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GEOMETRIC PROPERTIES OF BANACH SPACE VALUED

BOCHNER–LEBESGUE SPACES WITH VARIABLE EXPONENT

CHEN CHENG AND JINGSHI XU

(Communicated by L. Diening)

Abstract. In this paper, the Banach space valued Bochner-Lebesgue spaces with variable expo-
nent are introduced. Then the dual space, the reflexivity, uniformly convexity and uniformly
smoothness of these new spaces are obtained. Finally the properties of the Banach valued
Bochner-Sobolev spaces with variable exponent are also given. Those are a generalization of
scalar valued Lebesgue and Sobolev spaces with variable exponent.

1. Introduction

Since 1991, variable exponent spaces, including variable exponent Lebesgue, So-
bolev, Besov, Triebel-Lizorkin and Morrey spaces, have attracted many attentions; see
[2, 4, 7, 8, 10, 11, 15, 16] and references therein. These spaces have also many ap-
plications. It is well known that Banach space valued Bochner-Lebesgue and Sobolev
spaces have been used in analysis, for example, see [3, 13]. Motivated by mentioned
references, we will discuss Banach space valued Bochner-Lebesgue spaces with vari-
able exponent. In what follows, (A,A ,μ) will be a σ -finite complete measure space.
Suppose D is a subset of A, let χD be the indicator function on D. Let E be a Banach
space with norm ‖ · ‖. The dual space of E is the vector space E∗ of all continuous
linear mappings from E to R or C . To avoid a double definition we let K be either R

or C . We denote by SE its unit sphere {x ∈ E : ‖x‖ = 1} . Let P(A,μ) denote the set
of all μ -measurable functions p(·) : A → [1,∞] which are called variable exponents on
A.

For a function p(·)∈P(A,μ), we denote p− := essinfy∈Ap(y), p+ := esssupy∈Ap(y)
and p′(·) ∈ P(A,μ) by 1/p(y)+1/p′(y) = 1.

A convex, left-continuous function ϕ : [0,∞) → [0,∞] with ϕ(0) = 0, lim
t→∞

ϕ(t) =

∞, and lim
t→0+

ϕ(t) = 0 is called a ϕ -function. Then we recall the definition of general-

ized ϕ -function.

DEFINITION 1. Let (A,A ,μ) be a σ -finite complete measure space. A real func-
tion ϕ : A× [0,∞)→ [0,∞] is said to be a generalized ϕ -function on (A,μ) if

(a) ϕ(y, ·) is a ϕ -function for all y ∈ A.
(b) y �→ ϕ(y, t) is measurable for all t � 0.
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If ϕ is a generalized ϕ -function on (A,A ,μ), we write ϕ ∈ Φ(A,μ).

DEFINITION 2. A function f : A → E is strongly μ -measurable if there exists a
sequence { fn}n�1 of μ -simple functions converging to f μ -almost everywhere.

Then by L0(A,E) we denote the space of all E -valued strongly μ -measurable
functions on A. We set t∞ = 0, if t ∈ [0,1] and t∞ = ∞, if t ∈ (1,∞).

DEFINITION 3. The Bochner-Lebesgue spaces with variable exponent Lp(·)(A,E)
is the collection of all strongly μ -measurable functions f : A → E endowed with the
norm:

‖ f‖Lp(·)(A,E) := in f{λ > 0,ρp(·)( f/λ ) � 1}

where ρp(·)( f ) :=
∫
A ϕp(·)(y,‖ f (y)‖)dμ(y) , ϕp(·)(y,‖ f (y)‖) := ‖ f (y)‖p(y) and p(·) ∈

P(A,μ).

It is easy to see that ϕp(·) ∈ Φ(A,μ).
Our first result is that Lp(·)(A,E) is complete.

THEOREM 1. Let p(·) ∈ P(A,μ). Then Lp(·)(A,E) is a Banach space.

Secondly, we consider the dual of Lp(·)(A,E). To do so, we need to recall some
definitions.

DEFINITION 4. A mapping F : A → E is called an E -valued measure on A if

for all disjoint unions A =
∞⋃

n=1

An in A , F(A) =
∞

∑
n=1

F(An) with convergence in the

norm of E. The variation of an E -valued measure F is the mapping ‖F‖ : A → [0,∞]
defined by

‖F‖(A) = sup
π

∑
B∈π

‖F(B)‖,

where the supremum is taken of all finite disjoint partitions π of A. An E -valued
measure F is of bounded variation if ‖F‖(A) < ∞.

