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A ONE–PARAMETER FAMILY OF BIVARIATE MEANS

EDWARD NEUMAN

(Communicated by G. Toader)

Abstract. A one-parameter family of bivariate means is introduced. Members of the new family
of means are derived from a bivariate symmetric mean. It is shown that new means are symmet-
ric in their variables. Several inequalities involving parametric versions of two Seiffert means,
the Neuman-Sándor mean, and the logarithmic means are obtained. It is shown that the last
four means belong to the family of the Schwab-Borchardt means. Among inequalities estab-
lished in this paper some provide generalizations of known results obtained recently by several
researchers.

1. Introduction

The history of mean values is long and laden with detail. In recent years a signifi-
cant progress has been made in theory of bivariate means with special emphasis on in-
equalities involving those mens. Among means of two variables the Schwab-Borchardt
mean has attracted attention of several researchers. The interested reader is referred to
[1], [2], [14], [16], [18], [19], [23] and to the references therein. Importance of this
mean is justified by the fact that some known means such as Seiffert means P and T
(see [20] and [21]), the logarithmic mean L and the mean M studied in [15], [18], [19],
[11] can be represented as the Schwab-Borchardt means of other elementary bivariate
means such as arithmetic mean, geometric mean, and the power mean of order 2. For a
recent developments in the theory of inequalities for the Seiffert means see [3], [5], [6],
[7] [8], [9], [10], [12], [16], [23], [24].

In this paper we introduce and study a one-parameter family of bivariate means
which are obtained from an arbitrary bivariate symmetric mean by forming an arith-
metic convex combinations of the variables of the underlying mean. In Section 2 we re-
call definitions of several known bivariate means. Also, some preliminary facts needed
in the subsequent sections are included there. A one-parameter family of means is in-
troduced in Section 3. Therein we give some elementary properties of those means.
Several inequalities involving means under discussion are established in the next sec-
tion of this paper.
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2. Definitions and preliminaries

Let a,b > 0. In order to avoid trivialities we will always assume that a �= b . The
unweighted arithmetic mean of a and b is defined as

A =
a+b

2
.

Other unweighted bivariate means used in this paper are the harmonic mean H , geomet-
ric mean G , root-square mean Q and the contra-harmonic mean C which are defined
as follows

H =
2ab
a+b

, G =
√

ab, Q =

√
a2 +b2

2
, C =

a2 +b2

a+b
. (2.1)

Let

v =
a−b
a+b

. (2.2)

Clearly 0 < |v| < 1. One can easily verify that the means defined in (2.1) all can be
expressed in terms of A and v . We have

H = A(1− v2), G = A
√

1− v2,

Q = A
√

1+ v2, C = A(1+ v2).
(2.3)

Other bivariate means utilized in this paper include the first and the second Seiffert
means, denoted by P and T , respectively, the Neuman-Sándor mean M , and the loga-
rithmic mean L . Recall that

P = A
v

sin−1 v
, T = A

v
tan−1 v

,

M = A
v

sinh −1v
, L = A

v
tanh −1v

(2.4)

(see [20], [21], [18]).
All the means mentioned above are comparable. It is known that

H < G < L < P < A < M < T < Q < C (2.5)

(see, e.g., [18]).
The four means listed in (2.4) are special cases of the Schwab-Borchardt mean SB

which is defined as follows

SB(a,b)≡ SB =

⎧⎪⎪⎨
⎪⎪⎩

√
b2−a2

cos−1(a/b)
if a < b,

√
a2−b2

cosh −1(a/b)
if b < a,

(see, e.g., [1], [2]). This mean has been studied recently in [14], [18], and [19]. It is
well known that the mean SB is strict, nonsymmetric and homogeneous of degree one
in its variables.
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It has been pointed out in [18] that

P = SB(G,A), T = SB(A,Q),
M = SB(Q,A), L = SB(A,G).

