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ANOTHER APPROACH TO BECKNER’S INEQUALITY

RYOTARO TANAKA, KICHI-SUKE SAITO AND NAOTO KOMURO

(Communicated by J. Pečarić)

Abstract. A classical inequality which was proved by Beckner is an important tool for the study
of Banach space geometry. In this note, we present another proof of that inequality.

In this note, we consider the following classical inequality which was proved by
Beckner [1] (cf. [3, Lemma 1.e.14]).

THEOREM 1. Let 1 < p � q < ∞ , and let γp,q =
√

(p−1)/(q−1). Then

( |u+ γp,qv|q + |u− γp,qv|q
2

) 1
q

�
( |u+ v|p + |u− v|p

2

) 1
p

for all u,v ∈ R .

It is known that γp,q in Theorem 1 is the best constant, that is, if a � 0 and

( |u+av|q + |u−av|q
2

) 1
q

�
( |u+ v|p + |u− v|p

2

) 1
p

for all u,v ∈ R , then we have a � γp,q . We note that the case 0 � a � 1 is essential in
this direction. Indeed, letting u = 0 and v = 1 in the above inequality, we obtain a � 1.
The proof of this fact can be found in the proof of [7, Theorem 6].

Our aim is to present an elementary proof of Theorem 1 and the above fact (cf.
[2, 4, 5, 6]). It is needless to say that Theorem 1 is trivial if p = q . So we only consider
the case p �= q . Suppose that 1 < p < q < ∞ and that b ∈ [0,1] . Let Ab be the linear
operator from (R2,‖ · ‖p) into (R2,‖ · ‖q) defined by

Ab =
(

1 b
b 1

)

and let ‖Ab‖p,q denote the operator norm of Ab . Put fp,q,b be the real-valued function
on [0,1] defined by

fp,q,b(t) =
((

t
1
p +b(1− t)

1
p

)q
+

(
bt

1
p +(1− t)

1
p

)q) 1
q
.

First we prove the following two lemmas.
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LEMMA 1. ‖Ab‖p,q = max0�t�1/2 fp,q,b(t) .

Proof. Take an arbitrary (u,v) ∈ R
2 such that ‖(u,v)‖p = 1. Then we have |v| =

(1−|u|p)1/p , and so
∥∥∥∥
(

1 b
b 1

)(
u
v

)∥∥∥∥
q
= (|u+bv|q + |bu+ v|q) 1

q

� ((|u|+b|v|)q +(b|u|+ |v|)q) 1
q

=
((

|u|+b(1−|u|p) 1
p

)q
+

(
b|u|+(1−|u|p) 1

p

)q) 1
q

= fp,q,b(|u|p)
� max

0�t�1
fp,q,b(t).

Therefore, we have ‖Ab‖p,q � max0�t�1 fp,q,b(t) . On the other hand, for each t ∈ [0,1] ,
putting xt = (t1/p,(1− t)1/p) then we obtain

‖Ab‖p,q � ‖Abxt‖q = fp,q,b(t).

Hence, we have ‖Ab‖p,q = max0�t�1 fp,q,b(t) .
Since fp,q,b(t) = fp,q,b(1− t) for all t ∈ [0,1] , it follow that max0�t�1 fp,q,b(t) =

max0�t�1/2 fp,q,b(t) . Thus, we have ‖Ab‖p,q = max0�t�1/2 fp,q,b(t) . �

LEMMA 2. Let a ∈ [0,1] and let b = (1− a)/(1+ a) . Then, the following are
equivalent:

(i) The inequality

( |u+av|q + |u−av|q
2

) 1
q

�
( |u+ v|p + |u− v|p

2

) 1
p

holds for all u,v ∈ R .

(ii) fp,q,b(1/2) = max0�t�1/2 fp,q,b(t) .

Proof. First we note that fp,q,b(1/2) = 21/q−1/p(1+b) . So, (ii) is equivalent to

‖Ab‖p,q = 2
1
q− 1

p (1+b)

by Lemma 1.
Suppose that (i) holds. Take arbitrary u,v ∈ R . Applying the inequality for u1 =

(u+ v)/2 and v1 = (u− v)/2, we have

( |(1+a)u+(1−a)v|q+ |(1−a)u+(1+a)v|q
2q+1

) 1
q

�
( |u|p + |v|p

2

) 1
p

,
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and therefore

1+a
2

( |u+bv|q + |bu+ v|q
2

) 1
q

�
( |u|p + |v|p

2

) 1
p

.

