � 1 , then

∥∥∥∥AX+XB
2

∥∥∥∥
2

2
−4v(1−v)

∥∥∥∥AX−XB
2

∥∥∥∥
2

2
= (1−α (v))

∥∥∥A1/2XB1/2
∥∥∥2

2
+α (v)

∥∥∥∥AX+XB
2

∥∥∥∥
2

2
.
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Proof. Let

l =
∥∥∥∥AX +XB

2

∥∥∥∥
2

2
−4v(1− v)

∥∥∥∥AX −XB
2

∥∥∥∥
2

2
.

Note that ∥∥∥∥AX +XB
2

∥∥∥∥
2

2
=

1
4

(
‖AX‖2

2 +‖XB‖2
2

)
+

1
2

∥∥∥A1/2XB1/2
∥∥∥2

2
(3.3)

and ∥∥∥∥AX −XB
2

∥∥∥∥
2

2
=

1
4

(
‖AX‖2

2 +‖XB‖2
2

)
− 1

2

∥∥∥A1/2XB1/2
∥∥∥2

2
. (3.4)

It follows from (3.3) and (3.4) that

l = (1−α (v))
∥∥∥A1/2XB1/2

∥∥∥2

2
+ α (v)

∥∥∥∥AX +XB
2

∥∥∥∥
2

2
.

This completes the proof. �

4. Remarks

REMARK 4.1. Drissi [3] gave another refinement of the Heinz inequality, which
says that if 1

4 � v � 3
4 , then

∥∥∥∥AvXB1−v +A1−vXBv

2

∥∥∥∥�
∥∥∥∥
∫ 1

0
AxXB1−xdx

∥∥∥∥ . (4.1)

In view of the inequalities (3.1) and (4.1), we want to know the relationship between
them. It should be noticed that neither (3.1) nor (4.1) is uniformly better than the other
for the Hilbert-Schmidt norm. Here, we give two examples:

EXAMPLE 4.1. Let

A =
[

10 0
0 1

]
, X =

[
1 0
0 1

]
, B =

[
1 0
0 1

]
, v =

1
4
.

We have ∥∥∥∥
∫ 1

0
AxXB1−xdx

∥∥∥∥
2
= 4.0345

and ∥∥∥∥3
4
A1/2XB1/2 +

1
4

(
AX +XB

2

)∥∥∥∥
2
= 3.8779.

EXAMPLE 4.2. Let

A =
[

1000 0
0 1

]
, X =

[
1 0
0 1

]
, B =

[
1 0
0 1

]
, v =

1
4
.
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We have ∥∥∥∥
∫ 1

0
AxXB1−xdx

∥∥∥∥
2
= 144.6235

and ∥∥∥∥3
4
A1/2XB1/2 +

1
4

(
AX +XB

2

)∥∥∥∥
2
= 148.8454.

REMARK 4.2. An inequality weaker than (1.4) is∥∥∥∥AvXB1−v +A1−vXBv

2

∥∥∥∥� (1−α (v))
∥∥∥A1/2XB1/2

∥∥∥+ α (v)
∥∥∥∥AX +XB

2

∥∥∥∥ . (4.2)

It is natural to raise the question of whether the inequality (4.2) holds for all v ∈ [0, 1] .
Numerical experiments on computer show that this inequality is true. Therefore, we
pose the following:

CONJECTURE. The inequality (4.2) holds for all unitarily invariant norms.

REMARK 4.3. Let

r0 = min{v, 1− v} , a =
√
‖AX‖2−

√
‖XB‖2.

Recently, Hu [5] proved that

∥∥∥∥AvXB1−v +A1−vXBv

2

∥∥∥∥
2

2
+2r0a

2
∥∥∥A1/2XB1/2

∥∥∥
2
+

1
2
r0a

4 �
∥∥∥∥AX +XB

2

∥∥∥∥
2

2
. (4.3)

It is also an improvement of Heinz inequality. It follows from the following inequality
[5]:

4
∥∥∥A1/2XB1/2

∥∥∥2

2
+4a

∥∥∥A1/2XB1/2
∥∥∥

2
+a4 �

∥∥∥∥AX +XB
2

∥∥∥∥
2

2

that the inequality (3.1) is a refinement of (4.3).

REMARK 4.4. It is easy to see that

avb1−v +a1−vbv

2
� 2r0

√
ab+(1−2r0)

a+b
2

, 0 � v � 1, r0 = min{v, 1− v} .

At this stage it is natural to raise the following question: Is it true that∥∥∥∥AvXB1−v +A1−vXBv

2

∥∥∥∥�
∥∥∥∥2r0A

1/2XB1/2 +(1−2r0)
AX +XB

2

∥∥∥∥ ?

This would be a strengthening of the inequality (2.2). To answer this we have to decide
whether the function

f (x) =
coshβx

1−β + β coshx
, 0 � β � 1



INEQUALITIES RELATED TO HEINZ AND HERON MEANS 397

is positive definite.

REMARK 4.5. Let α (v) = 1− 4
(
v− v2

)
and r0 = min{v, 1− v} . It is known

that if 0 � v � 1, then

(1−α (v))
√

ab+ α (v)
a+b

2
� 2r0

√
ab+(1−2r0)

a+b
2

.

A matrix version of this inequality is∥∥∥∥(1−α (v))A1/2XB1/2 + α (v)
AX +XB

2

∥∥∥∥�
∥∥∥∥2r0A

1/2XB1/2 +(1−2r0)
AX +XB

2

∥∥∥∥ .

(4.4)
By the inequality (23) of [1], we know that if v ∈ [0, 1

4

]∪ [ 3
4 , 1

]
, the inequality (4.4)

is true. This restriction on v is necessary.
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