lournal of
athematical
nequalities

Volume 7, Number 3 (2013), 529-534 doi:10.7153/jmi-07-48

SOME INEQUALITIES FOR THE SPECTRAL RADIUS OF THE
HADAMARD PRODUCT OF TWO NONNEGATIVE MATRICES

GUANGHUI CHENG AND XI RAO

(Communicated by A. Guessab)

Abstract. In this paper, we propose some sharper upper bounds for the spectral radius of the
Hadamard product of two nonnegative matrices. The results involve the directed graph of the
Hadamard product of associated matrices.

1. Introduction

For any two n x n matrices A = (a;;) and B = (b;;), the Hadamard product of A
and B is defined by AoB = (a;;b;;). A matrix A = (g;;) € R"*" is called a nonnegative
matrix if ¢;; > 0. A matrix A € R"*" is called a nonsingular M -matrix [1] if there exist
P >0 and o > 0 such that

A=ol—P and o> p(P),

where p(P) is the spectral radius of the nonnegative matrix P, I is the n x n identity
matrix. Denote by ., the set of all n x n nonsingular M -matrices. The matrices in
Myt ={A"1 A€ #,} are called inverse M -matrices. Let

7(A) =min{ReA : L € 6(A)},

and o(A) denotes the spectrum of A. It is known that 7(A) = is a positive real

1
pah)
eigenvalue of A € .#,,, and the corresponding eigenvector is nonnegative [5, p. 129—
130]. The set {1,---,n} is denoted by N, where n is any positive integer. The ith row
sum of matrix A is denoted by r;(A).

A matrix A is irreducible if there does not exist a permutation matrix P such that

A1 A
T_ | A1 A412
Par = { 0A272} ’
where A1 and Ay are square matrices.
Denote the set of all simple circuits in the digraph T4 of A by W(A). A circuit of
length k in T4 is an ordered sequence y = (iy,- - -, i, ix+1), Where iy, -, iy € N are all
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distinct, gy =1i;. The set {iy,---,ix} is called the support of y and is denoted by 7.
The length of the circuit y is denoted by |7].

Recently, many contributions have been seen about the bounds of the eigenvalue
of the Hadamard product of matrices in [2, 3, 6, 8, 9]. In this paper, our purpose is to
propose some sharper upper bounds for the spectral radius of the Hadamard product of
two nonnegative matrices.

2. Main results

LEMMA 1. [4,p.507] Let A > 0 be an irreducible n x n matrix. Then
1) A has a positive real eigenvalue equal to its spectral radius;
2) to p (A) there corresponds an eigenvector x > 0.

LEMMA 2. [2,3] If B= (b;;) € M, " and B~' = (Bij) € M, then

(Bjj—t(B"))vbii
Bjjvi ’

where v= (v1,...,v;)T >0 is the right Perron eigenvector of BT .

bij < ey

LEMMA 3. [8] Let A,B € R™". If E,F are diagonal matrices of order n, then

E(AoB)F = (EAF)oB= (EA)o(BF)= (AF)o(EB) =Ao (EBF).
LEMMA 4. [7] Let A € R"™" be a nonnegative matrix, and let W(A) # 0. Then

for any diagonal matrix D with positive diagonal entries, we have

L
Y

min [Hrl 1AD]V p(A) < max {Hr, IAD)}

ye¥ (A icy ye¥(A) iy

THEOREM 1. [3] Let A = (a;;) € R™" be a nonnegative matrix, and B € .4, .
1). If A is nilpotent, i.e., p(A) =0, then p(AoB) =0.
2). If A is not nilpotent, then

< | (sl o 1) 5 <o

THEOREM 2. Let A = (a;;) € R"™" be a nonnegative matrix, and B € M, '. If
A is not nilpotent, then

p(AoB)

s
17

p(AoB) < % ax )[g(%”ﬁ"w)”)]zﬂ

~—
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Proof. Since B~! € .#,, we have b;; >0 and [1, p. 159]
Bi>t(B™') >0, VieN.

Since the Hadamard product, and taking inverse are continuous functions, we may as-
sume that B~! = al — P € .#,, where P > 0 with a > p(P), are irreducible (thus
B > 0 is also irreducible).

According to Lemma 1, let v and u be the right Perron eigenvectors of B” and
A respectively, i.e., v=(vi, - ,v;)T, u= (uy,---,u,)" € R" are positive vectors such
that

Hence, we have

ai+ Y, % — p(a), VieN. )
g
Now define a diagonal matrix Z = diag(zy,- - ,2,), where
uiPii ,
zi=———————>0, VieN. 3)
vi(Bi = T(B™1))
By Lemma 2 and (3), we get

by < B (B )b uBj; U @

Bijvi vi(Bjj—t(B1)) i

By Lemma 3, we have p(AoB) = p(Z~'(AoB)Z) = p(Ao(Z~'BZ)). Let B = (b;j) =
Z~'BZ. According to (2) and (4), we obtain

r[Z7'(AoB)Z] = ri(AoB)

