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SOME GENERALIZED INTEGRAL
INEQUALITIES AND THEIR APPLICATIONS

LINGLING WAN AND RUN XU

(Communicated by Q.-H. Ma)

Abstract. In this paper, we generalize some integral inequalities to more general situations.
These on the one hand generalize and on the other hand furnish a handy tool for the study of
qualitative as well as quantitative properties of solutions of integral equations and differential
equations. Applications are given to illustrate the usefulness of the inequalities.

1. Introduction

Over the years integral inequalities have become a major tool in the analysis of
various differential and integral equations that occur in nature or are built by man (see
[1 —13]). In studying the boundedness behavior of the solutions of certain differen-
tial and integral equations, Ou-lang [1] and Pachpatte [2,3] gave some new integral
inequalities. We list them as follows.

THEOREM A. (Ou-lang) (See [1]) If u and f are non-negative functions on
[0,00) satisfying

t
u?(r) <K +2/ F()u(s)ds, for all t€0,00),
0
where k > 0 is a constant, then

u(t) < k+/0tf(s)ds. 1 €[0,00).

THEOREM B. (Pachpatte) (See [2]) Suppose that u,f,g are continuous non-
negative functions on [0,) and ® is a continuous non-decreasing function on [0,co)
with o(r) >0 for r > 0. If

u?(1) < k2—|-2/01[f(s)u(s)—|—g(s)u(s)a)(u(s))}ds, for all t €]0,00),
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where k is a constant, then

u(t) <Q7! [Q <k+/0tf(s)ds) +/0tg(s)ds] , for all t€[0,1],

where

|
Q(t ::/ ds, t>0,
@)= | o0)
Qs the inverse of Q, and t, € [0,0) is chosen in such a way that Q(k+ [; f(s)ds)+
Jog(s)ds € Dom(Q™"), forall t € [0,4,].

THEOREM C. (Pachpatte) (See [3]) Let u, f,g be real-valued non-negative con-
tinuous functions defined on R, and cy, ¢, be non-negative constants. If

)< (er+ [ 1us)s) (et [ elutsras)

and
1
clcz/ R(s)Q(s)ds < 1, for all t € Ry,
0
then
c1020(t)
1) < ; TERy,
u(t) 1 —ciea [SR(s)Q(s)ds -
where

R = [ r@)e)+ f0)glo)las.

0(1) = exp ( [l +exssyas).

The main aim of the present is to generalize some integral inequalities to more
general situations, which can be used as ready and powerful tools in the study of quali-
tative as well as quantitative properties of solutions of integral equations and differential
equations. We also illustrate the usefulness of these inequalities.

2. Main results

In the next Theorems and Corollaries, for any ¢, y € C(R4,Ry) and any constants
p,q = 0, define

"o ds . )
®,(r) ::/1 s ®,(0) = lim @,(r);

r—0t
" ds .
Y(r) = —F—, ¥,(0) = lim ¥,(r).
b oy(s?) o

To prove our Theorem 2.1, we need the following lemma.
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LEMMA 2.1. Let f; € C(R+ X Ry, Ry) with (t,s)— 9, fi(t,s), d,fi(t,s) € C(Ry X
R+,R+), i=1,2,3,4, p >0 be a constant. Assume in addition that ¢,k € C(R,R),
o € CY(Ry,Ry) are non-decreasing functions with o(t) <t fort >0, @(t) >0, and
f°° i =oo. If u € C(R+,R,) satisfies

OC t

@) <k + [ A9 + /’f2<z,s><p<u<s>>ds

+/ f3lSdS/f4tS ))ds, t >0,

then

'u\'—

1) <A{@, [ @, (k(1)) +A@)]}", 1 €A, (2.1)

where

OC t

A(r) = fltsds+/f2tsds+
0

O([

f3tsds/f4ts

q);l is the inverse of ®p,, and t € A is chosen in such a way that, ®,(k(t)) +A(t) €
Dom(@;l).

