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Abstract. We present inequality chains related to trigonometric and hyperbolic and inverse trigono-
metric and hyperbolic functions.

1. Introduction

Neuman and Sándor [6] have proved that

( x
arctanx

)1/2
<

x
arcsinhx

<

(
1+(x/arctanx)2

2

)1/2

(1.1)

for x �= 0, by the theory of means. Inequality (1.1) appears in another form (with mean
theory notation) as the third inequality of relation (3.6) of Corollary 3.2 of [6]. More
precisely, the following inequality holds

AT � M2 � A2 +T 2

2
, (1.2)

where

M =
a−b

2arcsinh a−b
a+b

, T =
a−b

2arctan a−b
a+b

and A =
a+b

2
.

Let x = a−b
a+b in (1.2), then one can get (1.1).

It is clear that
(

x
arctan x

)1/2
and

(
1+(x/arctanx)2

2

)1/2
are the geometric and root-

mean square means of 1 and x/arctanx , respectively. The first aim of this paper is to
establish Theorem 1.1, which shows that the second inequality in (1.1) can be separated
by the arithmetic mean of 1 and x/arctanx .
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THEOREM 1.1. For all x �= 0 ,

x
arcsinhx

<
1+(x/arctanx)

2
<

(
1+(x/arctanx)2

2

)1/2

. (1.3)

It is known in the literature that

(cosx)1/3 <
sinx
x

<
2+ cosx

3
(1.4)

for 0 < |x| < π
2 , and

(coshx)1/3 <
sinhx

x
<

2+ coshx
3

(1.5)

for x �= 0. The left-hand side inequality (1.4) first appeared in [4, p. 238], while the
right-hand side inequality (1.4) is due to Cusa and Huygens (see [9] for more details
regarding this result). The first inequality in (1.5) was established by Lazarević [2] (see,
e.g., [4, p. 238]), while the second inequality in (1.5) appears in [7].

The inequalities (1.4) and (1.5) have been grouped into the following inequality
chain:

(coshx)1/3 <
sinhx

x
<

3
2+ cosx

<
2+ coshx

3
<

x
sinx

<
1

(cosx)1/3
(1.6)

for 0 < |x| < π/2 in [8] (See pp. 23–24 for proofs, as well as pp. 16–17 for the history
of such relations). Very recently, Chen and Sándor [1, Remark 2.1] showed that the first
inequalities in (1.4) and (1.5) can be separated. More precisely, the authors proved that

(cosx)1/3 <

(
1+2cosx

3

)1/2

<
sinx
x

, 0 < |x| < π
2

(1.7)

and

(coshx)1/3 <

(
1+2coshx

3

)1/2

<
sinhx

x
, x �= 0. (1.8)

The second aim of this paper is to establish Theorem 1.2, which shows that if we
restrict 0 < |x| < 1, then we have longer inequality chain:

( x
arctanx

)1/2
<

x
arcsinhx

< (coshx)1/3 <

(
1+2coshx

3

)1/2

<
sinhx

x

<
3

2+ cosx
<

2+ coshx
3

<
x

sinx
<

(
3

1+2cosx

)1/2

<
1

(cosx)1/3

<
arcsinx

x
<

(
arctanhx

x

)1/2

. (1.9)



TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 571

THEOREM 1.2. (i) The following inequalities hold:

( x
arctanx

)1/2
<

x
arcsinhx

< (coshx)1/3. (1.10)

The first inequality holds for x �= 0 , while the second inequality is valid provided 0 <
|x| < 1 . The exponents 1/2 and 1/3 are the best possible.

(ii) For 0 < |x| < 1 ,

1

(cosx)1/3
<

arcsinx
x

<

(
arctanhx

x

)1/2

. (1.11)

The exponents 1/3 and 1/2 are the best possible.

The left side of inequality (1.10), and the right side of inequality (1.11) do appear
in another notation (see [6, Corollary 3.2]) as a particular result. By putting in the left
side of inequality (1.11), x = sin t, t ∈ (0,π/2) , we get the inequality

sin t
t

<
(
cos(sin t)

)1/3
, 0 < t <

π
2

.

This is a counterpart to

sin t
t

> (cost)1/3, 0 < t <
π
2

.

2. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. The first inequality in (1.3) can be re-written as

arctanx <
xarcsinhx

2x− arcsinhx
, x �= 0.

Consider the function A(x) for x > 0 defined by

A(x) =
xarcsinhx

2x− arcsinhx
− arctanx.

Differentiation yields

(2x− arcsinhx)2(1+ x2)A′(x) = B(x),

where

B(x) = 2x2
√

1+ x2− (arcsinhx)2(1+ x2)− (2x− arcsinhx)2.

By an elementary change of variable

x = sinh t , t > 0 ,
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we obtain

B(x) = C(t) : = 2sinh2 t cosh t− t2 cosh2 t− (2sinht− t)2

=
1
2

cosh(3t)−
(

1
2
t2 +2

)
cosh(2t)+4t sinh t− 1

2
cosht− 3

2
t2 +2

=
∞

∑
n=3

2 ·9n− (2n2−n+8) ·4n+2(16n−1)
4 · (2n)!

t2n > 0, t > 0.

Hence, we have B(x) > 0 and A′(x) > 0 for x > 0. Therefore, the function A(x) is
strictly increasing for x > 0, and we have

A(x) =
xarcsinhx

2x− arcsinhx
− arctanx > lim

x→0+
A(x) = 0, x > 0.