(2.6)

3. Definition and basic properties of the one-parameter means

The goal of this section is to introduce a family of bivariate which depend on the
parameter p which satisfies |p| � 1. First we define two nonnegative numbers w1 and
w2 :

w1 =
1+ p

2
, w2 =

1− p
2

. (3.1)

Clearly w1 +w2 = 1. We associate with the pair (a,b) a pair of positive numbers (x,y) ,
where

x = w1a+w2b, y = w1b+w2a. (3.2)

Thus x and y are the convex combinations of a and b . One can easily verify that
a < x < y < b if a < b or b < y < x < a if b < a .

For the sake of presentation let N stand for a bivariate symmetric mean. We define
a mean Np(a,b) ≡ Np as follows

Np(a,b) = N(x,y). (3.3)

We will call the mean Np the p -mean or the p -mean generated by N .
We will present now some elementary properties of the p -means. Using (3.3),

(3.1), and (3.2) we see that

N−p(a,b) = N(y,x) = N(x,y) = Np(a,b).

Thus the function p → Np is an even function. To this end we will assume that 0 �
p � 1. It follows from (3.1) and (3.2) that

N0 = A, N1 = N. (3.4)

Moreover, the function p → Np is strictly decreasing if N < A , i.e.,

N1 � Np � N0 (3.5)

or is strictly increasing if N > A , i.e.,

N0 � Np � N1. (3.6)

We now present formulas for the p -means mentioned in Section 2. Let us begin
with the case when N = A . We have

Ap = Ap(a,b) = A(x,y) = A.
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Thus we shall always write A instead of Ap when no confusion would arise. To obtain
the p-versions of the eight means listed in (2.1) and (2.3) let us introduce a quantity u ,
where

u =
x− y
x+ y

. (3.7)

Using (3.2) and (2.2) we obtain
u = pv. (3.8)

Since 0 < |v| < 1, 0 < |u| < p � 1
Making use of (2.3) we obtain formulas for the p -means derived from means listed

in (2.3)
Hp = A(1−u2), Gp = A

√
1−u2,

Qp = A
√

1+u2, Cp = A(1+u2).
(3.9)

Similarly, using (2.4) we obtain

Pp = A
u

sin−1 u
, Tp = A

u
tan−1 u

,

Mp = A
u

sinh −1u
, Lp = A

u
tanh −1u

.
(3.10)

Another one-parameter generalizations of the Seiffert means P and T has been
proposed by G. Toader (see [22]). For instance, a generalization of P reads as follows

PM ,q = M
u

sin−1 u
,

where M = M (a,b) is a mean of a and b ,

u =
a−b
qM

,

and q is a positive number. With M = A and q = 2/p mean PM ,q becomes Pp . It is
also worth mentioning that in [7] the authors have investigated first two means defined
in (3.10) with p = 2q .

For the later use let us record the fact that the means Pp , Tp , Mp , and Lp can be
represented as the Schwab-Borchardt means. Making use of (2.6) we obtain

Pp = SB(Gp,A), Tp = SB(A,Qp),
Mp = SB(Qp,A), Lp = SB(A,Gp).

(3.11)

For this reason we call (Gp,A) , (A,Qp) , (Qp,A) and (A,Gp) the pairs of generating
means.

We close this section with the following remarks. The idea of using the p -means
was motivated by a recent development in theory of means. Let R and S be bivariate
symmetric means and let 0 � λ � 1. Many researchers (see, e.g., [3], [5], [6], [8], [9],
[10], [12], [24]) have studied problems of finding all values of λ for which inequality
R(λ r+(1−λ )s,λ s+(1−λ )r) < (>)S(r,s) is satisfied for all positive numbers r and
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s . Let us note that with λ = (1+ p)/2 = w1 we have 1−λ = (1− p)/2 = w2 . Thus
the inequality in question can be written as Rp(r,s) < (>)S(r,s) . With the parameter λ
used instead of p formula (3.8) should be changed u = (2λ −1)v , which is a little bit
more cumbersome in analytic computations than (3.8) is.

4. Inequalities involving the p -means

The goal of this section is to establish several inequalities involving the p -means
defined in Section 3. Recall that in what follows the parameter p is assumed to be such
that 0 < p � 1.

