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REFINEMENTS OF A TWO–SIDED INEQUALITY

FOR TRIGONOMETRIC FUNCTIONS

ZHEN-HANG YANG

(Communicated by E. Neuman)

Abstract. In this paper, we prove that for x ∈ (0,π/2)

(cos p1x)
1/(3p2

1) <
sinx
x

< (cos p0x)
1/(3p2

0) < · · · < e−x2/6 <
2+ cos x

3

with the best constants p1 = 0.45346... and p0 = 1/
√

5 , and the function p �→ (cos px)1/(3p2) is
decreasing on (0,1) . Our results greatly refine Adamović-Mitrinović’s and Cusa’s inequality. As
applications, some precise estimations for certain special functions and constants are presented.

1. Introduction

In the recent past, the following two-side inequality

(cosx)1/3 <
sinx
x

<
2+ cosx

3

(
0 < x <

π
2

)
(1.1)

has attracted the attention of many scholars, where the left inequality was obtained by
Adamović and Mitrinović (see [12, 2, p. 238]), while the right one is due to Cusa and
Huygens (see, e.g., [7]) and it is now known as Cusa’s inequality [5], [13], [15], [20],
[25].

A nice refinement of the inequalities (1.1) appeared in [12, 3.4.6]. For conve-
nience, we record it as follows.

THEOREM A. For x ∈ (0,π/2) ,

cos px � sinx
x

� cosqx (1.2)

with the best possible constants

p =
1√
3

and q =
2
π

arccos
2
π

.
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Moreover, we have

cosx � cosx
1− x2/3

� (cosx)1/3 � cos
x√
3

� sinx
x

� cosqx � cos
x
2

� 1. (1.3)

Recently, Klén et al. [9, Theorem 2.4] showed that the function p �→ (cos px)1/p

is decreasing on (0,1) and improved Cusa’s inequality (the right one in (1.1)), which
is stated as follows.

THEOREM B. For x ∈
(
−√27/5,

√
27/5

)

cos2 x
2

� sinx
x

� cos3 x
3

� 2+ cosx
3

. (1.4)

An improvement for the first inequality in (1.4) is due to Neuman [15]:

cos4/3 x
2

=
(

1+ cosx
2

)2/3

<
sinx
x

, x ∈ (0, π
2

)
. (1.5)

Lv et al. [10] showed that for x ∈ (0,π/2) inequalities

(
cos

x
2

)4/3
<

sinx
x

<
(
cos

x
2

)θ
(1.6)

hold, where θ = 2(lnπ − ln2)/ ln2 = 1.3030... and 4/3 are the best possible con-
stants.

Very recently, by using inequalities involving Schwab-Borchardt mean, Neuman
obtained an inportant and interesting refinement of Adamović-Mitrinović’s one (the
left one of (1.1)) in [14, Theorem 1] (also see [16]), that is, the following chain of
inequalities

(cosx)1/3 <

(
cosx

sinx
x

)1/4

<

(
sinx

arctanh sinx

)1/2

<

(
cosx+(sinx)/x

2

)1/2

<

(
1+2cosx

3

)1/2

<

(
1+ cosx

2

)2/3

<
sinx
x

(1.7)

holds for x ∈ (0,π/2).
Other results involving inequalities (1.1) can be found in [5], [8], [13], [15], [16],

[18], [20], [24], [25], and related references therein.
The aim of this paper is to give sharp bounds

Up (x) = (cos px)1/(3p2) if p ∈ (0,1] and U0 (x) = lim
p→0+

Up (x) = e−x2/6 (1.8)

(x ∈ (0,π/2)) for (sinx)/x to refine two-side inequality (1.1), that is, for x ∈ (0,π/2),
to determine the best p,q ∈ [0,1) such that

(cosx)1/3 < Up (x) <
sinx
x

< Uq (x) <
2+ cosx

3
(1.9)
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hold.
The paper is organized as follows. Some useful lemmas are given in Section 2. In

Section 3, the sharp bounds Up (x) for (sinx)/x and their relative error estimations are
established. In the last section, some precise estimations for certain special functions
and constants are presented.

