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INEQUALITY CHAINS RELATED TO TRIGONOMETRIC
AND HYPERBOLIC FUNCTIONS AND INVERSE
TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS

CHAO-PING CHEN AND JOZSEF SANDOR

(Communicated by N. Elezovic)

Abstract. We present inequality chains related to trigonometric and hyperbolic and inverse trigono-
metric and hyperbolic functions.

1. Introduction

Neuman and Séndor [6] have proved that

( x )1/2< x <(l—l—(x/arctanx)2>l/2 (L)

arctanx arcsinhx 2

for x # 0, by the theory of means. Inequality (1.1) appears in another form (with mean
theory notation) as the third inequality of relation (3.6) of Corollary 3.2 of [6]. More
precisely, the following inequality holds

A2+ T2
AT < M? < “ZL , (1.2)
where
—b —b b
M= a.ia_b, T = aia_b and A = at .
2 arcsinh s 2arctan aTh

Let x = % in (1.2), then one can get (1.1).
2N\ 1/2
It is clear that (% )1/ * and <1+(x/a+mnx)> are the geometric and root-

arctanx
mean square means of 1 and x/arctanx, respectively. The first aim of this paper is to
establish Theorem 1.1, which shows that the second inequality in (1.1) can be separated
by the arithmetic mean of 1 and x/arctanx.
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THEOREM 1.1. Forall x #0,

X - 1 + (x/ arctanx) - (1 + (x/ arctanx)2)1/2

1.3
arcsinhx 2 2 (1-3)
It is known in the literature that
sin 2+ cos
(cosx)1/3 < % < % (1.4)
for 0 < |x| < %, and
inh 2 h
(coshx)!/3 < SIDX 2 COShY (1.5)

X 3

for x # 0. The left-hand side inequality (1.4) first appeared in [4, p. 238], while the
right-hand side inequality (1.4) is due to Cusa and Huygens (see [9] for more details
regarding this result). The first inequality in (1.5) was established by Lazarevi¢ [2] (see,
e.g., [4, p- 238]), while the second inequality in (1.5) appears in [7].

The inequalities (1.4) and (1.5) have been grouped into the following inequality
chain:

sinhx 3 2+ coshx X 1
< <

b3 < x o1
(cosh-) x 24 cosx 3 sinx ~ (cosx)!/3

(1.6)

for 0 < |x| < /2 in [8] (See pp. 23-24 for proofs, as well as pp. 16—17 for the history
of such relations). Very recently, Chen and Sdndor [ 1, Remark 2.1] showed that the first
inequalities in (1.4) and (1.5) can be separated. More precisely, the authors proved that

1+2 V2 r
(cosx)l/3<<¥) <¥, 0<f<3 (1.7)

and

1+2coshx>l/2< sinhx7 X 40, (18)

(coshx)'/? < ( 3

X

The second aim of this paper is to establish Theorem 1.2, which shows that if we
restrict 0 < |x| < 1, then we have longer inequality chain:

1/2 1 +2coshx\"/*  sinh
( x ) __x <(coshx)1/3<< +2cos x) _ sinhx

arctanx arcsinhx 3 X
3 _2+coshx _ x 3 1/2< 1
2+ cosx 3 sinx 1 +2cosx (cosx)!/3
. tanh 1/2
_ arcsinx - (arc an x) . (19)
X X
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THEOREM 1.2. (i) The following inequalities hold:

1/2
( a ) < * < (coshn)'/3. (1.10)
arctanx arcsinhx
The first inequality holds for x # 0, while the second inequality is valid provided 0 <
|x| < 1. The exponents 1/2 and 1/3 are the best possible.
(ii) For 0 < |x| < 1,

1 arcsinx - (arctanhx) 1/2. (L11)

<
(cosx)!/3 x x
The exponents 1/3 and 1/2 are the best possible.

The left side of inequality (1.10), and the right side of inequality (1.11) do appear
in another notation (see [6, Corollary 3.2]) as a particular result. By putting in the left
side of inequality (1.11), x =sint, 7 € (0,7r/2), we get the inequality

int T
% < (cos(sint))m, 0<i< 3.

This is a counterpart to

sint 1/3

T
— > 1’7, 0<t< =
. (cost) 5

2. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. The first inequality in (1.3) can be re-written as

xarcsinhx
arctanx < ———, x#0.
2x — arcsinhx

Consider the function A(x) for x > 0 defined by

xarcsinhx

A(x) — arctanx.

"~ 2x —arcsinhx

Differentiation yields
(2x — arcsinhx)? (1 +x?)A’(x) = B(x),
where
B(x) = 222\/1 +x2 — (arcsinhx)(1 +x%) — (2x — arcsinhx)?.
By an elementary change of variable

x=sinht, >0,
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we obtain
B(x) = C(t) : = 2sinh?r cosht —* cosh? t — (2sinhz — 1)?

