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SHARP INEQUALITIES INVOLVING

NEUMAN–SÁNDOR AND LOGARITHMIC MEANS

EDWARD NEUMAN

(Communicated by J. Matkowski)

Abstract. Sharp bounds for the Neuman-Sándor mean and for the logarithmic mean are estab-
lished. The bounding quantities are the one-parameter bivariate means called the p-means. In
this paper best values of the parameters of the bounding means are obtained.

1. Introduction

In recent years a significant progress has been made in developing new inequalities
for bivariate means. In particular, means such as the logarithmic mean, two Seiffert
means, and recently introduced mean by E. Neuman and J. Sándor (see [11]) have
attracted attention of many researchers. All these means belong to a larger family of
means called the Schwab-Borchardt means (see, e.g., [1], [2], [11], [12], [7]). The latter
family of means, however, is not utilized in this paper. The Neuman-Sándor mean has
been studied extensively in [8], [9], [5], [13], and in [14].

In this paper we present results which complement those reported in [10]. In
Section 2 we give definitions and some properties of all bivariate means used in this
paper. Main results of the present work are established in Section 3. They involve sharp
bounds for the Neuman-Sándor mean and the logarithmic mean. The bounding means
belong to the one-parameter family of means which in [10] are called the p-means.

2. Defnitions and preliminaries

In this section we give definitions of several bivariate means that are used in the
sequel.

Let a,b > 0. In order to avoid trivialities we will always assume that a �= b . The
unweighted arithmetic mean of a and b is defined as

A =
a+b

2
.
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The bivariate means discussed in this paper include the Neuman-Sándor mean M and
the logarithmic mean L . Recall that

M = A
v

sinh −1v
, L = A

v
tanh −1v

, (1)

where

v =
a−b
a+b

. (2)

(see [11], [1], [2]). Clearly 0 < |v| < 1.
Other unweighted bivariate means used in this paper are the harmonic mean H ,

geometric mean G , root-square mean Q and the contra-harmonic mean C which are
defined in usual way

H =
2ab
a+b

, G =
√

ab, Q =

√
a2 +b2

2
, C =

a2 +b2

a+b
. (3)

One can easily verify that the means defined in (3) all can be expressed in terms
of A and v . We have

H = A(1− v2), G = A
√

1− v2,

Q = A
√

1+ v2, C = A(1+ v2).
(4)

All the means mentioned above are comparable. It is known that

H < G < L < A < M < Q < C (5)

(see, e.g., [11]).
Following [10] we introduce a family of bivariate means which depend on the

parameter p which satisfies |p| � 1. First we define two nonnegative numbers w1 and
w2 :

w1 =
1+ p

2
, w2 =

1− p
2

. (6)

Clearly w1 +w2 = 1. We associate with the pair (a,b) a pair of positive numbers (x,y) ,
where

x = w1a+w2b, y = w1b+w2a. (7)

Thus x and y are the convex combinations of a and b .
For the sake of presentation let N stand for a bivariate symmetric mean. We define

a mean Np(a,b) ≡ Np as follows

Np(a,b) = N(x,y). (8)

We will call the mean Np the p-mean or the p-mean generated by N .
We will present now some elementary properties of the p-mans. Using (8), (6),

and (7) we see that

N−p(a,b) = N(y,x) = N(x,y) = Np(a,b).
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Thus the function p → Np is an even function. To this end we will assume that 0 �
p � 1. It follows from (6) and (7) that

N0 = A, N1 = N. (9)

Moreover, the function p → Np is strictly decreasing if N < A , i.e.,

N1 � Np � N0 (10)

or is strictly increasing if N > A , i.e.,

N0 � Np � N1. (11)

We now present formulas for the p-means mentioned in this section. Let us begin
with the case when N = A . We have

Ap = Ap(a,b) = A(x,y) = A.

Thus we shall always write A instead of Ap when no confusion would arise. To obtain
the p-versions of the means listed in (1) and (3) let us introduce a quantity u , where

u =
x− y
x+ y

. (12)

Using (12) and (2) we obtain
u = pv. (13)

Since 0 < |v| < 1, 0 < |u| < p � 1
It is easy to verify that the formulas for the p-means derived from those listed in

(3) read as follows

Hp = A(1−u2), Gp = A
√

1−u2,

Qp = A
√

1+u2, Cp = A(1+u2).
(14)

3. Main results

The goal of this section is to establish sharp bounds for means M and L means
defined in (1). Bounding quantities are pairs of the p-means listed in (14). For similar
results involving two Seiffert means, the interested reader is referred to [10], [3], and
[4].

For the later use we define μ = sinh −1(1) = ln(1+
√

2) .
In the first problem discussed here we deal with the question: For which numbers

p and q , where 0 < p,q < 1, the two-sided inequality

Qp < M < Qq (15)

is satisfied? Answer to the last one is contained in the following
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THEOREM 1. In order for the inequalities (15) to be satisfied it is necessary and
sufficient that

p �
√

1
μ2 −1 = 0.536... and q �

√
1
3

= 0.577.... (16)

Proof. Making use of (1), (14), and (13) we see that (15) is the same as

A
√

1+ p2v2 < A
v

sinh −1v
< A

√
1+q2v2.