Proof. Let T € A, T > 0 be fixed and denote

o(t) t
-/ f1<r,s><p<u<s>>ds+ || 20.9)p(u(s))ds

+ fgtsds/f4ts

then

u(t) < [k(t) +x()]7,

our assumption on f;, ¢, o imply that x is non-decreasingon Ry, i=1,2,3,4. Hence
for 7 € [0,T], by calculations we have

X (1) = | filt,0(2)p(u(a(r)))o (t)+/ 9zf1(f’5)<P(u(S))dS]
+ A +/ a0 f>(t.5) 0 (u(s))ds]

v _fs(t,a(t))a'(t)Jr [ anasa] - [ a0

i 1 o(r)
+ e +/ O fa(t,5)0(u(s))ds /O £(t,)ds



498 LINGLING WAN AND RUN XU
1 d o(r) t
< o[®m)+x0)r] 5 U fit.s)ds+ [ fle.s)as
r1Jo 0

o(t) t
+/0 fg(t,s)ds-/o f4(t,s)ds],

then we get
(1) [
i N,
0 [(k(T) +x(0)7 ] ‘”/ )

—1—/0 fz(t,s)ds—f—/o t)fg(t.s)ds-/()tf4(t,s)ds].

Considering the definition of @ and the integral on the interval [0,7], yields

o(r)
p(x(r) +K(T)) < @pKT))+ [ file.)ds
t o(r) 1
+‘/0 fZ(taS)dS_F‘/O f3([,S>dS'/O f4(t,S)dS, te [O7T]

As (I)p is increasing on Dom(®), 1), then

OC t

x(t)+k(T) < dD;l [d)p(k(T))—F f1 t,s ds—|—/ folt,s)d

OC t

+ f3tsds/f4ts ] t€10,T].

Let 1 =T in the above relation, since 7 > 0 was arbitrarily chosen, considering u(r) <
1
(x(2) + k()7 , we get(2.1). O

THEOREM 2.1. Let f;, ¢,k be as in Lemma 2.1, i = 1,2,3,4. Assume in ad-
dition that g; € C(Ry x Ry,R) with (t,5) — d;g(t,s), dg;(t,s) € C(RL X Ry,Ry),
j=1,2,and p > 1 be a constant. If u € C(R1,R..) satisfies

) <Ko+ [ 1 59u00) 810 ) gl s
£ / [t 5)u(s) + g2(r,5)u(s) p(u(s))] ds

1/ Sf3(t,s)u ds/f4ts s))ds, for t >0,

then

u(t) < {d)lll [d)l_’l(z(t)—FB(t))—l-C(t)}} , LEA, (2.2)
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where
2(t) = (k(1))' 77,
B(t) = (k(1))'~ +/ fltsds+/f2ts

oft) t
C(t) :/ gi1(t,s ds+/ ga(t,s ds+/ falt,s ds-/ Sa(t,s)ds
0 0 0 0

dDI__l% is the inverse of dDI_%, and t € A is chosen in such a way that d)l_% (B(1)) €

Dom (CI)I__1 1 ) .
P

Proof. Let T € A, T > 0 be fixed and denote

”a\»— ==

T 1/ f1(t,5)uls) + g1 (2, s)u(s)@(u(s))lds

L [ s(t.90(5)+ gale,5)u(s) ()l
/ Sa(t,s)u(s)ds- /f4ts

u(t) < (k(t) +x(1))7 .

