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SIMPLE PROOFS OF THE CUSA–HUYGENS–TYPE

AND BECKER–STARK–TYPE INEQUALITIES

ZHENG JIE SUN AND LING ZHU

(Communicated by E. Neuman)

Abstract. In this paper, we respectively give some simple proofs of the Cusa-Huygens- and
Becker-Stark-type inequalities presented by Chen and Cheung in [9].

1. Introduction

For 0 < x < π/2, the Cusa-Huygens inequality (see [1–5]) and Becker-Stark in-
equality (see [6–8]) are known as

sinx
x

<
2+ cosx

3
, (1)

and
8

π2−4x2 <
tanx

x
<

π2

π2−4x2 , (2)

respectively.
In recent paper [9], Chen and Cheung sharpen the two inequalities above and ob-

tain the following results.

THEOREM 1.1. For 0 < x < π/2 ,

(
2+ cosx

3

)θ
<

sinx
x

<

(
2+ cosx

3

)ϑ
(3)

with the best constants θ = ln(π/2)/ ln(3/2) = 1.11373998 · · ·, and ϑ = 1 .
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THEOREM 1.2. For 0 < x < π/2 ,

(
π2

π2−4x2

)α

<
tanx

x
<

(
π2

π2−4x2

)β

(4)

with the best constants α = π2/12 = 0.822467033 · · ·, and β = 1 .

Using a monotone form of l’Hospital’s rule and the power series expansions of sine
and cosine functions in [9], the authors verify the double inequality (3) in a tortuous
process. Meanwhile, in [9], in order to prove (4) the authors employ a method for
proving inequalities by computer which can be found in [19] by Malešević. In this
paper, we give two shorter and lucid proofs of the inequalities (3) and (4) just using the
differentiation.

2. Lemmas

LEMMA 2.1. ([10–15]) Let f ,g : [a,b]−→ R be two continuous functions which
are differentiable on (a,b) . Further, let g′ �= 0 on (a,b) . If f ′/g′ is increasing
(or decreasing)on (a,b) , then the functions ( f (x)− f (b))/(g(x)− g(b)) and ( f (x)−
f (a))/(g(x)−g(a)) are also increasing (or decreasing) on (a,b) .

LEMMA 2.2. ([16], [17], [3]) Let |x|< π , and B2n be the even-indexed Bernoulli
numbers. Then

x
sinx

= 1+
∞

∑
n=1

22n−2
(2n)!

|B2n|x2n (5)

holds.

LEMMA 2.3. ([18]) For all integers n � 1 , let B2n be the even-indexed Bernoulli
numbers. Then

2(2n)!
(2π)2n

1
1−2α−2n < |B2n| < 2(2n)!

(2π)2n

1

1−2β−2n
(6)

with the best constants α = 0 and β = 2+(ln(1−6/π2))/ ln2 ≈ 0.6491 · · · .

3. New Proof of Theorem 1.1

Let

f (x) =
ln

( sinx
x

)
ln

(
2+cosx

3

) ,

we compute

f ′(x) =
g(x)[

ln
( 2+cosx

3

)]2 ,

where

g(x) =
xcosx− sinx

xsinx
ln

2+ coshx
3

+
sinx

2+ cosx
ln

sinx
x

.
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In the following part, we shall prove that g(x) > 0. Firstly, since

ln
2+ cosx

3
> ln

sinx
x

,

we obtain

g(x) >

(
xcosx− sinx

xsinx
+

sinx
2+ cosx

)
· ln sinx

x
.

In view of that ln((sinx)/x) < 0 for 0 < x < π/2, the proof of g(x) > 0 is com-
plete if we prove the following inequality

xcosx− sinx
xsinx

+
sinx

2+ cosx
< 0.

We can simplify the above inequality as follows:

xcosx− sinx
xsinx

+
sinx

2+ cosx
=

xsin2 x+(xcosx− sinx)(2+ cosx)
xsinx(2+ cosx)

=
h(x)

xsinx(2+ cosx)
,

where h(x) = x+2xcosx−2sinx− sinxcosx.
Since h′(x) = 1−2xsinx−cos2x = 2(sinx)2−2xsinx = 2sinx(sinx−x) < 0, and

h(0) = 0, we have h(x) < 0, which indicates that g(x) > 0 and f ′(x) > 0. So f (x) is
increasing for 0 < x < π/2.

At the same time, f (0+) = 1 and

f
(π

2

)
=

ln(π
2 )

ln( 3
2 )

,

so 1 and ln(π/2)/ ln(3/2) are the best constants in (3).
The proof of Theorem 1.1 is complete. �

4. New Proof of Theorem 1.2

Let

k(x) =
ln tanx

x

ln π2

π2−4x2

=
f1(x)
f2(x)

,

we compute

f ′1(x)
f ′2(x)

=
(π2−4x2)(2x− sin(2x))

8x2 sin(2x)
=

(π2−4x2)
8x2

(
2x

sin(2x)
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)
≡ p(x).
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By the Lemma 2.2 we obtain
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where

an =
π2(22n+2−2)22n+2

(2n+2)!
|B2n+2|− 4(22n−2)22n

(2n)!
|B2n|.

From the Lemma 2.3, we compute

an >
22n+3

π2n

(
22n+2−2
22n+2−1

− 22n−2

22n−2β

)

=
22n+3

π2n · (2−2β)22n+2−22n

(22n+2−1)(22n−2β )

=
24n+3

π2n · 4(2−2β)−1

(22n+2−1)(22n−2β )
.

Since 4(2− 2β )− 1 ≈ 0.7268 · · · > 0, we get that an > 0 for n = 1,2, · · · . This
indicates that p(x) is increasing for 0 < x < π/2. Then the function k(x) is increasing
on (0,π/2) by Lemma 2.1.

At the same time, k(0+) = 1 and k((π/2)−) = π2/12, so 1 and π2/12 are the
best constants in (4).

The proof of Theorem 1.2 is complete. �
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