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BOUNDS FOR THE ZEROS OF A CLASS

OF LACUNARY–TYPE POLYNOMIALS

A. AZIZ AND N. A. RATHER

(Communicated by P. Jain)

Abstract. In this paper, we present certain results concerning the location of the zeros of lacunary-
tpye polynomials which generalize and refine some known Cauchy type bounds for the zeros of
polynomials.

1. Introduction

The following classical result is due to Cauchy [1](see also [6, p. 123].

THEOREM A. If

P(z) = a0 +a1z+ · · ·+an−1z
n−1 +anz

n

is a polynomial of degree n and

Q =
{

max
0� j�n−1

∣∣∣∣a j

an

∣∣∣∣
}1/n

,

then all the zeros of P(z) lie in circle

|z| < 1+Qn.

In literature [6, 8, 9], there exist a variety of results giving bounds which are valid
for all the zeros or for p of the zeros, p � n , of the polynomial

P(z) = a0 +a1z+ · · ·+anz
n.

In either case the bounds were expressed as the functions of all the coefficients a0,a1, . . . ,
an of P(z) .

An important class of polynomials are those of the lacunary type

P(z) = a0 +a1z+ · · ·+apz
p +an1z

n1 +an2z
n2 +an3z

n3 + · · ·+ankz
nk ,

0 < n0 = p < n1 < n2 < · · · < nk, a0apan1an2 · · ·ank �= 0.
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Here the coefficients a j, 0 � j � p , are fixed; anj , j = 1,2, · · · ,k , are arbitrary and
remaining coefficients are zero. Landau [3, 4] initiated the study of polynomials of this
form in 1906-7 and proved that every trinomial

a0 +a1z+anz
n, a1an �= 0, n � 2,

has at least one zero in the circle |z| � 2|a0/a1| and every quadrinomial

a0 +a1z+amzm +anz
n, a1aman �= 0, 2 � m < n,

has at least one zero in the circle |z| � (17/3)|a0/a1| .
About sixty years ago, Simeon Reich proposed and among others, O. P. Lossers

[5] proved the following:

THEOREM B. If

P(z) = a0 +a1z+ · · ·+an−2z
n−2 +anz

n

is a polynomial of degree n with

Q =
{

max
0� j�n−2

∣∣∣∣a j

an

∣∣∣∣
}1/n

and Q � 1,

then all the zeros of P(z) lie in the circle

|z| � Q+Q2 + · · ·+Qn−1. (1)

2. Main results

Here we first present the following generalization of Theorem B to lacunary type
polynomials which among other things considerably improves the bound (1) for r =
n− 2 and further shows that the assertion (1) remains valid even if we do not assume
that Q > 1.

THEOREM 1. Let

P(z) = a0 +a1z+ · · ·+arz
r +anz

n, ar �= 0, 0 � r � n−1,

be a polynomial of degree n. If

Q =
{

max
0� j�r

∣∣∣∣a j

an

∣∣∣∣
}1/n

,

then all the zeros of P(z) lie in circle

|z| � {
Qn +Qn−1 + · · ·+Qn−r}1/n−r

. (2)
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COROLLARY 1. All the zeros of the polynomial

P(z) = a0 +a1z+ · · ·+an−2z
n−2 +anz

n

of degree n lie in circle

|z| � {
Qn +Qn−1 + · · ·+Q2}1/2

(3)

where

Q =
{

max
0� j�n−2

∣∣∣∣a j

an

∣∣∣∣
}1/n

.

REMARK 1. Since it can be easily verified with the help of mathematical induc-
tion that

(Q2 +Q3 + · · ·+Qn)1/2 � Q+Q2 + · · ·+Qn−1

for n � 2, it follows that the bound (3) of Corollary 1 is sharper than the bound (1) of
the Theorem B.

The following result was proved by Mohammad [7,Theorem 1].

THEOREM C. All the zeros of the polynomial

P(z) = a0 +a1z+ · · ·+an−1z
n−1 +anz

n

of degree n lie in circle

|z| � max
{

Lp, L1/n
p

}
where

Lp = n1/q

{
n−1

∑
j=0

∣∣∣∣a j

an

∣∣∣∣
p
}1/p

,

p > 1 , q > 1 with p−1 +q−1 = 1.