Our assumptionon f;, g, @, o, (i=1,2,3,4, j=1,2) imply that x is non-decreasing
on Ry . Hence, for 7 € [0,T], by calculations we have

(1) = pli T LA ae))u(a() o (1) + g8 ) Ju( e (0)) @ (u(ex(1)) o (2)

then

or)
+f (a,fla,s)u(s)+a,g1<t,s>u<s><p<u<s>>>ds}
=L ol 0ur) + gl u(r) (1))

+ [ @pieouts) + g s>u<s><p<u<s>>>ds]

+p— 5t.a0) o+ [ ansua] - [0

[f4(tt +/ 3 fa(t,5) @ (u(s ds} ~/Oa([)f3(t,s)u(s)ds

RSTE

<—1—[/alf1tsds+/f2tsds (T +x(0)

1

ot 1
P2 [ JA ' ¢16,9)0((K(T) +x(1)) P )ds + / §2(1,8)P((K(T) +x(1)) P )ds
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then we get

p—1 X <d[°" }
- < — fi(t,s)ds+ | fa(t,s)
T R

Considering the integration on [0, 7] to obtain
-1 1L o) 1
K(T)+x(e)] 7 < (K(T))' 7+ /O filt,s)ds + /0 falt,s)ds

or) 1 4 1
+/ 1(2,8) @ ((k( T)+x(t))5)ds+/ &2(t,8)p((k(T)+x(t)) 7 )ds

OC t

n f3tsds/f4ts +x(0))7)ds, 1 €0,T].
Let

«(T) = <k<T>>“%

B(t):O fltsds+/f2ts
oft) a(r) /
cr) = /0 g1(t,5)ds + /0 g2(1,5)ds + /0 F3(t.5)ds- /0 fa(t.5)ds

then from Lemma 2.1 we can easily get
1
K(T)+x()]' 7 < @)1, [@, 1 (=(T) +B() +C(1)], 1€ [0,7].
P P

Let r =T in the above relation, since 7 > 0 was arbitrarily chosen, considering u(r) <
1
[k(z) +x(2)]7, we get (2.2). O

COROLLARY 2.1. Let ¢, 0, k,p be asin Lemma 2.1. Assume in addition that f;,
gj, ai, bj e CY(R{,Ry), i=1,2,3,4, j=1,2. Ifu € C(Ry,Ry) satisfies

w L / [ ()i (8)u(s) + b1 (1) g1 (s)u(s) @(u(s))] s
L / ax () fa(s)u(s) + ba(0)ga()u(s) p(u(s))] ds
*ﬁ [ aswssopos: [ asto ooy, for 10
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then

ult) < {cpll [CDF;J(B( ) +Clt )}}”1, reA,

1 alt) t
B@) = (k) 7+ [ a0 fi(s)ds+ [ axo)fals)as
o) alt) t
ct) = [ n0ads+ [ bneedst [ a0)s6ds [ a@ i

and d): | is the inverse of dDI_%, and t € A is chosen in such a way that d)l_% (B(1))+

C(t) € Dom (d)l‘l , ) .

14

~

COROLLARY 2.2. Let fi, gj, @, a, k (i=1,2,3,4, j=1,2) be as in Theorem
2.1. Assume in addition that p =2 be a constant. If u € C(Ry,R) satisfies

5 o(r)
u (1) < k(t)—|—2/0 [fi(z,s)u(s)+gi1(t,s)u(s)@(u(s))]ds
+2 / t [f2<r,s>u<s> +galt,5)uls)o(u(s)] ds

—|—2 f3ts ds/f4ts s))ds, for t >0,
then
(B()+C()], 1€,

where

1 at)

B(r) = (k(r))2 + fltsds—i—/fztsds
o(r) t
0 :/0 gl(t,s)ds+/0 gz(t,s)ds+/() fg(t,s)ds~/0 fult, 5)ds

and @7 is the inverse ofd)% ,and t € A is chosen in such a way that d)% (B(1))+C(t) €
2

_1)
1 .
2

COROLLARY 2.3. Let fi, a;, gj, bj, ¢, a, k (i=1,2,3,4, j=1,2) beasin
Corollary 2.1. Assume in addition that p =2 be a constant. If u € C(R+,R.) satisfies

Dom <d)

o(t)
(1) < k(l)+2/0 a1 (t) f1(s)u(s) + b1 (t)g1(s)uls)@(u(s))] ds
42 [ a0 () + ba(0)ga(s)uts) () s
+2 / u(s)ds- / a0 fa(5)0(u(s))ds, for 10,
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then