DEFINITION 5. A Banach space E has the Radon-Nikodym property with respect
to a σ -finite measure space (A,A ,μ) if for every E -valued measure F of bounded
variation on A which is absolutely continuous with respect to μ there exists a function
φ ∈ L1(A,E) such that

F(A1) =
∫

A1

φdμ , ∀A1 ∈ A .

Our second result is the following.
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THEOREM 2. Let (A,A ,μ) be a σ -finite complete measure space, E∗ have the
Radon-Nikodym property with respect to (A,A ,μ), and p(·) ∈P(A,μ) with p+ < ∞,

then the mapping g �→ φg,Lp′(·)(A,E∗) → (Lp(·)(A,E))∗ which is defined by

〈φg, f 〉 =
∫

A
〈g, f 〉dμ ,∀ f ∈ Lp(·)(A,E)

is a linear isomorphism and

‖g‖Lp′(·)(A,E∗) � ‖φg‖(Lp(·)(A,E))∗ � 2‖g‖Lp′(·)(A,E∗).

Suppose E is reflexive, then E∗ is also reflexive. From [6], E∗ has the Radon-
Nikodym property, thus by Theorem 2, we have the following corollary.

COROLLARY 1. If E is reflexive and p(·) ∈ P(A,E) with 1 < p− � p+ < ∞,
then Lp(·)(A,E) is reflexive.

Thirdly, we shall consider the uniformly convexity of these spaces. Let us recall
the definition of the uniformly convexity.

DEFINITION 6. Let (X ,‖·‖) be a normed space. For every 0 � ε � 2, let δX (ε) =
inf{1−‖( f + g)/2‖ : ‖ f‖,‖g‖ � 1, ‖ f − g‖ � ε}, then δX(ε) is called the modulus
of convexity of X . ‖ · ‖ is uniformly convex if δX(ε) > 0 whenever 0 < ε � 2.

A Banach space X is called uniformly convex, if there exists a uniformly convex
norm ‖ · ‖′, which is equivalent to the original norm of X .

THEOREM 3. Let p(·) ∈ P(A,μ) with 1 < p− � p+ < ∞ and E be a uniformly
convex Banach space. Then Lp(·)(A,E) is uniformly convex.

Another geometric property which we will discuses for Lp(·)(A,E) is uniformly
smoothness.

DEFINITION 7. Let X be a normed space. Define

ρX : (0,+∞) → [0,+∞)

by

ρX (t) = sup

{
1
2
(‖x+ ty‖+‖x− ty‖)−1 : x,y ∈ SX

}

if X �= {0}. If X = 0,

ρX(t) =

{
0 if 0 < t < 1;

t −1 if t � 1.

Then ρX is called uniformly smoothness of X . If lim
t→0+

ρX(t)
t

= 0, then X is called

uniformly smooth.
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COROLLARY 2. Suppose p(·) ∈ P(A,μ) with 1 < p− < and p+ < +∞. If E is
a uniformly smooth Banach space, then Lp(·)(A,E) is also a uniformly smooth Banach
space.

Finally, we shall discuss the properties of the Banach space valued Bochner-
Sobolev spaces with variable exponent.

Let Ω be a open set of Rn, and μ be the Lebesgue measure on Rn. In this case
we denote by Lp(·)(Ω,E) the Bochner-Lebesgue space with values in Banach space E
and variable exponent p(·), and P(Ω,μ) by P(Ω) for simplicity.

DEFINITION 8. Let α = (α1, . . . ,αn) ∈ Nn
0 be multi-index, |α| = α1 + . . . + αn

as the multiplicity of α. Suppose u ∈ L1
loc(Ω,E) (all local integrable functions valued

in E over Ω). If there exists g ∈ L1
loc(Ω,E) for any φ ∈C∞

0 (Ω) such that

∫
Ω

u∂ α φ dx = (−1)|α |
∫

Ω
gφ dx,

then g is called a weak derivative of u with respect to α. Denote g by ∂ αu. For
simplicity, denote ∂u

∂x j
by ∂ ju.

DEFINITION 9. Let k ∈ N0, p(·) ∈ P(Ω). Suppose u∈ Lp(·)(Ω,E). If u′ s weak
derivatives ∂ αu belong to Lp(·)(Ω,E), |α| � k, then u is called a Sobolev function,
and denote by u ∈Wk,p(·)(Ω,E). Define the modular of u in Wk,p(·)(Ω,E) as

ρWk,p(·)(Ω,E)(u) = ∑
0�|α |�k

ρp(·)(∂ αu).

Define the norm of u in Wk,p(·)(Ω,E) as

‖u‖Wk,p(·)(Ω,E) = inf{λ > 0 : ρWk,p(·)(Ω,E)(u/λ ) � 1}.