Our first result reads as follows.

THEOREM 4.1. The following inequalities

Hp < Gp < Lp < Pp < Mp < Tp < Qp < Cp, (4.1)

(GpA
2)1/3 < (ALp)1/2 < Pp <

A+Lp

2
<

Gp +2A
3

, (4.2)

(AQp
2)1/3 < (QpMp)1/2 < Tp <

Qp +Mp

2
<

A+2Qp

3
, (4.3)

(QpA
2)1/3 < (ATp)1/2 < Mp <

A+Tp

2
<

Qp +2A
3

, (4.4)

(AGp
2)1/3 < (GpPp)1/2 < Lp <

Gp +Pp

2
<

A+2Gp

3
(4.5)

are satisfied.

Proof. For the proof of (4.1) let us notice that the inequalities (2.5) are valid pro-
vided the parameter v of all means listed in (2.3) and (2.4) is such that 0 < |v| < 1.
Therefore, they are also satisfied if v is replaced by u . The assertion now follows using
(2.5), (3.9), and (3.10). For the proof of the inequalities (4.2)–(4.5) we shall utilize the
following inequalities for the Schwab-Borchardt mean [19], [17]:

(rs2)1/3 <
(
sSB(s,r)

)1/2
< SB(r,s) <

s+SB(s,r)
2

<
r+2s

3
, (4.6)

where r,s > 0,r �= s . For the proof of (4.2) we use (4.6) with r = Gp and s = A and
next apply formulas listed in (3.11). In a similar way one can establish inequalities (4.3)
using (4.6) with r = A and s = Qp . Again we appeal to (3.11) to obtain the asserted
result. The remaining chains of inequalities (4.4) and (4.5) can be established in an
analogous manner. We omit further details. �

In the next theorem we shall establish optimal lower and upper bounds for the
Seiffert mean P in terms of the p-harmonic means and also in terms of the p-geometric
means. Another pair of double inequalities provide optimal bounds for the second
Seiffert mean T in terms of the p-root-square means and in terms of the p-contra-
harmonic means as well.

We have the following.
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THEOREM 4.2. In order for the inequalities

Hp < P < Hq (4.7)

to be satisfied it is necessary and sufficient that√
1− 2

π
� p < 1 and 0 < q � 1√

6
. (4.8)

Similarly, the inequalities
Gr < P < Gs (4.9)

are satisfied if and only if√
1− 4

π2 � r < 1 and 0 < s � 1√
3
. (4.10)

Also,
Qp < T < Qq (4.11)

if and only if

0 < p �
√

16
π2 −1 and

√
2
3

� q < 1. (4.12)

Finally, the two-sided inequality

Cr < T < Cs (4.13)

is satisfied if and only if

0 < r �
√

4
π
−1 and

1√
3

� s < 1. (4.14)

Proof. We shall prove first the left-hand side inequality of (4.7). Using (3.8), (3.9),
and (2.4) we see that the inequality in question can be written as

A(1− p2v2) < A
v

sin−1 v
.

Hence

p2 >
1
v2 −

1

vsin−1 v
.

Letting v = sin t,0 < t <
π
2

, we get

p >

√
t− sint
t sin2t

=: φ(t). (4.15)

It follows from [8] that the function φ(t) is strictly increasing on (0,π/2) . Hence

φ(0+) � φ(t) � φ(π/2)
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or
1√
6

� φ(t) �
√

1− 2
π

. (4.16)

The second inequality in (4.16) yields the lower bound for p in (4.8). To obtain the
upper bond for p we follow the lines introduced above to obtain

q < φ(t).

Combining this with the first inequality in (4.16) we obtain the desired result.
We shall prove now the inequalities (4.9) are satisfied if and only if r and s satisfy

conditions (4.10). It follows from (2.4) and (3.9) that the left inequality in (4.9) can be
written as

1−
( v

sin−1 v

)2
< r2v2.