1 o) 1
B0 = (k) + [ ahi(s)ds+ [ axn)als)ds
o) alt) t
ey = [ nwneds+ [ boneds+ [ a0p0ds [ aopods

and d)Il is the inverse ofd)% ,and t € A is chosen in such a way that d)% (B(t))+C(t) €
Dom <d)

2
_1)
ek
2
THEOREM 2.2. Let fi, g; € C(Ry X R, Ry) with (t,5) — 0, fi(t,s), digj(t,s) €
C(Ry XRi,Ry), i=1,2,3,4, j=1,2, and p > 1 be a constant. Assume in addition

that k € C(R+,R.), a € C'(R.,R.) are non-decreasing functions with o(t) <t for
t>0, o(t)>0,and || % =oo. Ifu € C(R+,R,) satisfies

w(t) < . / [F1(1,5)u(s) + &1 (1,5)u? ()] ds

/ L2t s)u(s) + ga(t, s)u (s)] ds

Ott

f3(t,s)u(s)ds'/()tf4(t,s)up71(s)ds, for 1 =0,

then

u(t) < {(k(t))l_% —|—/Ot (e_C(S)B(s)> a’s~ec(t)}p1 , tEA, (2.3)

where

)

OC t

Ct) =

B(t)z%( atfltsds+/f2ts )
Oa fgtsds/f4ts

gl(t,s)ds+/0 g(t,s) ds+

P

Dom <q> 1 )
1=

and d): | is the inverse of d)l_%, and t € A is chosen in such a way that d)l_% (B(1)) e
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Proof. Let T € A, T > 0 be fixed and denote
2 [ Auts) a1 5
_1/ [f2(t,s)u(s) +ga(t, s)u (s)lds

1/ fa(t,s)u ds/f4tsup1()d

then

u(t) < (k(t) +x(0))7.

Our assumption on f;, g;, o, (i=1,2,3,4, j=1,2) imply that x is non-decreasing
on R . Hence, for 7 € [0,T], by calculations we have

Y (0) = B {h e )u(e0)a (1) + 410 @) (o) (1)
+ / O it 5)u(s) + At s)u”(s)]ds}
-0 tJ1\Z, t81\L,
+ f2(t7t)u(t)+g2(tvt up U +/t &tf2 tvs)u(s)+at82(tvs)up(s)}ds:|

= [t atouteoeo = [ apcon “fusupl

+-f4(l Hul (1) +/3tf4lsup1 }/ f3(t,8)u }
ldi[/atfltSdS‘f'/ﬁts } +x(1)]7

_P_ “ t,s)d (t,8)ds
+p—1£/o (ss+/g2s

o)
—|—/0 f3(t,s)ds~/0 f4(t,s)ds} (k(T)+x(t)), forallt€[0,T],

then we get

p—1 X0 AT S
PoKT)ex()]p [/ g1(1:5) +/82(f»)

+ f3tsds/f4tsds] ()}75

<%[ atfltsds—F/fz ]

Let
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d
B(r) = — f1 1,8 ds+/ fa(t,s)d (2.4)

/ tsds+/g2tsds+/ fgtsds/f4ts

then the above relation is equivalent to

Z(t) — —C(t)z(t) < B(t).

dt

Multiplying the above inequality by e~“¢) and considering the integration on [0,] to
obtain

2(t) <{ 1"+/ ds}e . forallt€|0,T). 2.5)

Now, using (2.4), (2.5), and let t = T, then

L

k(T)+x(T) <{ 1——+/ ds L )}pl

since T > 0 was arbitrarily chosen, considering u(z) < [k(7) +x(7)] , ,we get(2.3). O

COROLLARY 2.4. Let f;, gj, a;, bj, &, k, p be asin Corollary 2.1, i=1,2,3,4,
Jj=12.If ue C(R+,Ry) satisfies