Since (1+a)(1+b) = 2, it follows that

‖Ab(u,v)‖q = (|u+bv|q + |bu+ v|q) 1
q � 2

1
q− 1

p (1+b)‖(u,v)‖p,

which implies ‖Ab‖p,q = 21/q−1/p(1+b) . This proves (i) ⇒ (ii).
Conversely, we assume that (ii) holds. Let u,v∈R . Put u2 = u+v and v2 = u−v ,

respectively. Then, we have

( |u+av|q + |u−av|q
2

) 1
q

=
1+a

2
1
q +1

(|u2 +bv2|q + |bu2 + v2|q)
1
q

=
2−

1
q

(1+b)
‖Ab(u2,v2)‖q

� 2−
1
q

(1+b)
‖Ab‖p,q‖(u2,v2)‖p

= 2−
1
p ‖(u2,v2)‖p

=
( |u+ v|p + |u− v|p

2

) 1
p

.

Thus we obtain (ii) ⇒ (i). �

Now, let

δp,q =
1− γp,q

1+ γp,q
=

√
q−1−√

p−1√
q−1+

√
p−1

=
p+q−2−2

√
(p−1)(q−1)

q− p
,

and let α = 1/p and β = q− 1, respectively. We note that 0 < α < 1 and β + 1 >
αβ −α +1. Henceforth, δp,q is simply denoted by δ .

LEMMA 3. Let b∈ [0,δ ] and let g1,b be the real-valued function on [0,1] defined
by

g1,b(u) = −βbu2 +(αβ + α −1)(1+b2)u− (2α −1)βb−2(1−α)bu
1

1−α .

(i) If 1 < p < 2 , then there exists a real number u0 ∈ (0,1) such that g1,b(u0) = 0 ,
g1,b(u) < 0 for all u ∈ [0,u0) , and g1,b(u) > 0 for all u ∈ (u0,1) .

(ii) If 2 � p < ∞ , then g1,b(u) > 0 for all u ∈ (0,1) .
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Proof. Since 0 < α < 1, we have (1−α)−1 > 1. This implies that g1 is strictly
concave on [0,1] . We first note that

g1,b(1) = (αβ + α −1)(1+b2)−2(αβ −α +1)b

=
1
p

(
(q− p)b2−2(p+q−2)b+q− p

)
� 0.

(i) Suppose that 1 < p < 2. To prove (i), we first show that g1,b(u1) > 0 for some
u1 ∈ (0,1] . If b < δ , then we have g1,b(1) > 0. For b = δ , the derivative of g1,δp,q is

g′1,δ (u) = −2β δu+(αβ + α −1)(1+ δ 2)−2δu
α

1−α .

Since β +1 > αβ −α +1, we have

g′1,δ (1) = (αβ + α −1)(1+ δ 2)−2(β +1)δ

< (αβ + α −1)(1+ δ 2)−2(αβ −α +1)δ = 0.

Therefore g1,δ is strictly decreasing on (1−ε,1] for some ε > 0, and so g1,δ (1−ε) >
g1,δ (1) = 0.

Thus, we obtain g1,b(u1) > 0 for some u1 ∈ (0,1] . Since g1,b(0) = −(2α −
1)βb < 0, by the intermediate value theorem, there exists a real number u0 ∈ (0,1)
such that g1,b(u0) = 0. By the strict concavity of g1,b , we have (i).

(ii) If 2 � p < ∞ , then we have g1,b(0) = −(2α − 1)βb � 0. So we obtain
g1,b(u)> 0 for all u∈ (0,1) since g1,b is strictly concave. This completes the proof. �

LEMMA 4. Let b ∈ [0,δ ] and let g2 be the real-valued function on [0,1] defined
by

g2,b(s) = (αβ + α −1)(1+b2)sα −αβb(s2α−1 + s)− (1−α)b(s2α +1).

(i) g2,δ (s) � 0 for all s ∈ [0,1] .

(ii) If 0 � b < δ , then there exists a real number s0 ∈ (0,1) such that g2,b(s0) = 0 ,
g2,b(s) < 0 for all s ∈ [0,s0) , and g2,b(s) > 0 for all s ∈ (s0,1) .

Proof. The derivative of g2 is

g′2,b(s) = αs2α−2g1,b(s1−α).