Hence, the first inequality in (1.3) holds for x �= 0.
It is well-known that for a,b > 0 and a �= b , the function

M(r) =

⎧⎪⎨
⎪⎩
(

ar +br

2

)1/r

, r �= 0;

√
ab, r = 0

is strictly increasing for r ∈ (−∞,∞) . This implies that the second inequality in (1.3)
holds for x �= 0. The proof of Theorem 1.1 is complete. �

Proof of Theorem 1.2. The first inequality in (1.10) is obtained by considering the
function f (x) defined for x > 0 by

f (x) = xarctanx− (arcsinhx)2.

Elementary calculations show that

f ′(x) = arctanx+
x

1+ x2 −
2arcsinhx√

1+ x2
,

(1+ x2)3/2

2x
f ′′(x) = − x√

1+ x2
+ arcsinhx � g(x),

g′(x) =
x2

(1+ x2)3/2
> 0 (x > 0).

Hence, for x > 0,

g(x) > g(0) = 0 =⇒ f ′′(x) > 0 =⇒ f ′(x) > f ′(0) = 0 =⇒ f (x) > f (0) = 0.

Therefore, the first inequality in (1.10) is valid for x �= 0.
Let

h(x) = (arcsinhx)3 coshx− x3, 0 < x < 1.
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Motivated by the investigations in [3], we now show h(x) > 0 for 0 < x < 1. Consider
the function H(x) by

H(x) =

⎧⎪⎨
⎪⎩

h(x)
x7 , 0 < x � 1,

μ , x = 0,

where μ is constant determined with limit:

μ = lim
x→0

h(x)
x7 =

1
10

.

Using Maple we determine Taylor approximation for the function H(x) by the polyno-
mial of the tenth order:

P(x) =
1
10

− 149
1890

x2 +
2431
37800

x4− 3683
69300

x6 +
152069191
3405402000

x8 − 129780571
3405402000

x10,

which has a bound of absolute error

ε = 3ln(1+
√

2) · cosh(1)− 117926293
113513400

= 0.01762256 . . .

for values x ∈ [0,1] . It is true that

H(x)− (P(x)− ε) � 0,

P(x)− ε =
(

1
10

− ε − 149
1890

x2
)

+ x4
(

2431
37800

− 3683
69300

x2
)

+ x8
(

152069191
3405402000

− 129780571
3405402000

x2
)

> 0

for x ∈ [0,1] . Hence, for x ∈ [0,1] it is true that H(x) > 0 and therefore h(x) > 0 for
x ∈ (0,1) . Therefore, the second inequality in (1.10) is valid for 0 < |x| < 1.

Write (1.10) as

1
2

<
ln(x/arcsinhx)
ln(x/arctanx)

and
ln(x/arcsinhx)

ln(coshx)
<

1
3
.

Elementary calculations show that

lim
x→0

ln(x/arcsinhx)
ln(x/arctanx)

=
1
2

and lim
x→0

ln(x/arcsinhx)
ln(coshx)

=
1
3
.

Hence, the exponents 1/2 and 1/3 in (1.10) are the best possible.
Direct computation would yield

(arcsinx)3 =

(
∞

∑
n=0

(2n)!
22n(n!)2(2n+1)

x2n+1

)3

= x3 +
1
2
x5 +

37
120

x7 +
3229
15120

x9 +
10679
67200

x11 + . . .

> x3 +
1
2
x5 +

37
120

x7 +
3229
15120

x9, 0 < x < 1.
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Hence, we have for 0 < x < 1,

(arcsinx)3 cosx− x3 >

(
x3 +

1
2
x5 +

37
120

x7 +
3229
15120

x9
)(

1− 1
2
x2
)
− x3

= x7
(

7
120

+
449
7560

x2− 3229
30240

x4
)

> 0.

Therefore, the first inequality in (1.11) is valid for 0 < |x| < 1.
The second inequality in (1.11) is obtained by considering the function I(x) de-

fined for 0 < x < 1 by

I(x) = xarctanhx− (arcsinx)2.

Elementary calculations show that

I′(x) = arctanhx+
x

1− x2 −
2arcsinx√

1− x2
,

(1− x2)3/2

2x
I′′(x) =

x√
1− x2

− arcsinx � G(x),

G′(x) =
x2

(1− x2)3/2
> 0, 0 < x < 1.

Hence, for x > 0,

G(x) > G(0) = 0 =⇒ I′′(x) > 0 =⇒ I′(x) > I′(0) = 0 =⇒ I(x) > I(0) = 0.

Therefore, the second inequality in (1.11) is valid for 0 < |x| < 1.
Write (1.11) as

1
3

<
ln(arcsinx/x)

ln(secx)
and

ln(arcsinx/x)
ln(arctanhx/x)

<
1
2
.

Elementary calculations show that

lim
x→0

ln(arcsinx/x)
ln(secx)

=
1
3

and lim
x→0

ln(arcsinx/x)
ln(arctanhx/x)

=
1
2
.

Hence, the exponents 1/3 and 1/2 in (1.11) are the best possible. The proof of Theo-
rem 1.2 is complete. �

REMARK. The first inequality in (1.10) and the second inequality in (1.11) have
been obtained earlier (see Theorem 3.1) in [5].
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available online at http://ajmaa.org/RGMIA/v15.php.
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