#0) < K0+ [ 0O AU+ (6 6
L / ax (1) fo(u(s) + ba(0)gas)u” (5)) ds
L [ oot [[asiontne as. gor 120,
then
ey < { W' H e [ (e B0)) s eC<’>}”L1 rea
where
() = (/ a0 a6+ [ a0 pas),

“ 1)g1(s ds—|—/ by(1)ga(s ds—|—/at () f3(s)ds /Ota4(t)f4(s)ds

\ SYES
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COROLLARY 2.5. Let f;, gj, o, k be asin Theorem 2.2, i=1,2,3,4, j=1,2.
Assume in addition that p =2 be a constant. If u € C(R4+,R.) satisfies

o)
(1) < k(t)+2/0 [f1(e,5)us) + (1, )2 (s)) dis
+z/[ fg(t,s)u(s)—|—g2(t,s)u2(s)] ds

—|—2 f3ts ds/f4ts (s)ds, for t=0,

then

where

B(t):%< atfltsds+/f2ts )

af(r) a(t)
Cr) :/ gl(t,s)ds—I—/ g2(t,s) ds+ Sfa(t,s)ds- / Sa(t,s)d
0 0

COROLLARY 2.6. Let f;, a;, gj, bj, &, k, be as in Corollary 2.1, i =1,2,3,4,
J = 1,2. Assume in addition that p =2 be a constant. If u € C(R+,R.) satisfies

o(r)
20y < kO +2 [ a0 () + br (1)1 (5 5) ds
42 [ aal0) 6)uls) + b(0) a0 ()] ds

2 [ s ueds [ a6 s, for 10
then

) < K@)+ [ (OB ) ds-eC0, 10,
where
B<r>=§( [ awa6s+ [ ewpes).

/l 1)gi(s ds—|—/ by(t)go(s ds—|—/at (1) f3(s)ds /Ota4(t)f4(s)ds

THEOREM 2.3. Let fi, g; € C(Ry X R, Ry) with (t,5) — 0, fi(t,s), digj(t,s) €
C(Ry xR+, Ry), i=1,2,3,4, j=1,2, p>q >0 be constants. Assume in addition
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that ¢,k € C(R+,R;), oo € C'(Ry,R;) are non-decreasing functions with o/(t) <t
fort >0, o(t) >0, and f°° i =oco. If u € C(R4,R) satisfies

p or)
uP (t) < k(t) + ﬂ/o [f1(t,s)ul(s) +g1(t,s)u? (s)p(u(s))] ds
+ﬁ ot [fa(t,5)u? (s) + g2, 5)u? (s) @(u(s))] ds
o) 1
+ﬁ/0 f3(t7S)u”(S)dS-/O fa(t,s)o(u(s))ds, for t >0, (2.6)

then

0) < @71, [, o(B()+C(1)]} 77, reA,

where

Ott

B(t) = (k(1))5 ! + ﬁzsm+/ﬁts 2.7)
o) 1
Cr) :/0 gl(t,s)ds—I—/O gz(t,s)ds—I—/O fg(t,s)ds-/o Sa(t,s)ds, (2.8)

and d)*l is the inverse of ®,_4, and t € A is chosen in such a way that ®,_4(B(t)) +

C(z) EDom(d)plq)

Proof. Forany r > 0, define y(r) = (p(ré ), then our assumption on ¢ imply that
v is non-decreasing on R, then (2.6) is equivalent to

o(t)
(1) < k(e =L [T (5) + g1, 5)u () (5))ds

pP—qJo
2 [ e 9 (5) 25yt
P [ psas [ wiastsas

Let v(r) = ud(t), then the above inequality is equivalent to
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Since ‘;—’ > 1, it follows from Theorem 2.1 that

1

v(t) < {‘Pgl_l [‘1’571(3(’)) +C(I)] } 0t , 1€10,T],

where B(r), C(t) is defined as (2.7), (2.8). Now it is elementary to check by the
definition of ¥, then