We note that g2,b(0) = −(1−α)b < 0. So by Lemma 3, the behavior of g2,b is as
follows: If 1 < p < 2, putting

u1 = u
1

1−α
0

then g2,b is strictly decreasing on [0,u1] and strictly increasing on [u1,1] .

s 0 · · · u1 · · · 1

g′2,b − 0 +

g2,b − ↘ ↗
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If 2 � p < ∞ , then g2,b is strictly increasing on [0,1] .

s 0 · · · 1

g′2,b +

g2,b − ↗
On the other hand, we have

g2,b(1) = (αβ + α −1)(1+b2)−2(αβ −α +1)b.

It follows that g2,δ (1) = 0 and g2,b(1) > 0 for all b < δ . Thus, we have g2,δ (s) � 0 for
all s∈ [0,1] . If 0 � b < δ , by the intermediate value theorem, there exists a real number
s0 ∈ (0,1) such that g2,b(s) < 0 for all s ∈ [0,s0) and g2,b(s) > 0 for all s ∈ (s0,1) , as
desired. �

LEMMA 5. Let g3,b be the real-valued function on [0,1] defined by

g3,b(s) = (sα +b)β (sα−1−b)+ (bsα +1)β (bsα−1−1).

(i) g3,δ (s) � 0 for all s ∈ [0,1] .

(ii) If 0 � b < δ , then there exists a real number s1 ∈ (0,1) such that g3,b(s1) = 0 ,
g3,b(s) > 0 for all s ∈ [0,s1) , and g3,b(s) < 0 for all s ∈ (s1,1) .

Proof. We put

b0 = b
1

1−α .

Since sα−1 � 1 for each s ∈ [0,1] , we have sα−1 − b > 0. If 0 � s � b0 , we obtain
bsα−1 − 1 � 0, and so g3,b(s) > 0. Let g4,b be the real-valued function on (b0,1]
defined by

g4,b(s) = log(sα +b)β (sα−1−b)− log(bsα +1)β (1−bsα−1).

Then, it is clear that g3,b(s) � 0 if and only if g4,b(s) � 0. The derivative of g4,b is

g′4,b(s) =
(1−b2)sα−2g2,b(s)

(sα +b)(sα−1−b)(bsα +1)(1−bsα−1)
.

Thus, we have g′4,δ (s) � 0 for all s ∈ (b0,1] by Lemma 4 (i). Since the function g4 is
decreasing on (b0,1] , we have g4,δ (s) � g4,δ (1) = 0 for all s ∈ (b0,1] .

If 0 � b < δ , the behavior of g4,b is as follows by Lemma 4 (ii):

s b0 · · · s0 · · · 1

g′4,b − 0 +

g4,b ∞ ↘ − ↗ 0



548 RYOTARO TANAKA, KICHI-SUKE SAITO AND NAOTO KOMURO

Hence, by the intermediate value theorem, there exists a real number s1 ∈ (0,1)
such that g4,b(s) > 0 for all s ∈ [0,s1) and g4,b(s) < 0 for all s ∈ (s1,1) . �

Proof of Theorem. Suppose that b ∈ [0,δ ] . Let gb be the real-valued function on
[0,1/2] defined by

gb(t) =
(
fp,q,b(t)

)q = (t
1
p +b(1− t)

1
p )q +(bt

1
p +(1− t)

1
p )q.

The derivative of gb is

g′b(t) =
q
p
(1− t)

q
p−1g3,b

(
t

1− t

)
.

By Lemma 5 (i), we have g′δ (t) � 0 for all t ∈ [0,1/2] . Thus the function gδ
is nondecreasing on [0,1/2] , and hence we obtain gδ (1/2) = max0�t�1/2 g(t) . This
means that fp,q,δ (1/2) = max0�t�1/2 fp,q,δ (t) . Thus, by Lemma 2, we have

( |u+ γp,qv|q + |u− γp,qv|q
2

) 1
q

�
( |u+ v|p + |u− v|p

2

) 1
p

for all u,v ∈ R . This proves Theorem 1.
Finally, we show that γp,q is the best constant for Beckner’s inequality. Suppose

that γp,q < a � 1. Let b = (1− a)/(1 + a) . By Lemma 2, it is enough to prove that
fp,q,b(1/2)< max0�t�1/2 fp,q,b(t) . To this end, we remark that 0 � b < δ . By Lemma 5
(ii), gb is strictly increasing on [0,s2] and strictly decreasing on [s2,1/2] , where s2 =
s1/(1+ s1) .

t 0 · · · s2 · · · 1/2

g′b + 0 −
gb ↗ ↘

From this fact, we have fp,q,b(1/2) < fp,q,b(s2) = max0�t�1/2 fp,q,b(t) . The proof is
complete. �
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