It is easy to see that W 0,p(·)(Ω,E) = Lp(·)(Ω,E).
For the Sobolev space Wk,p(·)(Ω,E), we have the following result.

THEOREM 4. Let E be a Banach space.
(i) If p(·) ∈ P(Ω), then Wk,p(·)(Ω,E) is also a Banach space.
(ii) If p(·) is bounded and E is separable, then Wk,p(·)(Ω,E) is also separable.
(iii) If 1 < p− � p+ < ∞ and E is reflexive, then Wk,p(·)(Ω,E) is also reflexive.
(iv) If 1 < p− � p+ < ∞ and E is uniformly convex, then Wk,p(·)(Ω,E) is also

uniformly convex.

DEFINITION 10. Let X be a normed space. If every sequence ui converges

weakly to u implies 1
m

m

∑
i=1

ui converges to u in X , then it is called that X has Banach-

Saks property.



BANACH SPACE VALUED BOCHNER-LEBESGUE SPACES WITH VARIABLE EXPONENT 465

From [9], we know every uniformly convex space has the Banach-Sakes property.
Thus we have the following corollary.

COROLLARY 3. Let E be a uniformly convex Banach space.
(i) Suppose p(·) ∈ P(A,μ) with 1 < p− � p+ < ∞. then Lp(·)(A,E) has the

Banach-Saks property.
(ii) If k ∈ N, and p(·) ∈ P(Ω) with 1 < p− � p+ < ∞, then Wk,p(·)(Ω,E) has

the Banach-Saks property.

DEFINITION 11. A normed space X has the Radon-Riesz property, if whenever
a sequence (ui) converges weakly to u and ‖ui‖ converges to ‖u‖, it follows that ui

converges to u in X .

It is well known that every uniformly convex normed space has the Radon-Riesz
property, for example, see Theorem 5.2.18 in [14]. Therefore we have the following
corollary.

COROLLARY 4. Let E be a uniformly convex Banach space.
(i) Suppose p(·) ∈ P(A,μ) with 1 < p− � p+ < ∞. then Lp(·)(A,E) has the

Radon-Riesz property.
(ii) If k ∈ N, and p(·) ∈ P(Ω) with 1 < p− � p+ < ∞, then Wk,p(·)(Ω,E) has

the Radon-Riesz property.

Finally, we point out that the notation � means the proof is finished.

2. Proofs of the main results

To give the proofs, we will use the ideas for the scalar valued setting; see [5]. First,
we need preliminaries.

DEFINITION 12. Let X be a K -vector space. A function ρ : X → [0,∞] is called
a convex semimodular on X if the following properties hold.

(a) ρ(0) = 0.
(b) ρ(λx) = ρ(x) for all x ∈ X ,λ ∈ K with |λ | = 1.
(c) ρ is convex.
(d) ρ is left-continuous.
(e) ρ(λx) = 0 for all λ > 0 implies x = 0.

LEMMA 1. Let ρ be a convex semimodular on X . Denote ‖x‖ρ = inf{λ > 0 :
ρ(x/λ ) � 1}.

(a) ‖x‖ρ � 1 and ρ(x) � 1 are equivalent.
(b) If ‖x‖ρ � 1, then ρ(x) � ‖x‖ρ .

Lemma 1 is Lemma 2.1.14 and Corollary 2.1.15 in [5]. The following Lemma is
Lemma 2.1.9 in [5].
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LEMMA 2. Let ρ be a convex semimodular on X and xk ∈ Xρ . Then xk → 0 for
k → ∞ if and only if lim

k→∞
ρ(λxk) = 0 for all λ > 0.

LEMMA 3. If f ∈L0(A,E), then y �→ϕp(·)(y,‖ f (y)‖) is μ -measurable and ρp(·)( f )
=
∫
A ϕp(·)(y,‖ f (y)‖)dμ(y) is a convex semimodular on L0(A,E).

Proof. Let fk → f , where fk are simple functions. Then

ϕp(·)(y,‖ fk(y)‖) = ∑
j

ϕp(·)(y,‖xkj‖)χAk
j
(y)

which is measurable and ϕp(·)(y,‖ fk(y)‖) → ϕp(·)(y,‖ f (y)‖).
Thus, ϕp(·)(·,‖ f (·)‖) is measurable.
We next show that ρp(·) is a convex semimodular on L0(A,E) :
(a) Obviously, ρp(·)(0) = 0.
(b) ρp(·)(λ f ) =

∫
A ϕp(·)(y,‖ f (y)‖)dμ(y) = ρp(·)( f ) for |λ | = 1.