‘{1571(") :q)p*q(”),

thus we have

v(t) <{@,L, (@) 4(B(t)+C()]} 7

L
p—

, for all t€10,T],

considering u(t) = Ve (1), we get

u(t) < {31 (@, o(B@)+CW)}77, for all 1€[0,T]. D

COROLLARY 2.7. Let o, k,p,q be as in Theorem 2.3. Assume in addition that
fir &, ai, b; €CY(Ry,Ry), i=1,2,3,4, j=1,2. Ifue C(Ry,R,) satisfies

p or)
uP (1) < k(1) + Py /0 a1 (8)f1(s)u(s) + b1 (2) g1 (s)u? (s)p(u(s))] ds

+ﬁ /O [aa() 2 (5)u () + ba(£)ga()u? ()@ (u(s))] ds

a(r) "
[ @A s a6 os)ds, o 10

then

1) < {51 (@, 4(B1) +C(1)]}77, (€A,

where
B(t) = (k(t)) 4~ ‘+/ (1) fi(s ds+/a2 )fals
a(t) al(t) t
C(t) 2[) by(t)g1(s dS+/ by(t)ga(t ds+/ /Oa4(t)f4(s)ds

and d)*l is the inverse of ®,_4, and t € A is chosen in such a way that ®,_4(B(t)) +

C(z) EDom(d)plq)

REMARK. Different choices of k, a, a;, b; can give many different inequalities,
i=1,2,3,4, j=1,2. For example, let a;(r) = 1, ax(t) = b1 (t) = by(t) = a3(t) =0,
alt)=t, k(t)=k*,t € [0,00), where k > 0 be a constant, our Corollary 2.6 reduces to
Theorem A; or let a|(t) = by(t) = 1, ay(t) = ba(t) = a3(t) =0, a(t) =1, k(t) = k>,
t € [0,00), where k > 0 is a constant, our Corollary 2.3 reduces to Theorem B.
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3. Examples

Now, we will show that our results are useful in studying the boundedness and
stability of solutions to certain integro-differential equations with time delay. These
applications are given as examples.

EXAMPLE 1. Consider the nonlinear integro-differential equation with time delay
{x/(t) =y—F(t,x)+ [o H(s,x(s — t(s)))ds, 3.0
Y1) =G, x(t = 7(1))), '
where F,H,G € C(Ry x Ry,R;),7 € C'(R4,R;), and 7(t) <t on Ry. If a(t) =
t — 1(¢) is an increasing diffeomorphism on R, and
—xF (t,x) < a(t) x|v(|x]),
G (t,x) < b(1)lxlv(lxl),

(/OtH(s,x)d) o [ elds, (00 € (B, xR,

for a(t), b(t), c(t) € C(R+,R+) and some non-decreasing function v € C(Ry,R4)
with the properties v(u) > 0 for u >0 and [;° Vd—j = oo, then all the solutions of (3.1)
are bounded and global.

In fact, if (x(¢),y(z)) is a solution of (3.1) defined on the maximal existence
interval [0,7), let u(t) = \/x*(¢)+y*(¢) and p(r) = max{l,a(s)} € C(R+,Ry) for
t €[0,T). From (3.1) and our hypotheses on the functions F,H,G and v, we obtain

d w2

o (1) = 2xx' +2yy'

= 2xy — 2xF(t,x) + 2yG(t,x(ox)) + 2x/0tH(s,x(a))ds
" 2
<ﬁ+ﬁ+mmmwm+ﬁ+@mmmﬂw%(/H@ﬂmmo

< 2p()i+2p(1)uv(u)+b (1) x(0)[v(|x(or )l / o))|ds,
te [O,T).