2. Lemmas

LEMMA 1. ([21], [1]) Let f ,g : [a,b]→ R be two continuous functions which are
differentiable on (a,b) . Further, let g′ �= 0 on (a,b) . If f ′/g′ is increasing (or de-
creasing) on (a,b) , then so are the functions

x �→ f (x)− f (b)
g(x)−g(b)

and x �→ f (x)− f (a)
g(x)−g(a)

.

LEMMA 2. ([2]) Let an and bn (n = 0,1,2, ...) be real numbers and let the power
series A(t) = ∑∞

n=1 antn and B(t) = ∑∞
n=1 bntn be convergent for |t|< R. If bn > 0 for

n = 0,1,2, ... , and an/bn is strictly increasing (or decreasing) for n = 0,1,2, ... , then
the function A(t)/B(t) is strictly increasing (or decreasing) on (0,R) .

LEMMA 3. ([6, pp. 227–229]) We have

cotx =
1
x
−

∞

∑
n=1

22n

(2n)!
|B2n|x2n−1, |x| < π , (2.1)

tanx =
∞

∑
n=1

22n−1
(2n)!

22n|B2n|x2n−1, |x| < π/2, (2.2)

1

sin2 x
=

1
x2 +

∞

∑
n=1

(2n−1)22n

(2n)!
|B2n|x2n−2, |x| < π , (2.3)

where Bn is the Bernoulli number.

LEMMA 4. For p ∈ (0,1] , let the function Fp be defined on (0,π/2) by

Fp (x) =
ln sinx

x

ln(cos px)
. (2.4)

Then Fp is strictly increasing on (0,π/2) for p∈ (0,1/
√

5] and decreasing on (0,π/2)
for p ∈ [1/2,1]. Consequently, we have

ln2− lnπ
ln(cos(π p/2))

ln(cos px) < ln
sinx
x

<
1

3p2 ln(cos px) (2.5)

for p ∈ (0,1/
√

5] . The inequalities (2.5) are reversed for p ∈ [1/2,1] .
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Proof. For x ∈ (0,π/2) , we define f (x) = ln sinx
x and g(x) = ln(cos px) , where

p ∈ (0,1] . Note that f (0+) = g(0+) = 0, then Fp (x) can be written as

Fp (x) =
f (x)− f (0+)
g(x)−g(0+)

.

Differentiation and using (2.1) and (2.2) yield

f ′ (x)
g′ (x)

=
p
(

1
x − cotx

)
tan px

=
∑∞

n=1
22n

(2n)! |B2n|x2n−1

∑∞
n=1

22n−1
(2n)! p2n−222n|B2n|x2n−1

:= ∑∞
n=1 anx2n−1

∑∞
n=1 bnx2n−1 ,

where

an =
22n

(2n)!
|B2n|, bn =

22n−1
(2n)!

p2n−222n|B2n|.

Clearly, if the monotonicity of an/bn is proved, then by Lemma 2 it is deduced the
monotonicity of f ′/g′ , and then the monotonicity of the function Fp easily follows
from Lemma 1. For this purpose, since an , bn > 0 for n ∈ N , we only need to show
that bn/an is decreasing if 0 < p � 1/

√
5 and increasing if 1/2 � p � 1. Indeed,

elementary computation yields

bn+1

an+1
− bn

an
=
(
22n+2−1

)
p2n− (22n−1

)
p2n−2

=
(
4n+1−1

)
p2n−2

(
p2− 1

4
+

3
4(4n+1−1)

)
.

It is easy to obtain that for n ∈ N

bn+1

an+1
− bn

an

{
� 0 if p2 < 1

5 ,

> 0 if p2 � 1
4 ,

which proves the monotonicity of an/bn .
By the monotonicity of the function Fp and notice that

Fp
(
0+)=

1
3p2 and Fp

(
π
2

−)
=

ln2− lnπ
ln(cos(π p/2))

,

the inequalities (2.5) follow immediately. �

REMARK 1. Lemma 4 contains many useful and interesting inequalities for trigo-
nometric functions. For example, put p = 1/

√
3, (2arccos(2/π))/π ∈ [1/2,1] in (2.5)

yield the second and first inequality of (1.2), respectively; put p = 1/2 ∈ [1/2,1] leads
to (1.6). Similarly, by virtue of Lemma 4 we will easily prove our most main results in
the sequel.