(c) The convexity of ρp(·) is a direct consequence of convexity of ϕp(·).
(d) If λk ↑ 1 and y ∈ A, thus by the left-continuity and monotonicity of ϕp(·)(y, ·),

it follows
0 � ϕp(·)(y,‖λk f (y)‖) ↑ ϕp(·)(y,‖ f (y)‖).

Hence lim
k→∞

∫
A

ϕp(·)(y,‖λk f (y)‖)dμ(y) =
∫

A
ϕp(·)(y,‖ f (y)‖)dμ(y) by the theorem of

monotone convergence, i.e ρp(·)(λk f ) → ρp(·)( f ).
(e) Assume f ∈ L0(A,E) such that ρp(·)(λ f ) = 0 for all λ > 0. So for any k ∈ N

we have ϕp(·)(y,k‖ f (y)‖) = 0 for almost all y ∈ A. Since N is countable we deduce
that ϕp(·)(y,k‖ f (y)‖) = 0 for almost all y ∈ A and all k ∈ N. The convexity of ϕp(·)
and ϕp(·)(y,0) = 0 imply that ϕp(·)(y,λ‖ f (y)‖) = 0 for almost all y ∈ A and all λ > 0.
Since lim

t→∞
ϕp(·)(y, t) = ∞ for all y∈A, this implies that ‖ f (y)‖= 0 for almost all y∈A,

hence f = 0. So ρp(·) is a convex semimodular on L0(A,E). �

LEMMA 4. Let μ(A) < ∞. Then every ‖·‖Lp(·) -Cauchy sequence is also a Cauchy
sequence with respect to convergence in measure. Moreover, if fk ∈ Lp(·)(A,E) with
‖ fk‖Lp(·) → 0, then fk → 0 in measure.

Proof. Fix ε > 0 and let Vt := {y ∈ A,ϕp(·)(y,t) = 0}, for t > 0. Then Vt is mea-
surable. For all y∈A the function t →ϕp(·)(y,t) is non-decreasing and lim

t→∞
ϕp(·)(y,t) =

∞, so Vt ↓ /0 as t → ∞. Since μ(A) < ∞, we have lim
k→∞

μ(Vk) = μ( /0) = 0. Thus, there

exists K ∈ N, such that μ(VK) < ε. For a μ -measurable set U ⊂ A, define

νK(U) := ρp(·)(KχU) =
∫
U

ϕp(·)(y,K)dμ(y).

If U is μ -measurable with νK(U) = 0, then ϕp(·)(y,K) = 0 for μ -almost every
y ∈U. Thus μ(U\VK) = 0 by the definition of VK . Hence, U is a μ |A\VK

-null set,
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which means that μ |A\VK
is absolutely continuous with respect to νK . Since μ |A\VK

�
μ(A) < ∞, and μ |A\VK

is absolutely continuous with respect to νK , there exists δ ∈
(0,1) such that νK(U) � δ implies μ(U\VK) � ε.

Since fk is a ‖ · ‖Lp(·) -Cauchy sequence, there exists k0 ∈ N such that ‖Kε−1δ−1

( fm − fk)‖Lp(·) � 1 for all m,k � k0.
Assume in the following m,k � k0, then by convexity and Lemma 1,

ρp(·)(Kε−1( fm − fk)) � δρp(·)(Kε−1δ−1( fm − fk)) � δ .

We write Em,k,ε := {y ∈ A : ‖ fm(y)− fk(y)‖ � ε}. Then

νK(Em,k,ε ) =
∫

Em,k,ε
ϕp(·)(y,K)dμ(y) � ρp(·)(Kε−1( fm − fk)) � δ .

By the choice of δ , this implies that μ(Em,k,ε\Vk) � ε. With μ(Vk) < ε we have
μ(Em,k,ε) � 2ε. Since ε > 0 was arbitrary, this proves that fk is a Cauchy sequence
with respect to convergence in measure. If ‖ fk‖Lp(·) → 0, then exists K ∈ N such that
μ{‖ fk‖ � ε} � 2ε for all k � K. This proves fk → 0 in measure. �

LEMMA 5. Every ‖·‖Lp(·) -Cauchy sequence ( fk)⊂ Lp(·)(A,E) has a subsequence
which converges μ -almost everywhere to a measurable function f .

Proof. Let A =
∞⋃

i=1

Ai, with Ai pairwise disjoint and μ(Ai) < ∞ for all i ∈ N.

Then by Lemma 4, fk is a Cauchy sequence with respect to convergence in measure
on A1. Therefore there exists a measurable function f : A1 → E and a subsequence of
fk which converges to f μ -almost everywhere. Repeating this argument for every Ai

and passing to the diagonal sequence, we get a subsequence ( fk j ) and a μ -measurable
function f : A → E such that fk j → f μ -almost everywhere. �

After these preparation, we can give the proof of Theorem 1.