1 1 1 3
= —cosh(3t) — [ =t +2 ) cosh(2¢) 4 4zsinhz — ~ cosht — =¢% +2
2 2 2 2
B i 2:9"— (20 —n+8)-4"+2(16n—1)
et 4-(2n)!

>0, 1>0.

Hence, we have B(x) > 0 and A’(x) > 0 for x > 0. Therefore, the function A(x) is
strictly increasing for x > 0, and we have

xarcsinhx

A(x)

= ————— —arctanx > lim A(x) =0 x> 0.
2x — arcsinhx x—0F (x) ’

Hence, the first inequality in (1.3) holds for x #£ 0.
It is well-known that for a,b > 0 and a # b, the function

ar+br 1/r
, r#0;
M(r)= ( 2 ) 7
\/c%, r=0

is strictly increasing for r € (—oo,e0). This implies that the second inequality in (1.3)
holds for x # 0. The proof of Theorem 1.1 is complete. [

Proof of Theorem 1.2. The first inequality in (1.10) is obtained by considering the
function f(x) defined for x > 0 by

f(x) = xarctanx — (arcsinhx)?.

Elementary calculations show that

X 2arcsinhx

1+2 I+ 2

f'(x) = arctanx +

(1 +x2)3/2 neN X
2x f ()C) N V1 _|_x2

x2

g = m >0 (x>0).

+arcsinhx £ g(x),

Hence, for x > 0,
g(x) > g(0)=0= f"(x) > 0= f"(x) > f/(0) =0 = f(x) > £(0) = 0.

Therefore, the first inequality in (1.10) is valid for x # 0.
Let

h(x) = (arcsinhx)’ coshx — x>, 0<x<1.
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Motivated by the investigations in [3], we now show A(x) > 0 for 0 < x < 1. Consider
the function H(x) by

h
W ocr<t
H(x)=4 *
u, x=0,
where [l is constant determined with limit
hix) 1

=lim —- = —.
H=00 T 10

Using Maple we determine Taylor approximation for the function H(x) by the polyno-
mial of the tenth order:

Px) = i 149 2 2431 A 3683 N 152069191 8 129780571 10
10 1890 37800 69300 3405402000 3405402000 ’
which has a bound of absolute error

117926293
6:3mU+V®cmMU—ﬁ§E%®:OOU&%6“

for values x € [0,1]. It is true that

H(x) = (P(x) —€) >0,

e (e 0 ) (250300

10 1890 37800 69300
(152069191 129780571 2) 0
3405402000 3405402000

for x € [0,1]. Hence, for x € [0,1] it is true that H(x) > 0 and therefore h(x) > 0 for
€ (0,1). Therefore, the second inequality in (1.10) is valid for 0 < |x| < 1.
Write (1.10) as

1 In(x/arcsinhx) In(x/ arcsinh.x) - 1
2 In(x/arctanx) In(coshx) 3
Elementary calculations show that
In(x/ arcsinh.x) _1 and  Tim In(x/ arcsinh.x) _ 1
x—0 In(x/arctanx) 2 x—0 In(coshx) 3

Hence, the exponents 1/2 and 1/3 in (1.10) are the best possible.
Direct computation would yield

3
) > 2n)! n+

oy ls 37 53229 o 10679
2° 120" T 15120 T 672007
15 37 5 3229
>0 4 200+ X

>¥ T 120" T st O r b
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Hence, we have for 0 <x < 1,

1 37 3229 1
(arcsinx)? cosx — x> > <x3 + Exs + E)J + MX9> (l - §x2> —x
7 449 3229
7 2 4
=2 = - 0.
(120 " 7560°  30240" ) -

Therefore, the first inequality in (1.11) is valid for 0 < |x| < 1.

The second inequality in (1.11) is obtained by considering the function I(x) de-
fined for 0 <x < 1 by

I(x) = xarctanhx — (arcsinx)?.
Elementary calculations show that

X 2arcsinx
1-x2  V1—-x2'

1 —x2)3/2
gl” x) = ~ X arcsinx 2 G(x),

2x V1—22

x2

(1—x2)3/2 =

I'(x) = arctanhx +

G'(x) = 0, 0<x<1.

Hence, for x > 0,
Gx)>G0)=0=1"(x) >0=1'(x) >I'(0) =0=I(x) > 1(0) = 0.

Therefore, the second inequality in (1.11) is valid for 0 < |x| < 1.
Write (1.11) as

1< In(arcsinx/x) and In(arcsinx/x) - l
3 In(secx) In(arctanhx/x) ~ 2

Elementary calculations show that

lim In(arcsinx/x) 1 and  Tim In(arcsinx/x) _ 1
x—0 In(secx) 3 x—0 In(arctanhx/x) 2

Hence, the exponents 1/3 and 1/2 in (1.11) are the best possible. The proof of Theo-
rem 1.2 is complete. [J

REMARK. The first inequality in (1.10) and the second inequality in (1.11) have
been obtained earlier (see Theorem 3.1) in [5].
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