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GENERALIZATION ON KANTOROVICH INEQUALITY
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(Communicated by J. I. Fujii)

Abstract. In this paper, we provide a new form of upper bound for the converse of Jensen’s
inequality. Thereby, known estimations of the difference and ratio in Jensen’s inequality are es-
sentially improved. As an application, we also obtain an improvement of Kantorovich inequality.

1. Introduction

Throughout this paper, A , B are selfadjoint operators on a Hilbert space H , and
m1 � A � M1 , m2 � B � M2 , C(A,x) = ((M1 −A)(A−m1)x,x) .

If f is a real valued continuous convex function, then the well-known Jensen’s
inequality asserts that

f ((Ax,x)) � ( f (A)x,x). (1.1)

for every unit vector x∈H . In particular, if f (t)= 1
t (resp. t2 ), then we have (Ax,x)−1 �

(A−1x,x) (resp. (Ax,x)2 � (A2x,x)).
As a complementary inequality to Jensen’s inequality, the Kantorovich inequality

estimates the upper bound of the ratio in Jensen’s inequality: if A is a positive operator
on Hilbert space H , then

(Ax,x)(A−1x,x) � (M1 +m1)2

4M1m1
. (1.2)

Many authors have investigated on extensions of the Kantorovich one, such as Zhibing
Liu, Kanmin Wang, Chengfeng Xu [11], Furuta [7, 8] and Ky Fan [1]. Among others,
we pay our attentions to the long research series of Mond-Pečarić method [9]. The
authors established the method by which complementary inequalities to Jensen’s type
inequalities and extensions of the Kantorovich type one are obtained. Fujii et al. [4]
gave the recent developments of Mond -Pečarić method in operator inequalities.
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We look over development for operator inequalities including Seo’s studies [3, 5,
6, 10, 12, 13] up to inequalities of covariance-variance of operators introduced by Fujii,
Furuta, Nakamoto and Takahasi [2] as follows:

(A2x,x)− (Ax,x)2 � (M1 −m1)2

4
(1.3)

|(ABx,x)− (Ax,x)(Bx,x)| � (M1 −m1)(M2 −m2)
4

(1.4)

We observe that the so-called (noncommutative) covariance-variance inequality gives
a unified method to prove certain operator inequalities including the celebrated Kan-
torovich inequality, Bernstein’s inequality and so on. Though their inequalities are of
different kinds, they have common ingredients such as the estimations of the difference
and the ratio in Jensen’s inequality. Obviously, the converse of Jensen’s inequality is
important.

In this paper, we improve the inequalities (1.3) and (1.4) to obtain the more accu-
rate estimations via C(A,x) as follows:

0 � (Ak+1x,x)− (Ax,x)k+1 � 1
4
(M1 −m1)2

k

∑
p=1

(k− p+1)mp−1
1 Mk−p

1

−
k

∑
p=1

Mk−p
1

√
C(Ap,x)C(A,x) (1.5)

|(ABx,x)− (Ax,x)(Bx,x)| � (M1 −m1)(M2 −m2)
4

−
√

C(A,x)C(B,x) (1.6)

by which we extend Kantorovich inequalities as follows:

(Ax,x)(Bx,x)− (A�Bx,x)2 � (
√

M1M2 −√
m1m2)2

4M2m2
(Bx,x)2 (1.7)

2. The estimations of variance and covariance

The following basic lemma is essentially known as in [9], but our expression is a
little bit different from those in [9]. For the sake of convenience, we give it a slim proof.

LEMMA 2.1. Let A be a selfadjoint operator on Hilbert space with m1 � A � M1 .
Then, for ‖x‖ = 1

(A2x,x)− (Ax,x)2 � (M1 −m1)2

4
−C(A,x). (2.1)
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Proof. We first note that (M1 − t)(t −m1) � (M1−m1)2
4 for all real numbers t .

Hence it follows that

(A2x,x)− (Ax,x)2

= (M1 − (Ax,x))((Ax,x)−m1)− ((M1−A)(A−m1)x,x)

� (M1−m1)2

4
−C(A,x).

COROLLARY 2.2. Let A be a positive operator on Hilbert space with 0 � m1 �
A � M1 . Then, for ‖x‖ = 1 , we have

(Ax,x)− (A
1
2 x,x)2 � (

√
M1−√

m1)2

4
−C(A

1
2 ,x), (2.2)

(A−1x,x)− (A− 1
2 x,x)2 � (

√
M1 −√

m1)2

4m1M1
−C(A− 1

2 ,x). (2.3)

THEOREM 2.3. Let A,B be positive operators on Hilbert space with 0 � m1 �
A � M1 and 0 � m2 � B � M2 . Then, for ‖x‖ = 1 , we have

|(ABx,x)− (Ax,x)(Bx,x)| � (M1 −m1)(M2 −m2)
4

−
√

C(A,x)C(B,x). (2.4)

�

Proof. First of all, since

(ABx,x)− (Ax,x)(Bx,x) = ((A− (Ax,x))(B− (Bx,x))x,x),

we have

|(ABx,x)− (Ax,x)(Bx,x)| � ‖(A− (Ax,x))x‖‖(B− (Bx,x))x‖.
Morwover, it follows from Lemma 2.1 that

‖(A− (Ax,x))x‖2 = (A2x,x)− (Ax,x)2 � (M1 −m1)2

4
−C(A,x).