Here we next generalize this result to lacunary polynomials and prove the follow-
ing:

THEOREM 2. For any given positive number t , all the zeros of the polynomial

P(z) = a0 +a1z+ · · ·+arz
r +anz

n, ar �= 0, 0 � r � n−1

of degree n lie in the circle

|z| � t max
{

L1/(n−r)
p,t , L1/n

p,t

}
(4)

where

Lp,t = (r+1)1/q

{
r

∑
j=0

∣∣a j/ant
n− j

∣∣p

}1/p

,

p > 1 , q > 1 with p−1 +q−1 = 1. The bound is sharp.
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REMARK 2. The limit in Theorem 2 is attained by

P(z) = tn + tn−1z+ · · ·+ tn−rzr − (r+1)zn ,t > 0.

To see this, we have

r

∑
j=0

∣∣∣∣ a j

antn− j

∣∣∣∣
p

=
r

∑
j=0

{
tn− j

(r+1)tn− j

}p

=
r

∑
j=0

1
(r+1)p = (r+1)1−p,

which gives

Lp,t = (r+1)1/q

{
r

∑
j=0

∣∣a j/ant
n− j

∣∣p

}1/p

= 1,

so that
t max

{
L1/(n−r)

p,t , L1/n
p,t

}
= t

and z = t is a zero of P(z) .

REMARK 3. If we take t = 1 and r = n−1 in Theorem 2, we get Theorem C.

COROLLARY 2. For any given positive number t , all the zeros of the polynomial

P(z) = a0 +a1z+ · · ·+an−1z
n−1 +anz

n

of degree n lie in the circle

|z| � t max
{

Np,t , N1/n
p,t

}
(5)

where

Np,t = n1/q

{
n−1

∑
j=0

∣∣a j/ant
n− j

∣∣p

}1/p

,

p > 1 , q > 1 with p−1 +q−1 = 1. The bound is sharp.

Finally in this paper we present the following result.

THEOREM 3. For every positive number t, all the zeros of the polynomial

P(z) = a0 +a1z+ · · ·+an−1z
n−1 +anz

n

of degree n lie in circle

|z| � (n+1)1/q

{
n

∑
j=0

∣∣∣∣ ta j −a j−1

antn− j

∣∣∣∣
p
}1/p

(6)

where p > 1 , q > 1 with p−1 +q−1 = 1.
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The following result is the limiting case of the Theorem 3 when q → ∞ so that
p → 1.

COROLLARY 3. For any given positive number t , all the zeros of the polynomial

P(z) = a0 +a1z+ · · ·+an−1z
n−1 +anz

n

of degree n lie in the circle

|z| �
n

∑
j=0

∣∣∣∣ ta j −a j−1

tn− jan

∣∣∣∣ .
REMARK 4. If a j is real and ta j −a j−1 � 0, j = 1,2, · · · ,n , then it follows from

Corollary 3 that for every t > 0, all the zeros of polynoimial

P(z) = a0 +a1z+ · · ·+an−1z
n−1 +anz

n

of degree n lie in the circle

|z| � tnan−a0 + |a0|
tn−1|an| .

For t = 1, we get a result due to Joyal, Labelle and Rahman [2]. Further, for t = 1
and a0 > 0, it reduces to the Eneström-Kakeya Theorem (see [6, p. 136]).

3. Proofs of the main results

Proof of Theorem 1. We observe that

{
Qn +Qn−1 + · · ·+Qn−r}1/n−r � Q

for 0 � r � n−1. Also by hypothesis, |a j/an| � Qn for j = 0,1, · · · ,r. Therefore, we
have

|P(z)| = |anz
n +arz

r + · · ·a1z+a0|

� |an||zn|
{

1−
r

∑
j=0

∣∣∣∣a j

an

∣∣∣∣ 1
|z|n− j

}

� |an||zn|
{

1−
r

∑
j=0

Qn

|z|n− j

}
. (7)

Let |z| > Q , then (Q/|z|) < 1 and therefore,

(Q/|z|)n− j � (Q/|z|)n−r for j = 0,1, · · · ,r.

This gives
1

|z|n− j � 1
|z|n−rQr− j for j = 0,1, · · · ,r.
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Hence if |z| > Q , we get from (7),

|P(z)| � |an||zn|
{

1−
r

∑
j=0

Qn

|z|n−rQr− j

}

= |an||zn|
{

1− 1
|z|n−r

r

∑
j=0

Qn−r+ j

}
.