Proof of Theorem 1. Let ( fk) be a Cauchy sequence. By Lemma 5 there exists
a subsequence fk j and a μ -measurable function f : A → E such that fk j → f for μ -
almost every y ∈ A. This implies ϕp(·)(y,‖ fk j (y)− f (y)‖) → 0 μ -almost everywhere.

Let λ > 0 and 0 < ε < 1, since ( fk) is a Cauchy sequence, there exists K =
K(λ ,ε)∈N, such that ‖λ ( fm− fk)‖Lp(·) < ε for all m,k � K which implies ρp(·)(λ ( fm
− fk)) � ε by Lemma 1(b). Therefore by Fatou’s lemma

ρp(·)(λ ( fm − f )) =
∫

A
ϕp(·)(y,λ‖ fm(y)− lim

j→∞
fk j (y)‖)dμ(y)

=
∫

A
lim
j→∞

ϕp(·)(y,λ‖ fm(y)− fk j (y)‖)dμ(y)

� liminf
j→∞

∫
A

ϕp(·)(y,λ‖ fm(y)− fk j (y)‖)dμ(y)

= liminf
j→∞

ρp(·)(λ ( fm − fk j )) � ε.
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Then for m → ∞ and all λ > 0, ρp(·)(λ ( fm − f )) → 0. By Lemma 2, ‖ fk −
f‖Lp(·) → 0. Thus every Cauchy sequence converges in Lp(·)(A,E). �

Now we turn to prove Theorem 2.
A linear subspace F of E∗ is called norming for a subset S of E if for all x ∈ S

we have

‖x‖ = sup
x∗∈F,‖x∗‖�1

|〈x,x∗〉|.

LEMMA 6. Let p(·) ∈ P(A,μ), Y be a closed subspace of E∗ which is norming
for E. Then the mapping g �→ φg which is defined by

〈φg, f 〉 =
∫

A
〈g, f 〉dμ ,∀ f ∈ Lp(·)(A,E)

is a linear isomorphism from Lp′(·)(A,Y ) to a closed subspace of (Lp(·)(A,E))∗ which
is norming for Lp(·)(A,E), and

‖g‖Lp′(·)(A,Y ) � ‖φg‖(Lp(·)(A,E))∗ � 2‖g‖Lp′(·)(A,Y)

for all g ∈ Lp′(·)(A,Y ).

Proof. By the Hölder inequality, it remains to prove that

‖g‖Lp′(·)(A,Y) � ‖φg‖(Lp(·)(A,E))∗ .

Without loss of generality, we may assume that ‖g‖Lp′(·)(A,Y) = 1. It suffices to prove

‖φg‖(Lp(·)(A,E))∗ � 1.

Assume lim
n→∞

gn = g on Lp′(·)(A,Y ), then for ε > 0 be arbitrary, there exist N0 > 0

such that

‖φg‖ � ‖φgn‖−‖φg−gn‖ � ‖φgn‖−‖g−gn‖Lp′(·)(A,Y) � ‖φgn‖− ε

for all n � N0.

Hence, it suffices to prove for a simple function g satisfying ‖g‖Lp′(·)(A,Y) = 1 such

that ‖φg‖ � 1.

Now, let g =
N

∑
n=1

χAn ⊗ x∗n with An pairwise disjoint and 0 < μ(An) < ∞, x∗n ∈ Y

are not zero.
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For ε > 0, by choosing unit vector xn ∈ E such that 〈x∗n,xn〉 � (1− ε)‖x∗n‖, we

denote f =
N

∑
n=1

χAn ⊗‖x∗n‖p′(·)−1xn. This implies

ρp(·)( f ) =
∫

A
ϕp(·)(y,‖ f (y)‖)dμ(y) =

N

∑
n=1

∫
An

ϕp(·)(y,‖x∗n‖p′(y)−1)dμ(y)

=
N

∑
n=1

∫
An

‖x∗n‖(p′(y)−1)p(y)dμ(y) =
N

∑
n=1

∫
An

‖x∗n‖p′(y)dμ(y)

=
∫

A
ϕp′(·)(y,‖g(y)‖)dμ(y) = ρp′(·)(g) � 1.

By Lemma 1 again, we have that ‖ f‖Lp(·),E) � 1. But

〈φg, f 〉 =
∫

A

N

∑
n=1

χAn‖x∗n‖(p
′
(·)−1)〈x∗n,xn〉dμ(y) � (1− ε)

∫
A
‖x∗n‖p′(·)dμ(y) = 1− ε.

Since ε > 0 is arbitrary, then ‖φg‖ � 1. �

Now, it is the position to prove Theorem 2.

