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ON A KY FAN TYPE INEQUALITY DUE TO H. ALZER

JAMAL ROOIN

(Communicated by P. R. Mercer)

Abstract. Let An and Hn (respectively, A′
n and H′

n ) be the weighted arithmetic and harmonic
means of x1,x2, . . . ,xn (respectively, 1−x1 , 1−x2, . . . ,1−xn ), where xi ∈ (0,1/2] (i= 1,2, . . . ,
n; n � 2) . We mainly show that, if not all of the xi ’s are equal, then

min
1�i�n

xi

1− xi
<

A′
n −H′

n

An −Hn
< max

1�i�n

xi

1− xi
,

which is a refinement and converse of the Ky Fan type inequality A′
n −H′

n � An −Hn due to H.
Alzer. Some parallel and related results are also discussed.

1. Introduction

Throughout this article, let n � 2 and λ1,λ2, . . . ,λn > 0, such that ∑n
i=1 λi = 1.

Given n arbitrary real numbers x1, . . . ,xn > 0, we denote by An , Gn and Hn the arith-
metic, geometric and harmonic means of x1, . . . ,xn respectively, i.e.

An =
n

∑
i=1

λixi, Gn =
n

∏
i=1

xλi
i , Hn =

1

∑n
i=1 λi

1
xi

. (1)

Also, when xi ∈ (0,1/2] , we denote by A′
n , G′

n , and H ′
n the arithmetic, geometric and

harmonic means of 1− x1, . . . ,1− xn respectively, i.e.

A′
n =

n

∑
i=1

λi(1− xi), G′
n =

n

∏
i=1

(1− xi)λi , H ′
n =

1

∑n
i=1 λi

1
1−xi

. (2)

If k = 1,2, . . . ,n , then Ak , Gk and Hk (respectively, A′
k , G′

k and H ′
k ) are taken to be the

arithmetic, geometric and harmonic means of x1, . . . ,xk (respectively, 1−x1, . . . ,1−xk )
with respect to the weights λ1(∑k

i=1 λi)−1, . . . ,λk(∑k
i=1 λi)−1 . When emphasizing, we

write Ak(x1, · · · ,xk) instead of Ak , and so on.
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The Ky Fan’s inequality
A′

n

G′
n

� An

Gn
, (3)

was published for the first time in the well-known book Inequalities by Beckenbach and
Bellman [5, p. 5], and from then it has evoked the interest of several mathematicians
and in numerous articles new proofs, extensions, refinements and various related results
have been published; see the survey paper [3] and the references therein, see also [9]
for some new approaches.

In 1988, an additive analogue of (3) presented by H. Alzer [4] as

A′
n−G′

n � An−Gn. (4)

In both of (3) and (4), equality holds if and only if x1 = · · · = xn .
Later, H. Alzer in [2], showed that if not all of xi ’s are equal, then

min
1�i�n

xi

1− xi
<

A′
n−G′

n

An−Gn
< max

1�i�n

xi

1− xi
, (5)

which is a refinement and converse for (4).
In [8], P. R. Mercer in a short note showed that (5) follows rather easily from the

result of D. I. Cartwright and M. J. Field [7].
Another interesting additive analogue of Ky Fan’s inequality was discovered by H.

Alzer [1] in 1993, as follows:

A′
n−H ′

n � An−Hn, (6)

with equality holding if and only if x1 = · · · = xn .
Using differentiation and Tchebyschef inequality, the proof of H. Alzer for (6)

is elementary, but technical. Besides, the proof of Alzer is only for the case of equal
weights λ1 = λ2 = · · · = λn = 1

n .
In this article, using a recursive identity together with the A-G-H inequality, we

give a simple proof of (6) in the case of arbitrary weights, by establishing an analogue
of (5) for the inequality (6).

2. The main results

In this section, first we establish a recursive identity concerning arithmetic and
harmonic means of positive numbers, which in turn yields a representation of An −Hn

as a finite series of nonnegative terms. Then, using this representation with A-G-H
inequality, we get the desired conclusion.

