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A VARIANT OF CHEBYSHEV INEQUALITY WITH APPLICATIONS

ZHENG L1U

(Communicated by A. Vukelic)

Abstract. A varaint of Chebyshev inequality is established and it is applied to obtain some in-
equalities for expectation, variance and cumulative distribution functions as well as to provide
new proofs for some classical inequalities.

1. Introduction

The following Chebyshev inequality (see for example [1, p. 297]) is well known:

THEOREM 1. Let f,g: [a,b] — R be two absolutely continuous mappings on
[a,b] whose derivatives f’,g': [a,b] — R belong to the Lebesgue space L.|a,b|. Then

‘b a/f dt——/f dt—/g t)dt
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<35 =Pl
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The constant % is the best possible.

In [2], Matié, Pecari¢ and Ujevié prove the following refinement of (1) which is
called the “pre-Chebyshev” inequality in [3]
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provided that f is as in Theorem 1 and all the integrals in (2) exist and are finite.

In [3], Barnett and Dragomir have applied the pre-Chebyshev inequality (2) to
obtain the following three inequalities for the expectation, variance and cumulative
distribution function of a random variable having the probability density function which
is assumed to be absolutely continuous and whose derivative is essentially bounded.
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THEOREM 2. Let X be a random variable whose probability density function
f :]a,b] — R is absolutely continuous on [a,b] and f' € Le|a,b]. Then

a+b 1
E(X)— <p- @) f']]eos (3)
2 12
where E(X) is the expectation of the random variable X .

THEOREM 3. Let the assumptions of Theorem 2 hold. If

oux)i= | [ wirar|. uelas

then,
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forall € a,b].
THEOREM 4. Let the assumptions of Theorem 2 hold. Then

b—a
2

B+ 6~ F ) —x— 23| < 56— - ®

forall x € [a,b], where F(x) := [ f(t)dt is the cumulative distribution function of the
random variable X having probability density function f : [a,b] — R.

In this paper, we will establish a variant of Chebyshev inequality which gives a
refinement of the pre-Chebyshev inequality (2) and it is applied to provide a new proof
of inequality (3) and improve the inequalities (4) and (5). It is very interesting that we
can also use the variant of Chebyshev inequality to provide new and simpler proofs of
some well-known classical inequalities.

2. A variant of Chebyshev inequality

THEOREM 5. Let f,g: [a,b] — R be two absolutely continuous mappings on
[a,b] and f" € Lw|a,b]. Then for any x € |a,b] we have

‘b a/f dt——/f dt—/g t)dt

<M= Py ife -5 [ swa a

(6)
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<f’w[<x—a;b)2+(b1za ] [b a/g dt_<b— /g dl”

Proof. Tt is clear that for any x € [a,b] we have the identity

ba/f dl_—/f dlb a/g
= [ 10 s s 5 [ ety ar.

Then the first inequality in (6) follows immediately, and by the Cauchy-Schwarz in-
equality we get

‘b a/f dt——/f dt—/g 1) di

<“bff“/ i ‘g@—m/a () du| i

< % {/ah |t—x2dt]% [/ab|g(t)_ﬁ/ahg(u)du|2dtr
/ab [t —x*dt = (b—a) [("— a;b)2+ (biza)zl :
/ab bi“/“bg(u)du2dl:/ub82(f>df—ﬁ (/abg(z)dt>2.

Consequently, the second inequality in (6) follows. [

However,

and

g(t) —

COROLLARY 1. Let the assumptions of Theorem 5 hold. Then we get a variant of
Chebysheyv inequality as

-t v s o
M= M- e - L [ etwa

dt.

The inequality (7) is sharp.

Proof. The inequality (7) holds clearly by taking x = 2 in the first inequality of
(6), and we may choose the function f =g, f: [a,b] = R, f(¢) =1, t € [a,b] to attain
the equality in (7). O

REMARK 1. From (6), we see that the inequality (7) is exactly a refinement of the
pre-Chebyshev inequality (2).
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3. Some inequalities for expectation and variance

We start by using the variant of Chebyshev inequality (7) to give a new proof of
inequality (3). Notice that fab f(t)dt =1 and so

bia/abf(t)dt'/abtdt'

E(X)—a;b :/abtf(t)dt—

However, by (7) we get

‘bia/htf()dt——/f t)dt- _a/tdt

Ly a+b[’ 2
- dt = —(b— -
<= 2= -l

and then (3) follows.