LEMMA 5. For x ∈ [0,π/2] , the function p �→ Up (x) defined by (1.8) is decreas-
ing on (0,1) .
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Proof. It suffices to show that ∂Up/∂ p > 0 for p ∈ (0,1) . Logarithmic differen-
tiation yields

3p3

Up (x)
∂Up

∂ p
= −2ln(cos px)− pxsin px

cos px
:= V (p) ,

V ′ (p) =
x

2cos2 px
(sin2px−2px) < 0.

It follows that V (p) <V (0) = 0, and therefore ∂Up/∂ p > 0, which proves the desired
result. �

LEMMA 6. For p ∈ [0,1] , let the function fp be defined on (0,π/2) by

fp (x) = ln
sinx
x

− 1
3p2 ln(cos px) if p ∈ (0,1] and f0 (x) = ln

sinx
x

+
x2

6
. (2.6)

(i) If fp (x) < 0 for all x ∈ (0,π/2) , then p ∈ [0,1/
√

5] .
(ii) If fp (x) > 0 for all x ∈ (0,π/2) , then p ∈ [p1,1] , where p1 = 0.45346... is

the unique root of equation

fp
(π

2

)
= ln

2
π
− 1

3p2 ln
(
cos

pπ
2

)
= 0 (2.7)

on (0,1) .

Proof. At first, we assert that there is a unique p1 ∈ (0,1) to satisfy equation (2.7)
such that fp (π/2) < 0 for p ∈ (0, p1) and fp (π/2) > 0 for p ∈ (p1,1] .

In fact, Lemma 5 indicates that Up (x) is decreasing in p on (0,1) , and so p �→
fp (π/2) is increasing on (0,1) . Since

f1/3

(π
2

)
= ln

2
π
−3ln

√
3

2
< 0,

f1/2

(π
2

)
= ln

2
π
− 4

3
ln

√
2

2
> 0,

so the equation (2.7) has a unique solution p1 on (0,1) and p1 ∈ (1/3,1/2) such that
fp (π/2) < 0 for p ∈ (0, p1) and fp (π/2) > 0 for p ∈ (p1,1] . Numerical calculation
yields p1 = 0.45346... .

Secondly, simple computations give us

lim
x→0+

fp (x)
x4 =

1
36

p2− 1
180

,

fp

(
π
2

−)
= ln

2
π
− 1

3p2 ln
(
cos

π p
2

)
if p ∈ (0,1] and f0+

(
π
2

−)
= ln

2
π

+
1
24

π2.

Now, if inequality fp (x) < 0 for all x ∈ (0,π/2) , then solving the simultaneous
inequalities

lim
x→0+

x−4 fp (x) � 0 and fp

(
π
2

−)
� 0
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for p yields
p ∈ [0,1/

√
5]∩ [0, p1] = [0,1/

√
5].

In the same way, if inequality fp (x) > 0 for all x ∈ (0,π/2) , then

p ∈ [1/
√

5,1]∩ [p1,1] = [p1,1],

which completes the proof. �

3. Main Results

Now we state and prove the sharp upper bound Up (x) defined by (1.8) for (sinx)/x .

THEOREM 1. The inequality

sinx
x

<

(
cos

x√
5

)5/3

(3.1)

holds for x ∈ (0,π/2), where 1/
√

5 is the best constant. Moreover, we have(
cos

x√
5

)α
<

sinx
x

<

(
cos

x√
5

)5/3

, (3.2)

where the exponents α = (ln(2/π))/ ln(cos(
√

5π/10))= 1.6714...and 5/3 = 1.6667...
are the best possible constants.

Proof. The second inequality of (2.5) implies that (3.1) holds for x ∈ (0,π/2).
The monotonicity of the function p �−→Up (x) on (0,1) and the part one of Lemma 6
indicate that 1/

√
5 is the best constant.