LEMMA 2.1. We have

An−Hn = (1−λn)
[
An−1−Hn−1 + λn

Hn(xn−Hn−1)2

xnHn−1

]
. (7)
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As a consequence,

An −Hn =
n

∑
k=2

λk ∑k−1
i=1 λi

∑k
i=1 λi

· Hk(xk −Hk−1)2

xkHk−1
. (8)

Proof. We have

An−Hn = (1−λn)(An−1−Hn−1)+ (1−λn)Hn−1 + λnxn− xnHn−1

(1−λn)xn + λnHn−1

= (1−λn)(An−1−Hn−1)+ (1−λn)λn
(xn−Hn−1)2

(1−λn)xn + λnHn−1

= (1−λn)(An−1−Hn−1)+ (1−λn)λn
Hn(xn−Hn−1)2

xnHn−1
,

and (7) is obtained.
By (7), we have

Ak −Hk =
(

1− λk

∑k
i=1 λi

)[
Ak−1−Hk−1 +

λk

∑k
i=1 λi

· Hk(xk −Hk−1)2

xkHk−1

]
(2 � k � n).

(9)
Now, multiplying both sides of (9) by ∑k

i=1 λi and taking summation from k = 2 to
k = n , we get (8), and the proof is complete. �

COROLLARY 2.2. We have

1
Hn

− 1
An

= (1−λn)
[

1
Hn−1

− 1
An−1

+ λn
(An−1− xn)2

xnAn−1An

]
, (10)

and,
1
Hn

− 1
An

=
n

∑
k=2

λk ∑k−1
i=1 λi

∑k
i=1 λi

· (Ak−1− xk)2

xkAk−1Ak
. (11)

Proof. Clearly for each k = 1,2, . . . ,n , we have

Ak

(
1
x1

, . . . ,
1
xk

)
=

1
Hk (x1, . . . ,xk)

,

and

Hk

(
1
x1

, . . . ,
1
xk

)
=

1
Ak (x1, . . . ,xk)

.

Now, changing the roles of xi ’s by 1
xi

’s, the identities (10) and (11) follow from (7)

and (8) respectively by replacing Ak,Hk and xk , by 1
Hk

, 1
Ak

and 1
xk

(k = 1,2, . . . ,n) ,
respectively. �
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THEOREM 2.3. If xi ∈ (0,1/2] (i = 1, . . . ,n;n � 2) not all are equal, then

min
1�i�n

xi

1− xi
<

A′
n−H ′

n

An−Hn
< max

1�i�n

xi

1− xi
, (12)

The inequalities in (12) give a refinement and converse for (6) .

Proof. Applying the identity (8) for (1− xi)’s instead of xi ’s; i = 1, . . . ,n , we
have

A′
n−H ′

n =
n

∑
k=2

λk ∑k−1
i=1 λi

∑k
i=1 λi

· H ′
k(1− xk−H ′

k−1)
2

(1− xk)H ′
k−1

. (13)

Let xr1 � xr2 � · · · � xrn be a rearrangement of xi ’s in increasing order. Let also for
each 1 � k � n , Ar,k and Hr,k , respectively A′

r,k and H ′
r,k be the arithmetic and har-

monic means of xr1 , . . . ,xrk , respectively 1−xr1 , . . . ,1−xrk , with respect to the weights
λr1(∑

k
i=1 λri)

−1, . . . ,λrk(∑
k
i=1 λri)

−1 . Now, since xrk � xrn , Hr,k−1 < xrn , 1− xrn �
1− xrk and 1− xrn < H ′

r,k−1 (2 � k � n) , by (8) and (13), we get

A′
n−H ′

n

An−Hn
=

A′
r,n−H ′

r,n

Ar,n−Hr,n
<

xrn

1− xrn

∑n
k=2

λrk ∑k−1
i=1 λri

∑k
i=1 λri

(H ′
r,k−1−1+ xrk)

2

∑n
k=2

λrk ∑k−1
i=1 λri

∑k
i=1 λri

(xrk −Hr,k−1)2
. (14)

But,

H ′
r,k−1 +Hr,k−1 � A′

r,k−1 +Ar,k−1 = 1 = (1− xrk)+ xrk (2 � k � n),

or xrk −Hr,k−1 � H ′
r,k−1− (1− xrk) � 0, which yields (xrk −Hr,k−1)2 � (H ′

r,k−1− (1−
xrk))

2 . So, the right hand of (14) is less than or equal to xrn
1−xrn

= max
1�i�n

xi
1−xi

, and the

right hand inequality in (12) is established.
For the left hand inequality of (12), rearrange xi ’s in a decreasing order xs1 �

xs2 � · · · � xsn and let for each 1 � k � n , As,k and Hs,k , respectively A′
s,k and H ′

s,k ,
be the arithmetic and harmonic means of xs1 , . . . ,xsk , respectively 1− xs1, . . . ,1− xsk ,
with respect to the weights λs1(∑

k
i=1 λsi)