= a;ibii+ Y, aijbij
J#
= a;ibj; + Ea,-jb,-jﬁ
J#i <
bjiu; (B — B—l
< aiibii+ Y, aij uj viBi—t(B))
i Vi uiBii
= a;;b;; + E(ﬁii —1(B7YY) 2 %
! i M
b.. B
— it 3B — o) ()~
- i Bii bi;
—playe(s) (o B )2 -
p(A)  T(B7) Bii

By Lemma 4 and (5), we get

1

p(A) aiji bl
ptaes) < B man [T (o + e 1) 5] ™

iey
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If AoB isreducible, let T = (#;;) be the permutation matrix such that r;5 =23 =
o+ =1Iy_1, =1ty,1 = 1 and the remaining f;; = 0. Then there exists a positive real num-
ber & such that A+ &7 is an irreducible nonnegative matrix and (B~! —&7)~! is an
irreducible inverse M -matrix. Apply the irreducible case on them and then use conti-
nuity argument (the spectral radius p(-) and inverse taking are continuous functions)
and to complete the proof. [

REMARK 1. Since

1

oB) < PA) i pogy )2l
PUABIS ) ye‘$&og>[g<p<A>+B"p -1
pLa) g ba\ T
< 05 sy | (i o) -0 )
p(A) bii

- m%(K%wﬁp(B)—l) ﬂ_ﬂ ’

we know that the bound of Theorem 2 is sharper than the one of Theorem 1.

THEOREM 3. [10] If A = (a;;) € R™" and B = (b;j) € R"™" are nonnegative,
then
p(AoB) < I%E}\;({aiibii + o;p(B) — aybii }, (6)

where 0 = maxi{aj}, Vi€ N.

THEOREM 4. [10] If A = (a;;) € R™" and B = (b;j) € R"™" are nonnegative,
then
p(AoB) < l}leé}\;i{aiibii + Bip(A) — Biaii}, @)

where [ = maxy.i{bi}, Vi €N.

THEOREM 5. If A = (a;;) € R™" and B = (b;;) € R"™*" are nonnegative, then

1
71

p(AoB) < max |:H (ai,-b,-i +a;p(B) — Olibii>:| . (8)

y€W(AoB) icy
where o = maxyi{ai}, Vi € N.

Proof. 1t is easy to know that (8) holds with equality for n» = 1. In the following,
we consider n > 2.

Firstly, we may assume that A o B is irreducible, then A and B are irreducible.
According to Lemma 1, we may assume that v = (v1,...,v,)” > 0 be the right Perron
eigenvector of B. Then we get

Vibii+2bijVj:p(B)Vj7 VieN,
J#
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or equivalently,

Zb,-jvj: [p(B)—bi,-}vi, VieN.

J#i
Denote o; = maxgi{ay}, Vi € N. Since A is an irreducible nonnegative matrix, o >
0, Vi € N. Define a positive diagonal matrix Z = diag(zy,...,2,), where

Zizv—i‘>07 Vi e N.

1

By Lemma 3, we have p(AoB) = p(Z '(AoB)Z) = p(Ao(Z 'BZ)). Let B =
Z-1BZ. So, we have

r,'[Z_l (AoB)Z] = ri(Ao B) = a;ibi; + za,-jb,-jz—{

#o
j % ’
= aiibii 2 bijaij - < aibii 3 bijvi -
J# %) Vi # N

= ajibii + 0;p (B) — 04bi;.
By Lemma 4, we get the desired result

1
"
p(AoB) < max |:H (ai,-b,-i +a;p(B) — Olibii>:| ! .

y€W(AoB) icy

If Ao B is reducible, let T = (#;;) be the permutation matrix such that #;5 =123 =
v =ty 1y =11 = 1 and the remaining #;; = 0. Then there exists a positive real
number € such that A+ €T and B+ €T are irreducible nonnegative matrices. Apply
the irreducible case on them and then use continuity argument and to complete the
proof. [

Since the Hadamard product is commutative, we obtain the following result.

THEOREM 6. If A = (a;;) € R*" and B = (b;;) € R"™*" are nonnegative, then

1

i
where B; = maxy.i{by}, Vi € N.

According to Theorem 5 and Theorem 6, we have the following corollary.

COROLLARY 1. If A= (a;j) € R"™" and B = (b;;) € R"™" are nonnegative, then

1
"
p(AoB) < min { MaXyecw(Aop) {Hiey (aiibii +0ip(B) — aibii)] "

b

L

¥
MaXyey(40B) |:Hie)7 (aiibii +Bip(A) — ﬁiaii>:|

where 0; = maxgi{aj} and B; = max.i{by}, Vi € N.
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REMARK 2. Since

1
[7]

p(AoB) < max [H (aiibii +aip(B) — a,-b,-,-)]

re¥(aoB) |y

M m
< iibii + 0ip (B) — ibii
s | (st + o)y ) |

= iibii + 0;p (B) — o4bji 1,
r}glvx{ab + a;p(B) — oibii}

we know that the bound of Theorem 5 is sharper than the one of Theorem 3. Similarly,
we also have that the bound of Theorem 6 is sharper than the one of Theorem 4.

3. Conclusions

In this paper, some inequalities for the spectral radius of the Hadamard product
of two nonnegative matrices are given. Furthermore, we prove that the results of this
paper are sharper than the ones of [3] and [10].
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