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OPTIMAL INEQUALITIES BETWEEN NEUMAN–SÁNDOR,

CENTROIDAL AND HARMONIC MEANS

WEIFENG XIA AND YUMING CHU

Abstract. In this paper, we answer the question: what are the greatest values α1 , α2 and the
least values β1,β2 , such that the inequalities

α1T (a,b)+(1−α1)H(a,b) < R(a,b) < β1T (a,b)+(1−β1)H(a,b)

and
Tα2 (a,b)H1−α2 (a,b) < R(a,b) < T β2 (a,b)H1−β2 (a,b)

hold for all a,b > 0 with a �= b? Here, R(a,b) , T (a,b) and H(a,b) denote the Neuman-
Sándor, centroidal and harmonic means of two positive numbers a and b , respectively.
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