Put p = 1/
√

5 in (2.5) yields (3.2).
Thus the proof is completed. �
From the Theorem 1 and Lemma 5, we see that

sinx
x

< U1/
√

5 (x) < · · · < U0 (x) = e−x2/6

hold for x ∈ (0,π/2) . Thus, in order to prove the last inequality in (1.9) holds for
p ∈ [0,1/

√
5] , we have to prove the following

THEOREM 2. The inequality

e−x2/6 <
2+ cosx

3
(3.3)

holds for x ∈ (0,∞) . Moreover, for x ∈ (0,a) (a > 0 ) we have

2+ cosx

(2+ cosa)ea2/6
< e−x2/6 <

2+ cosx
3

. (3.4)



REFINEMENTS OF A TWO-SIDED INEQUALITY 607

Proof. Considering the function g defined by

g(x) = ln
2+ cosx

3
+

x2

6
,

and differentiation yields

g′ (x) =
x
3
− sinx

cosx+2
,

g′′ (x) =
1
3

(cosx−1)2

(cosx+2)2
� 0,

which implies that for x ∈ (0,∞) , g′ (x) > g′ (0+) = 0, then, g′ (x) > 0, that is, g is
increasing on (0,∞) . Hence, we have g(x) > g(0+) = 0 for x ∈ (0,∞) , that is, (3.3) is
true.

For x ∈ (0,a) we have

0 = g
(
0+)< g(x) < g(a) = ln

(
2+ cosa

3
ea2/6

)
,

which proves (3.4) and the proof is complete. �
Next we establish the sharp lower bound Up (x) defined by (1.8) for (sinx)/x .

THEOREM 3. The inequality

sinx
x

> (cos p1x)
1/(3p2

1) (3.5)

holds for all x ∈ (0,π/2) , where p1 = 0.45346... is the best constant which is the
unique root of equation (2.7) in p ∈ (0,1) . Moreover, we have

(cos p1x)
1/(3p2

1) <
sinx
x

< β (cos p1x)
1/(3p2

1) , (3.6)

where the coefficients 1 and β ≈ 1.0002 are the best possible constants.

Proof. We first prove (3.6). Clearly, it suffices to show that 0 < fp1 (x) < lnβ for
all x ∈ (0,π/2), where fp is defined by (2.6). To this end, we introduce an auxiliary
function h defined on (0,π/2) by

h(x) =
f ′p1

(x)
x3 =

(
cotx− 1

x

)
+ 1

3p1
tan p1x

x3 . (3.7)

Differentiation and simplifying yield

x4h′ (x) =
4
3

x

sin2 2p1x
− 1

3
x

sin2 p1x
+

1
x
− x

sin2 x
−3

(
cotx− 1

x

)
− tan p1x

p1
,
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which, utilizing (2.1), (2.2) and (2.3), can be expanded in power series as

x4h′ (x) =
4
3

∞

∑
n=1

(2n−1)22n

(2n)!
|B2n|(2p1)

2n−2 x2n−1

−1
3

∞

∑
n=1

(2n−1)22n

(2n)!
|B2n|p2n−2

1 x2n−1

−
∞

∑
n=1

(2n−1)22n

(2n)!
|B2n|x2n−1−3

∞

∑
n=1

22n

(2n)!
|B2n|x2n−1

−
∞

∑
n=1

22n−1
(2n)!

22n|B2n|p2n−2
1 x2n−1

:=
∞

∑
n=1

22n|B2n|
3(2n)!

unx
2n−1,

where
un =

(
22n−1

)
(2n−10)p2n−2

1 −3(2n−1).

Clearly, un < 0 for n = 1,2,3,4,5. We now show that un < 0 for n � 6. For this
purpose, we need to prove that for n � 6

p1 <

(
3(2n−1)

(22n−1)(2n−10)

) 1
2n−2

:= h1 (n) .

Since (2n−1) > (2n−10), we have

h1 (n) >

(
3

22n−1

) 1
2n−2

:= k (n) .