−1, . . . ,λsk(∑
k
i=1 λsi)

−1 . Now since xsk � xsn ,
Hs,k−1 > xsn , 1− xsn � 1− xsk , 1− xsn > H ′

s,k−1 , and (Hs,k−1 − xsk)
2 � (1− xsk −

H ′
s,k−1)

2 (2 � k � n) , we have

A′
n −H ′

n

An −Hn
=

A′
s,n−H ′

s,n

As,n−Hs,n
>

xsn

1− xsn

∑n
k=2

λsk ∑k−1
i=1 λsi

∑k
i=1 λsi

(H ′
s,k−1−1+ xsk)

2

∑n
k=2

λsk ∑k−1
i=1 λsi

∑k
i=1 λsi

(xsk −Hs,k−1)2

� xsn

1− xsn
= min

1�i�n

xi

1− xi
.

This completes the proof. �
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THEOREM 2.4. If xi ∈ (0,1/2] (i = 1, . . . ,n; n � 2) not all are equal, then

min
1�i�n

(
xi

1− xi

)3

<

1
H′

n
− 1

A′
n

1
Hn

− 1
An

< max
1�i�n

(
xi

1− xi

)3

. (15)

Proof. Renaming xi ’s and corresponding λi ’s, we can assume that x1 � x2 � · · ·�
xn . Using the identity (11) for (1− xi)’s instead of xi ’s, i = 1, . . . ,n , we have

1
H ′

n
− 1

A′
n

=
n

∑
k=2

λk ∑k−1
i=1 λi

∑k
i=1 λi

· (A
′
k−1 −1+ xk)2

(1− xk)A′
k−1A

′
k

.

So, considering A′
k−1 −1+ xk = xk −Ak−1 , k = 2, · · · ,n , we get

1
H′

n
− 1

A′
n

1
Hn

− 1
An

<

1
(1−xn)3

∑n
k=2

λk ∑k−1
i=1 λi

∑k
i=1 λi

· (A′
k−1−1+ xk)2

1
x3
n

∑n
k=2

λk ∑k−1
i=1 λi

∑k
i=1 λi

· (Ak−1− xk)2
=

(
xn

1− xn

)3

,

and
1
H′

n
− 1

A′
n

1
Hn

− 1
An

>

1
(1−x1)3

∑n
k=2

λk ∑k−1
i=1 λi

∑k
i=1 λi

· (A′
k−1−1+ xk)2

1
x3
1

∑n
k=2

λk ∑k−1
i=1 λi

∑k
i=1 λi

· (Ak−1− xk)2
=

(
x1

1− x1

)3

.

This completes the proof. �

REMARK 2.5. (i) The identities (7) and (10), yield the following Rado type in-
equalities [6],

An−Hn � (1−λn)(An−1−Hn−1) , (16)

and
1
Hn

− 1
An

� (1−λn)
[

1
Hn−1

− 1
An−1

]
, (17)

with equality holding in (16), respectively (17), if and only if xn = Hn−1 , respectively
xn = An−1 .

(ii) The inequalities in (15) give us a refinement and converse of the inequality

1
H ′

n
− 1

A′
n

� 1
Hn

− 1
An

, (18)

due to J. Sandor [11]. Clearly, (18) is a consequence of (6), since,

1
H ′

n
− 1

A′
n

=
A′

n−H ′
n

A′
nH ′

n
� An−Hn

AnHn
=

1
Hn

− 1
An

.
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Indeed, since by the Lemma 3.1 of [10], for each a > b � c > d > 0, the function

f (x) =
ax−bx

cx −dx (−∞ < x < +∞),

is strictly increasing on the real line, taking a = A′
n,b = H ′

n,c = An and d = Hn in the
case of not all xi ’s equal, we have f (x) < f (1) < 1 for each x < 1, which in particular
case of x = −1 yields (18) with strict inequality.

The Figure 1 shows the behavior of this function f drawn for the special case
n = 3; λ1 = λ2 = λ3 = 1

3 , x1 = 1/2, x2 = 1/3 and x3 = 1/4. As it is seen the behavior
of this function is not clear for x > 1.

Figure 1: y = f (x) = A′
n
x−H ′

n
x

An
x−Hn

x

We conclude the paper with the following open problem:
Open problem: With the above notations, sre the values An

n −Hn
n and A′

n
n −H ′

n
n

comparable, at least in the case of equal weights?
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