With ¢(u) := u+v(u), an integration on [0,7], with 7 < T yields

0)+ /p Dds+2 [ b(5)(@ls)) (a(u(s)])ds
+ / « ( / c<r><x<a<r>>>|dr) ds
<meQApU m+/b (w(ex(s)))ds

+/ot o(u(s)) (/Osc(r)u(oc(r))dr) ds
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: @) b(a~1(s
2042 [ ploputorpuis)ast2 [ 2 us)oluls))as

' ) c(a”!(s))
+2/ u(s ds/ ———u(s)ds,
[ otutsas [ syt
after performing the change of variable r = o/(s) and some intermediate steps, where
o~ ! is the inverse of the diffeomorphism o. Our hypotheses on v guarantee that

I %dr = oo (see [8]). Therefore, ®(r) = [ %, r > 0, then from Corollary 2.3, we
deduce that

u(t) <CI); [(Dl +/p ds—l—/ a, (o 18 ds
+t/0a(t) %u(s)ds] ,

—CD1 { 7 +/p ds+/b ds+t/ ()d] t€[0,T).

This prove that u(¢) is bounded on [0,T) if T < eo, and all solutions of (3.1) are global.
T € A is chosen in such a way that CI)% (u(0)) + [S p(s)ds + [§b(s)ds +1 [jc(s)ds €
Dom <CI)II) s (I)Il is the inverse of q)% .

2 2

EXAMPLE 2. Consider the nonlinear integro-differential equation with time delay

X (t) =y+ftH(s,x(s— 7(s)))ds,
{y’m = Flty) 4 Glt.xlt — 7(0))), 32)

where F,H,G € C(R;+ xR,R;), T€C(R{,R.), and 7(¢) <t on Ry. If a(t) =
t — 1(¢) is an increasing diffeomorphism on R, and

—yF(f, ) < a(®)lylv(lyl),
2(1,0) < b(o)lalv(lxl),

(/st )2 |x|/ Ollds, (1,y),(t,%) € (Ry x Ry),

for a(r), b(r), c(t) € C(R+,R+) and some non-decreasing function v € C(R+,R)
with the properties v(u) > 0 for >0 and [;° % = oo, then all the solutions of (3.2)are
bounded and global.

In fact, if (x(z),y(z)) is a solution of (3.2) defined on the maximal existence
interval [0,7), let u(t) = \/x*(¢)+y*(¢) and p(r) = max{l,a(r)} € C(R+,Ry) for
t €[0,T). From (3.2) and our hypotheses on the functions F,H,G and v, we obtain

d 2

o (1) = 2xx' +2yy'

= 2xy —2yF(t,y) +2yG(t,x(o)) + 2x/0tH(s,x(a))ds
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. 2
<Xy 4 2a()|yv(|y]) +y* + G (t,x(0)) + x> + (/0 H(s,x(oc))ds)

< 2p(t )u2+2P( Huv(u) +b(t) |x(a) |v(|x(e)])
(o |/ a)lds, 1 €[0,T).

With @(u) := u+ v(u), an integration on [0,7], with r < T yields
20)+2 [ poyu)p(u)ds+ [ bis) (o) | v x(@(s)) s
+2/ Ix(or (/ (e )|dr)) ds
0)+2 [ plo)uls)ptuts)ds + [ bls)uta(s)pu(a(s))ds
+ /O o) | /0 clryuto <r>>dr] ds

after performing the change of variables r = ¢/(s) and some intermediate steps, where
o~ ! is the inverse of the diffeomorphism o. Our hypotheses on v guarantee that
ff° d’ dr = oo (see [8]). Therefore, ®(r) = f’ ds ,r >0, then from Corollary 2.3, we

deduce that
t o(r) -1 N
u(t) < @' [d>%(u(0))+/0 P(S)d”/o %‘“

+t/a(t) wms)ds}
—d) [ +/p ds+/b ds—|—t/ )d}, t€[0,7).

This prove that u(¢) is bounded on [0,T) if T < e, and all solutions of (3.2) are global.
T € A is chosen in such a way that dD%(u(O)) + S p(s)ds+ [§b(s)ds +1 [jc(s)ds €

2

2

Dom (q)Tl) , @' is the inverse of (I)%.
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