Considering the function k : (1,∞) → (0,∞) defined by

k (x) =
(

3
22x−1

)1/(2x−2)

, (3.8)

and differentiation leads to

2(x−1)2

k (x)
k′ (x) = ln

(
22x −1

)− ln3−2
(x−1)22x

22x−1
ln2 := k1 (x) ,

k′1 (x) =
22x+2 ln2 2

(22x −1)2
(x−1).

It is revealed that k1 is increasing on (1,∞) , and so k1 (x) > k1 (1+) = 0, then k′ (x) >
0, that is, k is increasing on (1,∞) . Therefore for n � 6

0.48583≈ 1365−1/10 = k (6) � k (n) < k (∞) =
1
2
.
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It follows that for n � 6

h1 (n) > k (n) > 0.48583 > p1,

which indicates that un < 0 for n � 6. Thus we have h′ (x) < 0, that is, the auxiliary
function h is decreasing on (0,π/2) .

On the other hand, it is clear that

h
(
0+)= lim

x→0+

(
cotx− 1

x

)
+ 1

3p1
tan p1x

x3 =
1
9

(
p2

1−
1
5

)
> 0.

And we claim that h
(π

2
−)< 0. If h

(π
2
−)� 0, then there must be h(x) > 0 for all x ∈

(0,π/2) , which, by (3.7), implies that f ′p1
(x) > 0, then fp1 is increasing on (0,π/2).

It yields

fp1 (x) > fp1

(
0+)= 0 and fp1 (x) < fp1

(π
2

)
= ln

2
π
− 1

3p2
1

ln
(
cos

p1π
2

)
= 0,

which is a contradiction. Consequently, h(0+) > 0 and h
(π

2
−)< 0.

Make use of the monotonicity of the auxiliary function h it is showed that there
is a unique x0 ∈ (0,π/2) to satisfy h(x0) = 0 such that h(x) > 0 for x ∈ (0,x0) and
h(x) < 0 for x ∈ (x0,π/2) . Then, by (3.7), it is seen that fp1 is increasing on (0,x0)
and decreasing on (x0,π/2) . We conclude that

0 = fp1

(
0+)< fp1 (x) < fp1 (x0) for x ∈ (0,x0) ,

0 = fp1

(
π
2

−)
< fp1 (x) < fp1 (x0) for x ∈ (x0,π/2) ,

that is, 0 < fp1 (x) < fp1 (x0) for x ∈ (0,π/2) .
Solving the equation h(x) = 0 which is equivalent with

f ′p1
(x) =

(
cotx− 1

x

)
+

1
3p1

tan p1x = 0

by using mathematical computer software, we find that x0 ∈ (1.3118,1.3119), and
β = exp( fp1 (x0)) ≈ 1.0002, which proves (3.6).

Consequently, (3.5) is true, of course. Now, Lemma 5 and the part two of Lemma
6 reveal that p1 can not be replaced with any smaller p ∈ [0,1] , that is, p1 is the best
constant, which completes the proof. �

Letting

p = 1,

√
6

3
,

1√
2
,

1√
3
,
1
2
, p1 and

1√
5
,

1√
6
,
1
3
,

1

2
√

3
,
1
4
, ...,→ 0.

By Theorem 3, Theorem 1 and Theorem 2 and Lemma 5, it is easy to obtain the fol-
lowing
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COROLLARY 1. For x ∈ (0,π/2) , we have

(cosx)1/3 < · · · <
(

cos

√
6x
3

)1/2

<

(
cos

x√
2

)2/3

< cos
x√
3

<
(
cos

x
2

)4/3

< (cos p1x)
1/(3p2

1) <
sinx
x

<

(
cos

x√
5

)5/3

<

(
cos

x√
6

)2

<
(
cos

x
3

)3

<

(
cos

x

2
√

3

)4

<
(
cos

x
4

)16/3
< · · ·< e−x2/6 <

2+ cosx
3

.

where p1 = 0.45346...and 1/
√

5 are the best possible constants.

Thus it can be seen that our results greatly refine the two-side inequality (1.1).
The following statement gives relative errors estimating (sinx)/x by Up (x) de-

fined by (1.8).