Thus |P(z)| > 0 if |z|n−r > ∑r
j=0 Qn−r+ j , that is, if

|z| > {
Qn +Qn−1 + · · ·+Qn−r}1/n−r

(� Q).

Hence all the zeros of P(z) whose modulus is greater than Q lie in circle defined by
(2). But those zeros of P(z) whose modulus is less or equal to Q already satisfy (2),
the Theorem 1 is proved. �

Proof of Theorem 2. We have

|P(z)| = |anz
n +arz

r + · · ·a1z+a0|

� |an||z|n
{

1−
r

∑
j=0

∣∣∣∣a j

an

∣∣∣∣ 1
|z|n− j

}

= |an||z|n
{

1−
r

∑
j=0

(∣∣∣∣a j

an

∣∣∣∣ 1
tn− j

)(
t
|z|

)n− j
}

,

which implies with the help of Holder’s inequality that

|P(z)| � |an||z|n
⎡
⎣1−

{
r

∑
j=0

(∣∣∣∣a j

an

∣∣∣∣ 1
tn− j

)p
}1/p {

r

∑
j=0

(
t
|z|

)q(n− j)
}1/q

⎤
⎦

= |an||z|n
⎡
⎣1− Lp,t

(r+1)1/q

{
r

∑
j=0

(
t
|z|

)q(n− j)
}1/q

⎤
⎦ . (8)

Now if Lp,t � 1, then max
{

L1/(n−r)
p,t ,L1/n

p,t

}
= L1/(n−r)

p,t . Let |z| � t , then (t/|z|)n− j �
(t/|z|)n−r for j = 0,1, · · · ,r. Hence (8) implies that if |z| > tL1/(n−r)

p,t , then

|P(z)| � |an||z|n
⎡
⎣1− Lp,t

(r+1)1/q

{
r

∑
j=0

(
t
|z|

)q(n−r)
}1/q

⎤
⎦

= |an||z|n
{

1−Lp,t

(
t
|z|

)n−r
}

> 0. (9)
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Again if Lp,t � 1, then max
{

L1/(n−r)
p,t ,L1/n

p,t

}
= L1/n

p,t . Let |z| � t , then (t/|z|)n− j �
(t/|z|)n for j = 0,1, · · · ,r. Hence from (8), we infer that if |z| > tL1/n

p,t , then

|P(z)| � |an||z|n
⎡
⎣1− Lp,t

(r+1)1/q

{
r

∑
j=0

(
t
|z|

)nq
}1/q

⎤
⎦

= |an||z|n
{

1−Lp,t

(
t
|z|

)n}
> 0. (10)

From (9) and (10), it follows that P(z) does not vanish for

|z| > max
{
tL1/(n−r)

p,t ,tL1/n
p,t

}
.

Cosequently all the zeros of P(z) lie in region defined by (4). This completes the proof
of Theorem 2. �

Proof of Theorem 3. Consider the polynomial

F(z) = (t − z)P(z)
= ta0 +(ta1−a0)z+(ta2−a1)z2 + · · ·+(tan−an−1)zn −anz

n+1

Applying Corollary 2 to the polynomial F(z) , it follows that every t > 0, all the zeros
of F(z) lie in

|z| � t max
{

Np,t ,N
1/n
p,t

}
where

Np,t = (n+1)1/q

{
n

∑
j=0

∣∣∣∣ ta j −a j−1

antn− j+1

∣∣∣∣
p
}1/p

.

But

1 =

∣∣(tn+1an− tnan−1)+ (tnan−1− tn−1an−2)+ · · ·+(t2a1− ta0)+ ta0
∣∣

tn+1|an|

�
n

∑
j=0

|t j+1a j − t ja j−1|
tn+1|an| =

n

∑
j=0

∣∣∣∣ ta j −a j−1

tn− j+1an

∣∣∣∣
� (n+1)1/q

{
n

∑
j=0

∣∣∣∣ ta j −a j−1

tn− j+1an

∣∣∣∣
p
}1/p

= Np,t ,

by Holder’s inequality. Therefore, we conclude that the zeros of F(z) and hence that
of P(z) lie in the circle

|z| � (n+1)1/q

{
n

∑
j=0

∣∣∣∣ ta j −a j−1

tn− jan

∣∣∣∣
p
}1/p

.
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This completes the proof of Theorem 3. �
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