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RATE OF APPROXIMATION OF BOUNDED VARIATION FUNCTIONS

BY THE BÉZIER VARIANT OF CHLODOWSKY OPERATORS

BO-YONG LIAN

(Communicated by I. Raşa)

Abstract. In this paper the pointwise approximation of the Bézier variant of Chlodowsky oper-
ators for bounded variation functions is studied. By means of the analysis techniques and some
results of probability theory, we obtain an estimate formula on this type approximation. Our
results correct the mistake of Karsli and Ibikli [H. Karsli and E. Ibikli, Convergence rate of a
new Bézier variant of Chlodowsky operators to bounded variation functions, J. Comput. Appl.
Math 212 (2008) 431–443], and also extend the work of Zeng [X. M. Zeng, On the rate of con-
vergence of two Bernstein-Bézier type operators for bounded variation functions II, J. Approx.
Theory 104 (2000) 330–344].

1. Introduction

For a function f defined on the interval [0,bn] , the Chlodowsky operators Cn( f ,x)
are defined by

Cn( f ,x) =
n

∑
k=0

f

(
kbn

n

)
pnk

(
x
bn

)
,

where pnk(x/bn) = (nk)(x/bn)k(1−x/bn)n−k and (bn) is a sequence of increasing posi-
tive numbers, with the properties limn→∞ bn = ∞ and limn→∞ bn/n = 0. When bn ≡ 1,
the operators Cn( f ,x) become the well-know Bernstein operators

Bn( f ,x) =
n

∑
k=0

f

(
k
n

)
pnk(x).

In [1], the authors introduced the Bézier variant of Chlodowsky operators Cn,α as
follows:

Cn,α( f ,x) =
n

∑
k=0

f

(
kbn

n

)
Q(α)

nk

(
x
bn

)
,
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where α > 0 and

Q(α)
nk (x/bn) = Jα

n,k(x/bn)− Jα
n,k+1(x/bn), Jn,k(x/bn) =

n

∑
j=k

pn j(x/bn).

Obviously for α = 1, the operators Cn,α reduce to the operators Cn .
Let

Kn,α

(
x
bn

,
t
bn

)
=

{
∑kbn� nt Q

(α)
nk

(
x
bn

)
, 0 < t � bn;

0, t = 0.

By Lebesgue-Stieltjes intergral representation, we have

Cn,α( f ,x) =
∫ bn

0
f (t)dtKn,α

(
x
bn

,
t
bn

)
.

In [1], H. Karsli and E. Ibikli studied the convergence rate of Cn,α to bounded
variation functions for the case α � 1. Unfortunately, in the proof of the results, the
authors made some mistakes as follows:

(1) [1, Lemma 2] For all x ∈ (0,∞) and 0 � t < x , we have

λn,α

(
x
bn

,
t
bn

)
=
∫ t

0
Kn,α

(
x
bn

,
u
bn

)
du � α

(x− t)2

x(bn − x)
n

.

In fact, the result should be

Kn,α

(
x
bn

,
t
bn

)
� α

(x− t)2

x(bn− x)
n

.

(2) In [1, p. 439], the authors mistook I1,α(n,x) =
∫ x−x/

√
n

0 gx(t)dt(λn,α( x
bn

, t
bn

)) ,

but in fact I1,α(n,x) =
∫ x−x/

√
n

0 gx(t)dt(Kn,α( x
bn

, t
bn

)). The representations of I2,α(n,x)
and I3,α(n,x) were also wrong.

These two mistakes resulted in a lot of errors in the following proof of [1, Theo-
rem].

In this paper, we re-discuss the pointwise approximation of Cn,α to bounded vari-
ation functions for the case α > 0 which includes α � 1. We also mention some of the
important papers on this subject by Gupta [7] and Pych-Taberska [8].

The main theorems of this paper are as follows.

THEOREM 1. Let α � 1, f be a function of bounded variation on every finite
subinterval of [0,∞) and limx→∞ f (x) exists, i.e. f ∈ BV [0,∞) . Then for every x ∈
(0,bn) , we have∣∣∣∣Cn,α( f ,x)− 1

2α f (x+)−
(

1− 1
2α

)
f (x−)

∣∣∣∣� 3αb2
n

nx(bn− x)

n

∑
k=1

x+(bn−x)/
√

k∨
x−x/

√
k

(gx)

+
αbn√

nx(bn− x)

(| f (x+)− f (x−)|+ εn(x/bn)| f (x)− f (x−)|).
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THEOREM 2. Let 0 < α � 1, f be a function of bounded variation on every
finite subinterval of [0,∞) and limx→∞ f (x) exists, i.e. f ∈ BV [0,∞) . Then for every

x ∈ (0,bn) and n > 256b2
n

25x(bn−x) , we have∣∣∣∣Cn,α( f ,x)− 1
2α f (x+)−

(
1− 1

2α

)
f (x−)

∣∣∣∣� Aαb2
n

nx(bn− x)

n

∑
k=1

x+(bn−x)/
√

k∨
x−x/

√
k

(gx)

+
bn√

nx(bn− x)

(| f (x+)− f (x−)|+ εn(x/bn)| f (x)− f (x−)|),
where Aα is a positive constant depending only on α ,

gx(t) =

⎧⎨⎩
f (t)− f (x+), x < t � bn;

0, t = x;
f (t)− f (x−), 0 � t < x.