THEOREM 4. Let p ∈ [0,1] and let fp be defined on (0,π/2) by (2.6). Then fp
is decreasing if p ∈ [0,1/

√
5] and increasing if p ∈ [1/2,1] .

Moreover, for x ∈ (0,c) , c ∈ (0,π/2) , we have

γ0+ (c)e−x2/6 <
sinx
x

< e−x2/6 if p = 0, (3.9)

γp (c)(cos px)1/(3p2) <
sinx
x

< (cos px)1/(3p2) if p ∈ (0,1/
√

5], (3.10)

(cos px)1/(3p2) <
sinx
x

< γp (c) (cos px)1/(3p2) if p ∈ [1/2,1] , (3.11)

where the coefficients

γp (c) = c−1 (sinc)(cos pc)−1/(3p2) if p ∈ (0,1] and γ0+ (c) = c−1 (sinc)ec2/6

and 1 are the best constants.

Proof. Differentiation and using (2.1) and (2.2) yield

f ′p (x) =
{(

cotx− 1
x

)
+ 1

3p tan px if p ∈ (0,1],(
cotx− 1

x

)
+ x

3 if p = 0

= −
∞

∑
n=1

22n

(2n)!
|B2n|x2n−1 +

1
3

∞

∑
n=1

22n−1
(2n)!

p2n−222n|B2n|x2n−1

=
∞

∑
n=1

(
22n−1

)
22n

3(2n)!
|B2n|

(
p2n−2− 3

22n−1

)
x2n−1 :=

∞

∑
n=2

sntnx
2n−1,

where

sn =

(
22n−1

)
22n|B2n|

3(2n)!

p2n−2− 3
22n−1

p−
(

3
22n−1

)1/(2n−2) > 0,

tn = p− k (n)
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for n � 2 and p∈ [0,1] , here the function k is defined by (3.8). As showed in the proof
of Theorem 3, k is increasing on (1,∞) , and so for n � 2

1/
√

5 = k (2) � k (n) < k (∞) = lim
n→∞

(
3

22n−1

)1/(2n−2)

=
1
2
,

and then, tn = p− k (n) � 0 for p ∈ [0,1/
√

5] and tn = p− k (n) � 0 for p ∈ [1/2,1].
Thus, if p ∈ [0,1/

√
5] then f ′p (x) < 0, which shows that fp is decreasing on (0,π/2),

and it is derived that for x ∈ (0,c) , c ∈ (0,π/2)

ln(γp (c)) = fp (c) < fp (x) < lim
x→0+

fp (x) = 0,

which yields (3.9) and (3.10).
Likewise, if p ∈ [1/2,1] then f ′p (x) > 0, which implies that fp is increasing on

(0,π/2) , and (3.11) follows.
This completes the proof. �

Letting c → (π/2)− and putting p = 1/
√

5, 1/
√

6, 1/3, 0+ in Theorem 4, we
get

COROLLARY 2. The following inequalities

γ1/
√

5

(π
2

)(
cos

x√
5

)5/3

<
sinx
x

<

(
cos

x√
5

)5/3

, (3.12)

γ1/
√

6

(π
2

)(
cos

x√
6

)2

<
sinx
x

<

(
cos

x√
6

)2

, (3.13)

γ1/3

(π
2

)(
cos

x
3

)3
<

sinx
x

<
(
cos

x
3

)3
, (3.14)

γ0+

(π
2

)
e−x2/6 <

sinx
x

< e−x2/6 (3.15)

hold true for x ∈ (0,π/2), where γ1/
√

5 (π/2) = 0.99872... , γ1/
√

6 (π/2) = 0.99141... ,

γ1/3 (π/2) = 16
√

3/(9π) , γ0+ (π/2) = 2eπ2/24/π are the best possible constants.