Proof of Theorem 2. Let p∈P(A,μ) with p+ < ∞. For a fixed Λ∈ (Lp(·)(A,E))∗,
let (S(n))n�1 be an approximate sequence of A, we denote the mapping Fn : A → E∗
by

〈Fn(S),x〉 = 〈Λ,χS∩S(n) ⊗ x〉,S ∈ A ,x ∈ E.

This implies

|〈Fn(S),x〉| � ‖Λ‖‖x⊗ χS∩S(n)‖Lp(·)(A,E)

� ‖x‖|Λ‖min{(μ(S∩Sn))1/p− ,(μ(S∩S(n)))1/p+}

where it follows ‖χS∩S(n)‖Lp(·)(A,E) = in f{λ > 0 :
∫
A( 1

λ )p(y)‖χS∩S(n)‖p(y)dμ(y)}. Hence,
Fn is absolutely continuous with respect to μ . Moreover, for unit vectors x j ∈ E and

S =
k⋃

j=1

Aj with Aj pairwise disjoint, it has

∣∣∣∣∣
k

∑
j=1

〈Fn(Aj),x j〉
∣∣∣∣∣ =

∣∣∣∣∣〈Λ,
k

∑
j=1

χAj∩S(n) ⊗ x j〉
∣∣∣∣∣

� ‖Λ‖
∥∥∥∥∥

k

∑
j=1

χAj∩S(n) ⊗ x j

∥∥∥∥∥
Lp(·)(A,E)

� ‖Λ‖min{(μ(S∩S(n)))1/p− ,(μ(S∩S(n)))1/p+},

where the third step follows from the definition of ‖ · ‖Lp(·)(A,E).
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By taking the supremum of the inequality over unit vectors x j ∈ E and all pairwise

disjoint measurable sets Aj such that S =
k⋃

j=1

Aj, it follows

‖Fn‖(S) � ‖Λ‖min{(μ(S∩S(n)))1/p− ,(μ(S∩S(n)))1/p+},
In particular, every Fn is of bounded variation.

Since E∗ has the Radon-Nikodym property with respect to (A,A ,μ) and Fn is
of bounded variation, these imply that every Fn has a Radon-Nikodym derivative gn ∈
L1(A,E∗), such that

Fn(S) =
∫

S
gndμ ,∀S ∈ A .

The function gn support in S(n) and gn|S(m) = gm|S(m) , where m � n. Therefore the limit
g = lim

n→∞
gn is a strongly E∗ -value measurable function, and we have

〈Λ,χS∩S(n) ⊗ x〉= |〈Fn(S),x〉| =
∫

S
〈gn,x〉dμ = 〈g,χS∩S(n) ⊗ x〉.

At last, we will prove that g ∈ Lp′(·)(A,E∗). Note the mapping

φn
g : f �→

∫
An

〈g, f 〉dμ ,whereAn = S(n)∪{‖g‖� n}

is a bounded linear functional on Lp(·)(A,E).
The functional φn

g is the same as the simple function which supports in An, then

they are same on Lp(·)(An,E) by denseness. Hence, the bounded function g|An as an
element in Lp′(·)(An,E∗) can represent functional Λ|Lp(·)(An,E). Using Lemma 6, we
have

‖g‖Lp′(·)(An,E∗) � sup
‖ f‖

Lp(·)(An,E)
�1

|〈φg, f 〉| = ‖Λ‖
Lp

′ (·)(An,E∗)
� ‖Λ‖.

By the monotone convergence theorem,

‖g‖Lp′(·)(A,E∗) � ‖Λ‖,
for An ↑ A as n → ∞. Note that 〈Λ,χAn f 〉 = 〈g,χAn f 〉, using dominated convergence
theorem and Hölder inequality, we have 〈Λ, f 〉 = 〈g, f 〉, for all f ∈ Lp(·)(A,E). Thus
we have proved g ∈ Lp′(·)(A,E∗). �

Now, we turn to prove Theorem 3. To do so, we need the following lemma; see
Lemma 5.2.9 in [14].

LEMMA 7. For each p such that 1 < p < ∞ and each function λ : (0,2]→ (0,1],
there is a function γp,λ : (0,2] → (0,1] such that if X is a uniformly convexity normed
space whose modulus of convexity δX has the property that λ (ε) � δX(ε) when 0 <
ε � 2, then

‖(x+ y)/2‖p � (1− γp,λ (t))(‖x‖p +‖y‖p)/2,

whenever 0 < t � 2 and x and y are members of X such that ‖x−y‖� tmax{‖x‖,‖y‖}.
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DEFINITION 13. A semimodular ρ on X is called uniformly convex if for every
ε > 0 there exists δ > 0 such that

ρ
(

f −g
2

)
� ε

ρ( f )+ ρ(g)
2

or ρ
(

f +g
2

)
� (1− δ )

ρ( f )+ ρ(g)
2

for all f ,g ∈ Xρ .