Hence

r2 >
1
v2 −

1

(sin−1 v)2
=

1

sin2 t
− 1

t2
=: φ(t),

where sin(t) = v (0 < t � π/2) . Differentiation of φ(t) yields

φ ′(t) =
2
t3

(
1−

( t
sin t

)3
cost

)
To prove that φ ′(t) > 0 on the stated domain we employ inequality of Adamović and
Mitrinović [13]:

cost <
(sin t

t

)3

which is the same as (
t

sin t
)3 cost < 1. This yields φ ′(t) > 0 and in consequence that

the function φ(t) is strictly increasing on (0,π/2) . Hence

1
3

= φ(0+) � φ(t) � φ
(π

2

)
= 1− 4

π2

We appeal now to the definition of the function φ(t) to obtain the first inequalities
in (4.9). The second ones can be obtained in an analogous manner. We omit further
details.

In order to obtain (4.11)–(4.12) we use (2.4) and (3.9) again to write the left-hand
side inequality in (4.11) as √

1+ p2v2 <
v

tan−1 v

Letting above v = tan t (0 < t � π/4) we obtain

p2 <
1
t2

− 1
tan2 t

=: ψ(t).

Differentiation yields

ψ ′(t) =
2
t3

(( t
sin t

)3
cost−1

)
.
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Comparison with φ ′(t) , where φ(t) is the same as defined earlier in this proof, yields
ψ ′(t) < 0 on (0,π/4) . Thus the function ψ(t) is strictly decreasing on the stated
domain. This in turn yields

16
π2 −1 = ψ(π/4) � ψ(t) � ψ(0+) =

2
3
.

The asserted conditions (4.12) now follow. Finally, for the proof of (4.13)–(4.14) we
use (2.4) and (3.9) to obtain

1+ r2v2 <
v

tan−1 v
< 1+ s2v2.

Letting v = tan t (0 < t < π/4) and extracting the square roots we obtain

r <
√

ψ(t) < s, (4.17)

where

ψ(t) =
1

t tan t
− 1

tan2 t
.

Differentiation yields

(tan3 t cos2 t)ψ ′(t) = 2− tan t
t

−
(sin t

t

)2
. (4.18)

We shall demonstrate now that ψ(t) is a strictly decreasing function on (0,π/4) .
Using inequality of Adamović and Mitrinović we obtain

− tant
t

< −(cost)−2/3 and −
(sin t

t

)2
< −(cost)2/3.

This in conjunction with (4.18) yields

(tan3 t cos2 t)ψ ′(t) < 2− 1
c
− c,

where c = (cost)2/3 . Hence

(tan3 t cos2 t)ψ ′(t) < − (c−1)2

c
< 0.

Thus the function ψ(t) is strictly decreasing on (0,π/4) . Elementary computations
give √

4
π
−1 =

√
ψ(π/4) �

√
ψ(t) �

√
ψ(0+) =

1√
3
. (4.19)

Combining (4.17) and (4.19) we obtain the desired result. �
Inequalities (4.7)–(4.8) have been established in [8] by use of different means.

Also, inequalities (4.11) together with (4.12) have been obtained, by a different method,
in [4].
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In the next two theorems we give optimal lower and upper bounds for the four
p -means Pp,Tp,Mp , and Lp . The bounding quantities are either the algebraic or geo-
metric convex combinations of two means listed in (3.11). Recall that for r,s > 0 and
0 � α � 1 quantities αr +(1−α)s and rαs1−α are called, respectively, the algebraic
or the geometric, convex combinations of r and s .

We are in a position to prove the following.

THEOREM 4.3. The two-sided inequality

α1A+(1−α1)Gp < Pp < β1A+(1−β1)Gp (4.20)

is valid if and only if 0 � α1 � 2
π

and
2
3

� β1 � 1 . Similarly,

α2Qp +(1−α2)A < Tp < β2Qp +(1−β2)A (4.21)

if and only if 0 � α2 � 4−π
π(

√
2−1)

and
2
3

� β2 � 1 . Also,

α3Qp +(1−α3)A < Mp < β3Qp +(1−β3)A (4.22)

if and only if 0 � α3 � 1− γ
(
√

2−1)γ
and

1
3

� β3 � 1 , where γ = sinh −1(1) = ln(
√

2+

1) . Finally,
α4A+(1−α4)Gp < Lp < β4A+(1−β4)Gp (4.23)

if and only if α4 = 0 and
1
3

� β4 � 1 .