THEOREM 6. Let X be a random variable whose probability density function
f :a,b] — R is absolutely continuous on |a,b] and f' € L.|a,b]. Then we have:

Gﬁ<x>—(u—“;b)2—f—2< —ap

—a)? a —a)? a _a)t
%(“_a;b)4+(b6) (“_#)2—?6) (#—%b)"‘(bzss)
(”_M)[(#—azﬂ)z-F(bI;) ]%, a<”<2a3+h7
<Ifll- %<u—%4+“’3—“)2<u—%2+5(’ég§>47 2aih <y < a2,
—a)? a —a)? a _a)t
%(“_a;b)4+(b6) (“_#)2"'?3") (“—%b)"‘(bzss)
—H(u— ) [(u — 252)? + L), a2b < 1y < b.
(8)

Proof. Observe that

2
o [ wra= (-5 ) e [rwa-1,

and put g(¢) = (t — u)? in (7), we get

o (X) - (#— a;b>2_ (bzza)z

/ab(t_u)2f(z)dt— bia/ah(z_‘uydt-/ahf(t)dt
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The last integral can be calculated as follows:
For brevity, we put

a 2 —a2
p(t):z(t—u)2—<u— “’) O ey

2 12
and denote 1, = 1 — [(u — #)2 + —(bla) 2, =u+[(u— %”)2 j— —(bIz")z]% .
Clearly, p(u) = —(u — 4522 — L0 o p(etby = — -0 () gng

pl(t) =2(t— ),

which implies that p(u) < p(%) and p(t) is strictly decreasing on [a, ] as well as
strictly increasing on [, b].
Moreover, we have

2a+b
pla)=(o-a) (u- 2470
and
a-+2b
p0) = - (52 )
which imply that p(a) <0 and p(b) >0 incase a < i < 242, p(a) >0 and p(b) >0
in case 242 <y < “E2 a5 well as p(a) > 0 and p(b) < 0 in case “222 < u < b.

So, there are three possible cases to be determined.
(i) Incase a< u < 2““’ , b€ (“”’ b) C (u,b) is the unique zero of p(r) such
that p(r) <0 for 7 € [a,12) and p(t) > 0 for ¢ € (tp,b]. We have

/ab . (’_”)2_<“_a;b>2—(bzza)2

_/aw <a+b ) [(“_a;by—k (bIza)2_(t_”)21 dt
+/t2 ( a+b) (u—a;b>2+(b12a)2—(t—u)2] dr
" ;(t_a;b) (t—u)2—<#—a;b)2—(b_a)2] dt

zg (u_a;rb>4+ (b_6a)2 (u_a;rb)z_ (b_6a)3 (u—azib)

(b—a)* 4<”_a+b> (u_a;b)2+(b12a)2r

dt
2

a—f—b‘

(10)

+

288 3 2




556 ZHENG LIU

(ii) In case 2"3—+b <u< %ﬂ’, 11 € (a,p) and 1, € (u,b) are two zeros of p(r)

such that p(t) > 0 for ¢ € [a,7;1) U (t2,b] and p(t) <0 for ¢ € (11,12). We have

[0 (0= 52) -

L)) -2
() [l ]
R
N tj(z_a;b) <z—u>2—(u—“;b)2—(”;{‘>2] p

(-5 5T (-2

c a+b)
)

(1)

(iii) In case 2“”’ <u<b,n €a, C (a,p) is the unique zero of p(¢) such
that p(r) > 0 for ¢ E [a,71) and p(¢) <0 for ¢ € (¢;,b]. We have
b
1

dt

a+b‘

b—a)?
B ]dt

t
/ah’ (u a+b> (12a)2
:Ln<a;b_0[O_uy_<u_a;b>3_(
+/%b<a;b_0[<u_a;b){+w—;>
atb)[(,_ath 2+(b—a)2_(t_”)2] "
J<rb (35)2 Za?ubzl(zbaf a+b
) (o) A ()
(b ]

Consequently, the inequalities (8) follow from (9) (10), (11) and (12).
The proof is completed. []

2
- (t—u>2] di

L

n
A,

N (b—a)* 4 (u_a—l-b)

288 3 2

REMARK 2. Itis clear that inequality (8) provides a refinement and improvement
of inequality (4) for all u € [a,b].

The best inequality we can obtain from (8) is that for which u = #, giving the
following corollary.
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COROLLARY 2. Let the assumptions of Theorem 6 hold. Then we have the in-
equality
(b—a)*| _5(b—a)*
12

o5 (X) — < £ [|ees (13)

where 0p(X) := Ousp X).

REMARK 3. It should be noticed that inequality (13) improves the inequality (2.5)
in [3] and inequality (6.7) in [5].

4. Some inequalities for camulative distribution functions

The following theorem provides an inequality that connects the expectation E(X)
and the cumulative distribution function F(x) := [ f(¢)d¢ of a random variable X
having the probability density function f : [a,b] — R.