LEMMA 8. Let E be a uniformly convex Banach space. Let

ρp(·)( f ) :=
∫

A
‖ f (y)‖p(y)dμ(y)

for any f ∈ L0(A,E). Then ρp(·) is uniformly convex on L0(A,E).

Proof. Let 0 < ε < 1. There is nothing to show if ρp(·)( f ) = ∞ or ρp(·)(g) = ∞.

So in the following let ρp(·)( f ) , ρp(·)(g) < ∞, which implies by convexity ρp(·)(
f+g
2 ) ,

ρp(·)(
f−g
2 ) < ∞. Assume that ρp(·)(

f−g
2 ) > ε ρp(·)( f )+ρp(·)(g)

2 . we show that

ρp(·)

(
f +g

2

)
�
(

1− δ1ε
2

) ρp(·)( f )+ ρp(·)(g)
2

, for some 0 < δ1 < 1,

which proves that ρp(·) is uniformly convex. Define

D := {y ∈ A : ‖ f (y)−g(y)‖ >
ε
2

max{‖ f (y)‖,‖g(y)‖}}.

Since p− > 1, by Lemma 7, there exists 0 < δ1 < 1 such that

∥∥∥∥ f (y)+g(y)
2

∥∥∥∥
p−

� (1− δ1)
‖ f (y)‖p− +‖g(y)‖p−

2
, for all y ∈ D.

This and the convexity of s → s
p(y)
p− , s � 0, for y ∈ A, imply

∥∥∥∥ f (y)+g(y)
2

∥∥∥∥
p(y)

�
(

(1− δ1)
‖ f (y)‖p− +‖g(y)‖p−

2

) p(y)
p−

� (1− δ1)
‖ f (y)‖p(y) +‖g(y)‖p(y)

2
.

Thus

ρp(·)

(
χD

f +g
2

)
� (1− δ1)

ρp(·)(χD f )+ ρp(·)(χDg)
2

(1)

Then for almost all y ∈ A\D, we have

‖ f (y)−g(y)
2

‖ � ε
4

max{‖ f (y)‖,‖g(y)‖} � ε
2
‖ f (y)‖+‖g(y)‖

2
.
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Thus we obtain that

ρp(·)

(
χA\D

f −g
2

)
� ε

2

ρp(·)(χA\D f )+ ρp(·)(χA\Dg)
2

� ε
2

ρp(·)( f )+ ρp(·)(g)
2

.

This and ρp(·)(
f−g
2 ) > ε

ρp(·)( f )+ρp(·)(g)
2 imply

ρp(·)

(
χD

f −g
2

)
= ρp(·)

(
f −g

2

)
−ρp(·)

(
χA\D

f −g
2

)
>

ε
2

ρp(·)( f )+ ρp(·)(g)
2

(2)
Since 1

2 [ρp(·)(χA\D f )+ ρp(·)(χA\Dg)]− ρp(·)(χA\D
f+g
2 ) � 0, by splitting the do-

main of integrals into the sets D and A\D, the convexity and (1) and (2), we have

ρp(·)( f )+ ρp(·)(g)
2

−ρp(·)

(
f +g

2

)
� δ1

ρp(·)(χD f )+ ρp(·)(χDg)
2

� δ1ρp(·)

(
χD

f −g
2

)

� δ1ε
2

ρp(·)( f )+ ρp(·)(g)
2

.

This finishes the proof. �

DEFINITION 14. A semimodular ρ on X is said to satisfy the Δ2 -condition if
there exists K � 2 such that ρ(2 f ) � Kρ( f ) for all y ∈ Xρ .

The following lemma is Theorem 2.4.14 in [5].

LEMMA 9. If a semimodular ρ on X is uniformly convex and satisfies the Δ2 -
condition, then (Xρ ,‖ · ‖ρ) is uniformly convex.

Thus, we can give the proof of Theorem 3.

Proof of Theorem 3. Since ρp(·) satisfies the Δ2 -condition, Theorem 3 follows
from this, Lemma 8 and Lemma 9. �

To prove Corollary 2, we need the following lemmas, which are well known; see
[14].

LEMMA 10. Every normed space that is isometrically isomorphic to a uniformly
smooth normed space is itselfy uniformly smooth.

LEMMA 11. A normed space is uniformly convexity if and only if its dual space
is uniformly smooth, and is uniformly smooth if and only if its dual space is uniformly
convexity.