Proof. Inequalities (4.20) and (4.21) together with the associated bounds for the
α ′s and the β ′s follow from Theorem 4.1 and Corollary 4.1 in [23].

For the proof of (4.22) let us write this two-sided inequality as

α3 <
Mp−A

Qp−A
< β3.

Taking into account that Mp −A = A
( u

sinh −1u
− 1

)
and Qp −A = A(

√
1+u2− 1)

(see (3.10) and (3.9)) we can write the last double inequality as follows

α3 <

u
sinh −1u

−1
√

1+u2−1
< β3.

Letting above u = sinh t (0 < t � γ) we get

α3 < φ(t) < β3 (4.24)

where

φ(t) =
sinh t− t
t cosh t− t

. (4.25)
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It follows from the proof of Theorem 3.1 in [15] that the function φ(t) is strictly de-
creasing on [0,γ] . Thus

φ(γ) � φ(t) � φ(0+).

Making use of

φ(γ) =
1− γ

(
√

2−1)γ
and φ(0+) =

1
3

(see [15]) and (4.24) we obtain bounds for α3 and β3 .
In order to establish inequalities (4.23) with conditions of validity as stated above,

we put the two-sided inequality (4.23) in the form

α4 <
Lp −Gp

A−Gp
< β4.

Using (3.10) and (3.9), with u = tanh t (t > 0) , we can write the last double inequality
as

α4 < φ(t) < β4, (4.26)

where φ(t) is defined in (4.25). It follows from the proof of Theorem 3.1 in [15] that the
function φ(t) is also strictly decreasing on the positive semiaxis. Since limt→∞ φ(t) =
0, we conclude that

0 � φ(t) � 1
3
.

This in conjunction with (4.26) yields α4 = 0 and
1
3

� β4 � 1. The proof is complete.

A special case of (4.21), when p = 1, has been established in [6] and in [23] while
inequalities (4.22), with p = 1, have been obtained in [15]. �

A counterpart of Theorem 4.3 with bounding terms in the form of geometric con-
vex combinations reads as follows.

THEOREM 4.4. Let γ be the same as defined in Theorem 4.3. The simultaneous
inequality

Aα1G1−α1
p < Pp < Aβ1G1−β1

p (4.27)

holds true if and only if 0 � α1 � 2
3

and β1 = 1 . Also,

Qα2
p A1−α2 < Tp < Qβ2

p A1−β2 (4.28)

if and only if 0 � α2 � 2
3

and
ln(16/π2)

ln2
� β2 � 1 . Also, the following inequalities

Qα3
p A1−α3 < Mp < Qβ3

p A1−β3 (4.29)

hold true if and only if 0 � α3 � 1
3

and
− lnγ

ln(cosh γ)
� β3 � 1 . Finally

Aα4G1−α4
p < Lp < Aβ4G1−β4

p (4.30)

if and only if 0 � α4 � 1
3

and β4 = 1 .
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Proof. Inequalities (4.27) and (4.28), with domains for the α ′s and the β ′s as
stated above, follow from Theorem 5.1 and Corollary 5.1 in [23]. For the proof of
(4.29) we begin with the equivalent inequality

α3 <
ln(Mp/A)
ln(Qp/A)

< β3.

Using (3.10) and (3.9) with u = sinh t , where t ∈ (0,γ) , we obtain

α3 < φ(t) < β3, (4.31)

where now

φ(t) =
ln

( sinh t
t

)
ln(cosh t)

. (4.32)

In [24] the authors have pointed out that the function φ(t) defined in (4.32) is strictly
increasing on (0,γ) . Thus

φ(0+) � φ(t) � φ(γ)

or what is the same that
1
3

� φ(t) � − lnγ
ln(cosh γ)

.