Letting c → (π/2)− and putting p = 1/2 in Theorem 4, we obtain

COROLLARY 3. For x ∈ (0,π/2) , the double inequality

(
cos

x
2

)4/3
<

sinx
x

< γ1/2

(π
2

)(
cos

x
2

)4/3
(3.16)

holds, where the coefficients 1 and γ1/2 (π/2) = 25/3/π = 1.0106... are the best con-
stants.
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REMARK 2. The first inequality of (3.16) also holds for x ∈ (0,π) . Indeed, it can
be written as (

cos
x
2

)4/3
<

sinx
x

=
sin x

2 cos x
2

x
2

.

If x ∈ (0,π) , that is, x/2 ∈ (0,π/2), then we divide both sides by cos(x/2) to get

(
cos

x
2

)1/3
<

sin x
2

x
2

,

which is Adamović-Mitrinović’s inequality (the left one in (1.1)) .

4. Applications

As simple applications of main results, we present some precise estimations for
certain special functions and constants in this section.

For the estimations for the sine integral defined by

Si (x) =
∫ x

0

sin t
t

dt,

there has some results (see [17], [22], [23]). Now we give a general result.

PROPOSITION 1. For x ∈ (0,π/2] , we have

√
3sin

x√
3

< Si (x) <
x
2

+
√

6
4

sin
2x√
6
. (4.1)

Proof. By Corollary 1 we see that the inequalities

cos
t√
3

<
sin t
t

< cos2
t√
6

(4.2)

hold for t ∈ [0,π/2] . Integrating both sides over [0,π/2] and simple calculation yield
(4.1). �

REMARK 3. By (4.1) and using (4.2) we can obtain the following

1.3603≈
√

3
4

π <

∫ π/2

0

sinx
x

dx <
7
16

π ≈ 1.3744. (4.3)

Now we consider the error function defined as

erf (x) =
2√
π

∫ x

0
e−t2dt.

By integrating both sides of (3.4) over
[
0,
√

6x
]

(x > 0) and with x/
√

6 → x , we have
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PROPOSITION 2. For x > 0 the following inequalities

2√
π

2
√

6x+ sin(
√

6x)
2+ cos(

√
6x)

e−x2
< erf (x) <

2√
π

2
√

6x+ sin(
√

6x)
3

. (4.4)

It is known that ∫ π/2

0
ln(sinx)dx = −π

2
ln2.

We now evaluate the integral
∫ x
0 ln(sin t)dt (x ∈ (0,π/2)).

PROPOSITION 3. For x ∈ (0,π/2) , we have

x ln(sinx)− x+
1
9
x3 <

∫ x

0
ln(sin t)dt < x lnx− x− 1

18
x3. (4.5)

Proof. Utilizing (3.9) gives

x−1 (sinx)ex2/6e−t2/6 <
sin t
t

< e−t2/6.

Multiplying both sides by t and taking the logarithm and next integrating [0,x] yield∫ x

0
ln
(
x−1 (sinx)ex2/6te−t2/6

)
dt <

∫ x

0
ln(sin t)dt <

∫ x

0
ln
(
te−t2/6

)
dt.

Simple integral computation leads to desired result. �

REMARK 4. From (4.5) it is easy to get

π3

72 − π
2 <

∫ π/2

0
ln(sin t)dt < π

2 ln π
2 − π

2 − π3

144 , (4.6)

π3

576 − π
8 ln2− π

4 <
∫ π/4

0
ln(sin t)dt < π

4 ln π
4 − π

4 − π3

1152 . (4.7)

The Catalan constant [4]

G =
∞

∑
n=0

(−1)n

(2n+1)2
= 0.9159655941772190...

is a famous mysterious constant appearing in many places in mathematics and physics.
Its integral representations [3] include the following

G =
∫ 1

0

arctanx
x

dx =
1
2

∫ π/2

0

x
sinx

dx

= −2
∫ π/4

0
ln(2sinx)dx =

π2

16
− π

4
ln2+

∫ π/4

0

x2

sin2 x
dx.

By our results we can derive various estimations for G . Now, by using the third integral
representation for G and (4.7), we easily obtain the following
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PROPOSITION 4. We have

0.91528≈ π
2 − π

2 ln π
2 + π3

576 < G < π
2 − π

4 ln2− π3

288 ≈ 0.91874. (4.8)
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