LEMMA 12. Every uniformly smooth Banach space is reflexive.
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Therefore, we can give the proof of Corollary 2.

Proof of Corollary 2. Since E is uniformly smooth, E∗ is uniformly convex by
Lemma 11. Thus Lp′(·)(A,E∗) is uniformly convex by Theorem 3. By Lemma 11 again,
(Lp′(·)(A,E∗))∗ is uniformly smooth. From Lemma 10, Lp(·)(A,(E∗)∗) is uniformly
smooth. By Lemma 12, (E∗)∗ = E. Therefore Lp(·)(A,E) is uniformly smooth. �

Finally we turn to prove Theorem 4. To this end, we need some lemmas. The
following one is well known, for example, see [14].

LEMMA 13. Let X be a Banach space and Y be either a closed subspace of X
or a Cartesian product XN , N ∈ N.

(i) If X is reflexive, then Y is also reflexive.
(ii) If X is separable, then Y is also separable.
(iii) If X is uniformly convex, then Y is also uniformly convex.

REMARK 1. Let Xj be Banach spaces for j = 1, . . . ,N. If for j = 1, . . . ,N, Xj are
reflexive, separable and uniformly convex, respectively, then Lemma 13 holds also for
Cartesian product X1 × . . .×XN . There are many equivalent norms on X1 × . . .×XN .
For example, let 1 � p � ∞, for any (x1, . . . ,xN) ∈ X1× . . .×XN , define

‖(x1, . . . ,xN)‖p =

(
N

∑
j=1

‖x j‖p
Xj

)1/p

,

then ‖ · ‖p are equivalent norms on X1× . . .×XN . Indeed, if (Xj,‖ · ‖ j) are uniformly
convex for j = 1, . . . ,N, then (X1 × . . .×XN ,‖ · ‖2) is uniformly convex, see Theorem
5.2.25 in [14].

The following lemma is Lemma 2.4.16 in [5].

LEMMA 14. If ρ1,ρ2 are uniformly convex modular on X , then ρ := ρ1 + ρ2 is
also a uniformly convex modular on X .

Finally, we can give the proof of Theorem 4.

Proof of Theorem 4. We only prove the results for the case k = 1, for k > 1 the
proof is similar.

(i) First we show the Sobolev space is a Banach space. Let (ui) be a Cauchy
sequence in W 1,p(·)(Ω,E). We show there exists u ∈W 1,p(·)(Ω,E) such that ui → u in
W 1,p(·)(Ω,E) as i → ∞.

By Theorem 1, Lp(·)(Ω,E) is a Banach space, therefore there exist u,g1, . . . ,gn ∈
Lp(·)(Ω,E) such that ui → u, and for j = 1, . . . ,n, ∂ jui → g j. Suppose ψ ∈ C∞

0 (Ω).
Since ui ∈W 1,p(·)(Ω,E), we have

∫
Ω

ui∂ jψdx = −
∫

Ω
ψ∂ juidx.
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Since strong convergence in Lp(·)(Ω,E) implies weak convergence in Lp(·)(Ω,E), so
if i → ∞, we have ∫

Ω
ui∂ jψdx →

∫
Ω

u∂ jψdx

and ∫
Ω

ψ∂ juidx →
∫

Ω
ψg jdx,

these mean (g1, . . .gn) are u′ s weak derivatives. Thus u ∈W 1,p(·)(Ω,E) and u j → u
in W 1,p(·)(Ω,E).

(ii) Let p(·) is bounded and E is separable. Note that the Lebesgue measure
over Rn is separable, then similar to the constant exponent case we can obtain that
Lp(·)(Ω,E) is also separable and we omit the detail here.

(iii) If 1 < p− � p+ < ∞, and E is reflexive, by Corollary 1, Lp(·)(Ω,E) is re-
flexive. By the mapping u �→ (u,∇u), W 1,p(·)(Ω,E) is isomorphic a closed subspace
of Lp(·)(Ω,E)× (Lp(·)(Ω,E))n. From Lemma 13, W 1,p(·)(Ω,E) is also reflexive.

(iv) Let 1 < p− � p+ < ∞ and E is uniformly convex. Remark that the semi-
modular on W 1,p(·)(Ω,E) satisfies the �2 in this case. By Lemma 8, the semimod-
ular ρ on Lp(·)(Ω,E) is uniformly convex, again from Lemma 14, the semimodular
on W 1,p(·)(Ω,E) is uniformly convex. Thus by Lemma 9 W 1,p(·)(Ω,E) is uniformly
convex. �

REMARK 2. The (iv) of Theorem 4 can also obtained by Lemma 13.
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