Therefore it implies that

|(ABx,x)− (Ax,x)(Bx,x)|2

�
[
(M1−m1)2

4
−C(A,x)

][
(M2−m2)2

4
−C(B,x)

]

�
(

(M1 −m1)(M2−m2)
4

−
√

C(A,x)C(B,x)
)2

from (a2 − b2)(c2 − d2) � (ac− bd)2 for real numbers a,b,c,d and C(A,x) � 0,
C(B,x) � 0. �
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THEOREM 2.4. Let A be a selfadjoint operator on Hilbert space with m1 � A �
M1 , then, for ‖x‖ = 1 and all natural numbers k

0 � (Ak+1x,x)− (Ax,x)k+1 � 1
4
(M1 −m1)2

k

∑
p=1

(k− p+1)mp−1
1 Mk−p

1

−
k

∑
p=1

Mk−p
1

√
C(Ap,x)C(A,x) (3.6)

Proof. For k = 1 it is shown by Lemma 2.1, that is, the following holds:

(A2x,x)− (Ax,x)2 � (M1 −m1)2

4
−C(A,x). (3.7)

Assume (3.6) holds for some k , that is,

0 � (Akx,x)− (Ax,x)k � 1
4
(M1 −m1)2

k−1

∑
p=1

(k− p)mp−1
1 Mk−p−1

1

−
k−1

∑
p=1

Mk−p−1
1

√
C(Ap,x)C(A,x) (3.8)

then we prove (3.6) for k+1 by (3.8) and applying Theorem 3.2 to B = Ak as follows:

(Ak+1x,x)− (Ax,x)k+1

= (Ak+1x,x)− (Ax,x)(Akx,x)+ (Ax,x)[(Akx,x)− (Ax,x)k]

� 1
4
(M1 −m1)(Mk

1 −mk
1)−

√
C(Ak,x)C(A,x)

+ M1[
1
4
(M1 −m1)2

k−1

∑
p=1

(k− p)mp−1
1 Mk−p−1

1 −
k−1

∑
p=1

Mk−p−1
1

√
C(Ap,x)C(A,x)]

=
1
4
(M1 −m1)2

k

∑
p=1

(k− p+1)mp−1
1 Mk−p

1 −
k

∑
p=1

Mk−p
1

√
C(Ap,x)C(A,x). �

3. The extensions of Kantorovich inequality

Substituting B by A−1 in Theorem 2.3, we have the following improvement of
Kantorovich inequality.

COROLLARY 3.1. Let A be an operator on Hilbert space with 0 < m � A � M,
then, for ‖x‖ = 1

(Ax,x)(A−1x,x)−1 � (M−m)2

4Mm
−

√
C(A,x)C(A−1,x). (3.1)
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THEOREM 3.2. Let A, B be operators on Hilbert space with 0 < m1 � A � M1 ,
0 < m2 � B � M2 , then, for ‖x‖ = 1

(Ax,x)(Bx,x)− (A�Bx,x)2 � (
√

M1M2−√
m1m2)2

4M2m2
(Bx,x)2. (3.2)

Proof. Lemma 2.1 says that, for x �= 0,

(A2x,x)
‖x‖2 − (Ax,x)2

‖x‖4 � (M1 −m1)2

4
− C(A,x)

‖x‖2

if 0 < m1 � A � M1 . Replace A by (B− 1
2 AB− 1

2 )
1
2 and x by B

1
2 x in the above inequal-

ity, then

(B
1
2 (B− 1

2 AB− 1
2 )B

1
2 x,x)

(Bx,x)
− (B

1
2 (B− 1

2 AB− 1
2 )

1
2 B

1
2 x,x)2

(Bx,x)2

�
(
√

M1
m2

−
√

m1
M2

)2

4
− C((B− 1

2 AB− 1
2 )

1
2 ,B

1
2 x)

(Bx,x)
.

Therefore, we have

(Ax,x)(Bx,x)− (A�Bx,x)2

� (
√

M1M2 −√
m1m2)2

4M2m2
(Bx,x)2 −C((B− 1

2 AB− 1
2 )

1
2 ,B

1
2 x)(Bx,x)

� (
√

M1M2 −√
m1m2)2

4M2m2
(Bx,x)2. �

From the proof of Theorem 3.2 we can directly obtain the other form of the gen-
eralized Kantorovich inequality.

COROLLARY 3.3. With the assumptions in Corollary 3.1,

(Ax,x)(A−1x,x)−1 � (M1−m1)2

4
(A−1x,x)2 −C(A,A− 1

2 x)(A−1x,x). (3.3)

Acknowledgement. The authors would like to express their thanks to the referees
for their valuable comments and suggestions, which helped to improve the paper.

RE F ER EN C ES

[1] KY FAN, Some matrix inequalities, Abh. Math. Sem. Univ. Hamburg 29 (1966), 185–196.
[2] M. FUJII, T. FURUTA, R. NAKAMOTO AND S. E. TAKAHASHI,Operator inequalities and covariance

in noncommutative probability, Math. Japon. 46 (1996), 317–320.



522 MASATOSHI FUJII, HONGLIANG ZUO AND NAN CHENG

[3] M. FUJII, S. IZUMINO, R. NAKAMOTO AND Y. SEO, Operator inequalities related to Cauchy-
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