This in conjunction with (4.31) yields the asserted result. For the proof of (4.30) we
write this inequality in the equivalent form

α4 <
ln(Lp/Gp)
ln(A/Gp)

< β4.

Utilizing appropriate parts of (3.10) and (3.9) we obtain, after a little algebra, that

α4 < φ(t) < β4, (4.33)

where now t > 0 and φ(t) is defined in (4.32). Using the well-known inequality
sinh t/t < cosh t we see that

1
3

� φ(t) < 1.

This and (4.33) give the desired domains for α4 and β4 . The proof is complete. �
In the last theorem of this section we give two double inequalities providing bounds

for the Seiffert mean P . The bounding quantities are the arithmetic convex combina-
tions of two p -means.

THEOREM 4.5. Let 0 < p,q � 1 . In order for the inequalities

αA+(1−α)Hp < P < βA+(1−β )Hq (4.34)

to be satisfied it is necessary and sufficient that

p
√

1−α >

√
1− 2

π
(4.35)
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and

q
√

1−β <
1√
6
, (4.36)

where 0 < α,β < 1 . The two-sided inequality

αCp +(1−α)Hp < P < βCq +(1−β )Hq (4.37)

holds true if and only if

p
√

1−2α >

√
1− 2

π
(4.38)

and

q
√

1−2β <
1√
6
, (4.39)

where 0 < α,β < 1/2.

Proof. First we write the left-hand side inequality of (4.34) in the form

α <
P−Hp

A−Hp
. (4.40)

With Hp = A(1− p2v2) and P = A
v

sin−1 v
(see (3.9), (3.10), and (3.8)) we see that

(4.40) can be written as

α <

v

sin−1 v
−1+ p2v2

p2v2 . (4.41)

Letting v = sin t (0 < t < π/2) we write (4.41) as follows

p2(1−α) >
t− sint

t sin2 t
=: φ(t) (4.42)

We shall prove now that the function φ(t) is strictly increasing on (0,π/2) . Differen-
tiation yields

sin3 t
cost

φ ′(t) =
sin t
t

+
sin t
t

tan t
t

−2 =: g(t).

To obtain the assertion it suffices to show that g(t) > 0 for all t ∈ (0,π/2) . To this aim
we utilize the inequality of Adamović and Mitrinović which is equivalent to

1 <
sin t
t

(sin t
t

tan t
t

)
.

Extracting the square roots on both sides and next applying the inequality of arithmetic
and geometric means we obtain

1 <

√
sin t
t

( sin t
t

tan t
t

)
<

1
2

( sin t
t

+
sin t
t

tan t
t

)
.
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Thus the function g(t) is positive on (0,π/2) . This in turn implies that the function
φ(t) is strictly increasing on the same domain. Moreover, φ(0+) = 1/6 and φ(π/2) =
1− 2/π . This in conjunction with (4.42) yields (4.35). In a similar manner we can
prove, using the right-hand side inequality in (4.38), that

q2(1−β ) < φ(t)

which yields (4.36).
Inequalities (4.37) together with the associated conditions (4.38) and (4.39) can be

established in an analogous manner. First we write the first inequality in (4.37) as

α <
P−Hp

Cp−Hp
.

Using appropriate formulas listed in (3.9) and (3.10) we can write the last inequality as
follows

α <

v

sin−1 v
−1+ p2v2

2p2v2 .

Substituting v = sin t (0 < t < π/2) we obtain

φ(t) < p2(1−2α), (4.43)

where φ(t) is defined in (4.42). We already know that

1
6

� φ(t) � 1− 2
π

. (4.44)

This in conjunction with (4.43) yields (4.38). In a similar fashion one can prove that
the second inequality in (4.37) is equivalent to

q2(1−2β ) < φ(t).

Combining this with the first inequality in (4.44) yields (4.39). �
We close this section with the remark that in the case when p = q = 1 the first part

of Theorem 4.5 has been established in [5] while the second one appears in [12].
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