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Abstract. Starting from certain inequalities for hyperbolic and trigonometric functions, we ob-
tain some general inequalities for functions and their inverses. As applications, refinements and
new inequalities for hyperbolic and trigonometric functions are pointed out.

1. Introduction

During the last years there has been a great interest in trigonometric and hyperbolic
inequalities. For papers on the famous Jordan’s, Cusa-Huygens, Wilker’s or Huygens’,
etc. inequalities we quote e.g. [4], [3], [2], [1], [5], [6], [7], [8], [9], [10] and the
references therein.

In the recent interesting paper [1], the authors have considered some hyperbolic,
trigonometric or hyperbolic-trigonometric inequalities. Among many inequalities, the
following have been proved: For all x ∈ (0,1) one has

(i) x/arcsinx � sinx/x;

(ii) x/arcsinhx � sinhx/x;

(iii) x/arctanx � tanx/x;

(iv) x/arctanhx � tanhx/x.

(1.1)

The aim of this note is to offer extensions of these inequalities for arbitrary func-
tions satisfying certain conditions. As particular cases, relations (1.1) will be reob-
tained, in more precise forms. Reverse type inequalities will be pointed out, too.
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2. Inequalities connecting functions with their inverses

In this section we will consider a general result on functions and their inverses.

THEOREM 2.1. Let f : I → J be a bijective function, where I , J are nonempty

subsets of (0,+∞) . Suppose that the function g(x) =
f (x)
x

, x ∈ I is strictly increasing.

Then for any x ∈ I , y ∈ J such that f (x) � y one has

f (x) f−1(y) � xy, (2.1)

where f−1 : J → I denotes the inverse function of f .
Under the same conditions, if f (x) � y one has the reverse inequality

f (x) f−1(y) � xy. (2.2)

Proof. First remark that f must be strictly increasing, too. Indeed, if x1 , x2 ∈ I

and x1 < x2 , then
f (x1)
x1

<
f (x2)
x2

, so f (x1) <
x1

x2
f (x2) < f (x2) . Thus f−1 is also

strictly increasing. Put t = f−1(y) . Since f−1 is strictly increasing, we can write

t � x , so
f (t)
t

� f (x)
x

so yx � f (x) f−1(y) , i.e. inequality (2.1) holds true.

When y � f (x) we can write similarly
f (x)
x

� f (t)
t

, where t = f−1(y) � x , and

(2.2) follows. �

Clearly one has equality in (2.1) or (2.2) only when y = f (x) .
The following result will be obtained with the aid of (2.1).

THEOREM 2.2.
(1) For any x ∈ (0,1) and y ∈

(
0,

π
2

)
such that y < arcsinx one has

arcsinx · siny > xy. (2.3)

(2) For any x > 0 , y > 0 such that sinhx > y one has

sinhx · arcsinhy > xy. (2.4)

(3) For any x ∈
(
0,

π
2

)
and y ∈ (0,∞) such that tanx > y one has

tanx · arctany > xy. (2.5)

(4) For any x ∈ (0,1) and y ∈ (0,∞) such that arctanhx > y one has

arctanhx · tanhy > xy. (2.6)

Proof. (1) Let I = (0,1) , J =
(
0,

π
2

)
and f (x) = arcsinx . Then

g(x) =
arcsinx

x
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is strictly increasing, as

g′(x) =
x−√

1− x2 arcsinx

x2
√

1− x2
> 0

by arcsinx <
x√

1− x2
. Indeed, by letting x = sin p , this becomes

p <
sin p
cos p

= tan p,

which is well-known.
(2) Let I = J = (0,∞) and f (x) = sinhx . Then

(
sinhx

x

)′
=

coshx · x− sinhx
x2 > 0

by tanhx < x , which is known.

(3) For I =
(
0,

π
2

)
, J = (0,∞) and f (x) = tanx one has

(
f (x)
x

)′
=

x− sinxcosx
x2 cos2 x

> 0

as x > sinx and 1 > cosx .
(4) I = (0,1) , J = (0,∞) , f (x) = arctanhx . As

(
arctanhx

x

)′
=

(
x

1− x2 − arctanhx

)/
x2 > 0

by arctanhx >
x

1− x2 , which is equivalent, by letting x = tanh p by p < sinh p ·cosh p .

This is true, as sinh p > 0 and cosh p > 1 for p > 0. �

As a corollary, the above theorem gives:

COROLLARY 2.3.

(i)
x

arcsinx
<

sinx
x

for x ∈ (0,1);

(ii)
x

arcsinhx
<

sinhx
x

for x > 0;

(iii)
x

arctanx
<

tanx
x

for x ∈
(
0,

π
2

)
;

(iv)
x

arctanhx
<

tanhx
x

for x ∈ (0,1).

(2.7)

Proof. (i) by (2.3) from arcsinx > x for x ∈ (0,1) .
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(ii) by (2.4) from sinhx > x for x > 0.

(iii) by (2.5) from tanx > x for x ∈
(
0,

π
2

)
.

(iv) by (2.6) from arctanhx > x for x ∈ (0,1) . �

REMARK. Clearly, the results hold true in symmetric intervals, too. E.g. (i) for
x ∈ (−1,1) , etc.

These exact results may be compared with relations (1.1), proved in [1].
The following result will be an application of (2.2):

THEOREM 2.3.

(i)
x

arcsinx
>

sin
(π

2
x
)

π
2

x
, for x ∈ (0,1);

(ii)
sinhx

x
<

x
a · arcsinh(x/a)

, for x ∈ (0,k), where k > 0 and a =
k

sinhk
;

(iii)
tanx

x
<

bx
arctan(bx)

, for x ∈ (0,k), where 0 < k < π/2 and b =
tank

k
;

(iv)
x

arctanhx
>

tanh(cx)
cx

, for x ∈ (0,k), where k ∈ (0,1) and c =
k

arctanhk
.

Proof. (i) Since
arcsinx

x
is a strictly increasing function of x ,

arcsinx
x

<
arcsin(π/2)

π/2
,

so
2
π

arcsinx = f (x) < x . Now, f is bijective, having the inverse

f−1(x) = sin
(π

2
· x

)
.

Thus, relation (2.2) of Theorem 2.1, applied to y = x implies (i).
(ii) Put f (x) = a · sinhx < x , and apply the same method.

(iii) Let f (x) =
1
b
· tanx and use the monotonicity of

tanx
x

.

(iv) Let f (x) = c · arctanhx and use the monotonicity of Corollary 2.3 (iv). �

REMARKS.

1) When k = 1 and a =
1

sinh1
in Theorem 2.3 (ii), we get

sinhx
x

< (sinh1) · x
arcsin((sinh1)x)

for x ∈ (0,1).
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2) When k = π/4 in Theorem 2.3 (iii) , we get

tanx
x

<

(
4
π

x

)

arctan

(
4
π

x

) for x ∈
(
0,

π
4

)
.

3) When k =
1
2

in Theorem 2.3 (iv) , we get

x
arctanhx

>
tanh(x/ ln3)

x/ ln3
for x ∈

(
0,

1
2

)
.

4) The results hold in symmetric intervals, too.
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