THEOREM 7. Let X be a random variable whose probability density function
f:a,b] — R is absolutely continuous on [a,b] and f' € Le[a,b]. Then

b—
’E(X)+(b—a)F(x)—x— . “
X—a a — 3 b_ 2 b_ 3 a
<f/.x,><{ T(X—%b)2+(zTa)+(bTa)(b—X)—(b2f)3, a<x< %h,
%( uzib)2+(*)+(*8“)( ) (Z;), ”;b<x<b
(14)
Proof. In [4], Barnett and Dragomir established the following identity
(b—a)F(x)+E(X)—b= / p(x,t)dF(t / p(x,0)f(¢)dt (15)
where
(r,1) = t—a, a<t<x<b,
pPWt)= t—b, a<x<t<bh.
Observe that
1 b a+b b
— [ pndr=x—2 [ rna-
then applying the identity (15) and putting g(7) = p(x,7) in (7), we get
b—
E(X)+(b—a)F(x) —x— —2
b
/pxt 1)dt — —— /pxtdt/f 1)dt
b—aJa
(16)
SN [t
a+b
=17l [ pls ( ! )‘dt.
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fa<x< #,then“%ng—kb%“<bandso

b
/ t_a+bH (—a+b)‘dt
a 2
_ [ ﬂ—t t—a— b d+/a+b ﬂ—t t—b— _atb dt
o \ 2 2 2
b b b
+/b<t—a+ )’t—b—(x—a+ )’dt
ab 2 2
—/x ath_, t—x+b_a dt+/a+2h atdh_, x+b;a—t dt
o \ 2 2 ; 2 2
byt a+b b—a b a+b b—a
+[%h (t—7> (x—f—T—t) dt+ b (t—7> (t—x—T> dt

and if ““’ <x<b,thena<x— ”T‘lg“zi’ and so

/ah t_a;b’ ‘p(xﬁ_( _a—;b)

_ [ (atb
SNE

B (b—a)’

_b-x( ath 2+ (b—x) N (b—a)?
N 2 6 8

Consequently, the inequalities (14) follow from (16), (17) and (18).
The proof is completed. []

REMARK 4. Itis clear that the inequality (14) provides a refinement and improve-
ment of inequality (5) for all x € [a,b].
REMARK 5. Ifin (14) either x = a or x = b, the inequality (3) is recaptured.

REMARK 6. Observed that F(x) = Pr(X <x) = [} f(t)dt, if in (14), x = #,
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then the best inequality that can be obtained is:

B0+ 6-apr(x < 50 bl < G 0-aPIs N (9)

It should be noticed that the inequality (19) is an improvement of inequality (2.9) in [3]
and inequality (6.11) in [5].

5. New proofs for some classical inequalities

Now we would like to apply the variant of Chebyshev inequality (7) to provide
new and simpler proofs of the well-known classical trapezoid, midpoint and Simpson
inequalities in a more general setup.

THEOREM 8. Let f:[a,b] — R be such that f is absolutely continuous on [a,b]
and f" € Lo[a,b]. Then

a —a 3
/() +f(b)}‘ < %\\f”uw. (20)

Proof. Ttis clear that

/abf(t)dt—

and

Then by (7), we get

[ r0a ="+ 50

/j(t—aTb)f’(t)dt—b—ia/ub( a+b> /f t)dt

a+bl? (b—a)®*
T = O .

dt =

1/ b
<Ml | jr =
i.e., the inequality (20) holds. O

THEOREM 9. Let the assumptions of Theorem 8 hold. Then
b a+b b—a)’
[ ras—o-ay <oy e
a 2 24

Proof. Ttis clear that

/abf(t)dt—(b— Q) f (““’) /M dt
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where "
_f t—a, a<ti< %7,
M(z) {t—b7 b <1< b,
and
b
M(t)dr=0

Then by (7), we get

/ﬁﬂﬂw—%b—@f<a;b>
dt——/M dt/f 1)di

“;b’w(z)m

t_

< ||f”um/
= |l l/z <a;b—t> (t—a)dt—i—/a; (t—a;b> (b—t)dt]

(b a)

£ |-
i.e., the inequality (21) holds. [J

THEOREM 10. Let the assumptions of Theorem 8 hold. Then

U@ rar(E0) s )| <« L9 @
ra+ar(*57) oo | < g

Proof. Ttis clear that

[ a2t s car (457) e = - st

where )
S(t) = (tfau)z(’—azib ,ast<at
P e—gh), R <i<h
and
b
S(t)dt=0
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a+b

N
=
B
T
S~

‘|S (r)|dt

at+b

a+b b a+b

( : —t)|S(t)|dt+/# (: )|S()|dt
e | Btk akb)
=" /u 1—— (t—a) dt+/# t—— (t—Db)~dt

_(b-ay
= e

Il
=
=
3
=
4

i.e., the inequality (22) holds. [
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