Letting v = sinh t (0 � t � μ) we can write the last two-sided inequality as

p2 < ϕ(t) < q2, (17)

where

ϕ(t) =
1
t2

− 1
sinh 2t

. (18)

Differentiation yields

ϕ ′(t) = 2
( cosh t

sinh 3t
− 1

t3

)
=

2
sinh 3t

(
cosht−

(sinh t
t

)3)
.

Application of Lazarević inequality (see, e.g., [6])

cosht <
(sinh t

t

)3
(19)

(t �= 0) gives ϕ ′(t) < 0, where the last inequality is valid for all 0 � t � μ . Thus the
function ϕ(t) is strictly decreasing on the stated domain. Moreover, limt→0+ ϕ(t) =
1/3 and limt→μ− ϕ(t) = 1/μ2 − 1. This in conjunction with (17) implies that p2 �
1/μ2−1 and q2 � 1/3. Hence the asserted result (16) follows. �

Another pair of bounds for the Neuman-Sándor mean is obtained in the following

THEOREM 2. The following inequalities

Cp < M < Cq (20)

are satisfied if and only if

p �
√

1
μ
−1 = 0.366... and q �

√
1
6

= 0.408.... (21)

Proof. We follow the initial lines in the proof of the previous theorem to write (20)
in the equivalent form

p2 <
1
v2

( v
sinh −1v

−1
)

< q2.
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Again, we let v = sinh t (0 � t � μ) , to obtain

p2 < ϕ(t) < q2, (22)

where now

ϕ(t) =
1

t sinh t
− 1

sinh 2t
.

Differentiating function ϕ we obtain

ϕ ′(t) = − 1
sinh 3t

f (t), (23)

where

f (t) = −2cosht +
(sinh t

t

)2
+

sinh t
t

· cosh t.

Use of Lazarević inequality (19) yields

( sinh t
t

)2
> (cosh t)2/3

and
sinh t

t
cosht > (cosh t)4/3.

These inequalities are now utilized to obtain

f (t) > −2cosht +(cosht)2/3 +(cosht)4/3.

Letting (cosht)1/3 = c we can write the last inequality in the form f (t) > −2c3 + c2 +
c4 . A factorization of the last expression yields

f (t) > [c(c−1)]2 > 0.

This and (3.9) imply that ϕ ′(t) < 0. Easy computations also give limt→0+ ϕ(t) = 1/6
and limt→μ− ϕ(t) = 1/μ − 1. The last two limits together with (22) give the desired
result (23). �

We will establish now sharp lower and upper bounds for the logarithmic mean L .
Those bounds involve either pairs of the p-harmonic means or the p-geometric means.
We have the following

THEOREM 3. The following two-sided inequality

Hp < L < Hq (24)

holds true if and only if

p = 1, and q �
√

1
3

= 0.577.... (25)
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Proof. It follows from (1), (14), and (13) that the two-sided inequality (24) is
equivalent to

A(1− p2v2) < A
v

tanh −1v
< A(1−q2v2).

We rewrite the last inequalities as follows

q2 <
1
v2 −

1
v tanh −1v

< p2.

Letting above v = tanh v (t � 0) we obtain

q2 < ϕ(t) < p2, (26)

where

ϕ(t) =
1

tanh 2t
− 1

t tanh t
.

We shall demonstrate now that the function ϕ(t) is strictly increasing on the nonnega-
tive semi-axis. Differentiation gives

ϕ ′(t) =
1

sinh 3t
f (t), (27)

where

f (t) =
sinh t

t
+

(sinh t
t

)2
cosht −2cosht.

Two applications of Lazarević inequality (19) yield

f (t) > (cosht)1/3 +(cosht)5/3−2cosht.

With c = (cosht)1/3 (t �= 0) the last inequality can be written as f (t) > c(c2 − 1)2 .
Since c > 1, f (t) > 0. This in conjunction with (27) gives ϕ ′(t) > 0. Thus the function
ϕ(t) is strictly increasing on its domain. This, (26), and the fact that limt→0+ ϕ(t) =
1/3 and limt→∞ ϕ(t) = 1 give the assertion (25). �

We close this section with the following

THEOREM 4. In order for the simultaneous inequalities

Gp < L < Gq (28)

to be satisfied it is necessary and sufficient that

p = 1, and q �
√

2
3

= 0.816.... (29)

Proof. We follow the lines used in the proofs of the previous theorems of this
section. Making use of (1), (14), and (13) we see that the inequality (28) can be written
as

A
√

1− p2v2 < A
v

tanh −1v
< A

√
1−q2v2.
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Substituting v = tanh t (t > 0) we obtain

q2 < ϕ(t) < p2, (30)

where now

ϕ(t) =
1

tanh 2t
− 1

t2
. (31)

Differentiation yields

ϕ ′(t) =
2

sinh 3t

(( sinh t
t

)3− cosht
)
.

Again we use Lazarević inequality (19) to conclude that the function ϕ(t) is strictly in-
creasing on its domain. Easy computations yield limt→0+ ϕ(t)= 2/3 and limt→∞ ϕ(t)=
1. This in conjunction with the monotonicity property of the function ϕ(t) gives the
desired result. The proof is complete. �
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