(1)

εn(x/bn) =

{
1, if x = k′bn

n , for some k′ ∈ N;
0, if x �= kbn

n , for all k ∈ N.
(2)

When bn ≡ 1, the operators Cn,α( f ,x) are just the Bernstein-Bézier operators

Bn,α( f ,x) = ∑n
k=0 f ( k

n )Q(α)
nk (x) , which were studied by Zeng [2,3]. Therefore, our the-

orems extend the results of Zeng. Moreover, in the case 0 < α � 1, Zeng [2] gave a
rate of convergence of Bn,α for bounded variation functions as follows:

Let 0 < α � 1, f be a function of bounded variation on [0,1] ( f ∈ BV [0,1]).
Then for every x ∈ (0,1) and n > 256

25 (x(1− x))−1 we have∣∣∣∣Bn,α( f ,x)− 1
2α f (x+)−

(
1− 1

2α

)
f (x−)

∣∣∣∣� Aα
n(x(1− x))2−α

n

∑
k=1

x+(1−x)/
√

k∨
x−x/

√
k

(gx)

+
1√

nx(1− x)

(| f (x+)− f (x−)|+ εn(x)| f (x)− f (x−)|). (3)

Obviously, for bn ≡ 1, our Theorem 2 extends and improves the result of (3).

2. Lemmas

The proof of our results are based on the following lemmas.

LEMMA 1. For every x ∈ (0,bn) and 0 � k � n, we have

pnk(x/bn) � bn√
2enx(bn− x)

. (4)

Proof. By [4, Theorem 1], we have pnk(t) < 1√
2ent(1−t)

for 0 < t < 1.

Replacing t for x/bn , we can get (4) easily. �

The following Lemma is the well-known Berry-Esseen bound for the central limit
theorem of probability theory. Its proof can be found in Shiryayev [5, p. 432].
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LEMMA 2. Let {ξk}+∞
k=1 be a sequence of independent and identically distributed

random variables with finite variance such that the expectation E(ξ1) = a1 ∈ R, the
variance Var(ξ1) = E(ξ1−a1)2 = b2

1 > 0 and E|ξ1−E(ξ1)|3 < +∞ . Then there exists
a constant C , 1/

√
2π � C < 0.8 , such that for all n and t ,∣∣∣∣∣P

(
1

b1
√

n

n

∑
k=1

(ξk −a1) � t

)
− 1√

2π

∫ t

−∞
e−u2/2du

∣∣∣∣∣< C
E|ξ1−E(ξ1)|3

b3
1
√

n
(5)

LEMMA 3. For x ∈ (0,bn) , we have∣∣∣∣∣ ∑
nx/bn<k�n

pnk(x/bn)− 1
2

∣∣∣∣∣< 0.8bn√
nx(bn− x)

. (6)

Proof. Let ξ1 be the random variable with two-point distribution P(ξ1 = i) =
( x

bn
)i(1− x

bn
)1−i (i = 0,1, x ∈ (0,bn) is a parameter). Hence a1 = E(ξ1) = x/bn ,

b2
1 = E(ξ1 − a1)2 = x

bn
(1− x

bn
) , and E|ξ1 −E(ξ1)|3 = x

bn
(1− x

bn
)[( x

bn
)2 + (1− x

bn
)2].

Let {ξk}+∞
k=1 be a sequence of independent random variables identically distributed with

ξ1 , ηn = ∑n
j=1 ξ j. Then the probability distribution of the random variable ηn is

P(ηn = k) = (nk)(x/bn)k(1− x/bn)n−k = pnk(x/bn).

So

∑
nx/bn<k�n

pnk(x/bn) = P(nx/bn < ηn � n) = 1−P(ηn � nx/bn)

= 1−P

⎛⎝ ηn −nx/bn√
n
√

x
bn

(1− x
bn

)
� 0

⎞⎠ .

By (5), we get∣∣∣∣∣ ∑
nx/bn<k�n

pnk(x/bn)− 1
2

∣∣∣∣∣=
∣∣∣∣∣∣P
⎛⎝ ηn−nx/bn√

n
√

x
bn

(1− x
bn

)
� 0

⎞⎠− 1
2

∣∣∣∣∣∣
<

C√
n

E|ξ1−E(ξ1)|3
b3

1

<
0.8[( x

bn
)2 +(1− x

bn
)2]bn√

nx(bn− x)
<

0.8bn√
nx(bn− x)

.

This completes the proof of (6). �

LEMMA 4. For α � 1 and x ∈ (0,bn) , k′ = nx/bn , we have

(i)

∣∣∣∣∣
(

∑
nx/bn<k�n

pnk(x/bn)

)α

− 1
2α

∣∣∣∣∣� 0.8αbn√
nx(bn− x)

, (7)
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(ii) Q(α)
nk′ (x/bn) <

αbn√
2enx(bn− x)

. (8)

Proof. (i) From the fact that |xα − yα | � α|x− y| with 0 � x , y � 1 and α � 1,
we get (7) from (6) easily.

(ii) Using the same method of (i), we obtain Q(α)
nk′ (x/bn) � α pnk′(x/bn) .

(8) now follows from (4) immediately. �

LEMMA 5. For 0 < α � 1 and x ∈ (0,bn) , as n > 256b2
n

25x(bn−x) and k′ = nx/bn , we
have

(i)

∣∣∣∣∣
(

∑
nx/bn<k

pnk(x/bn)

)α

− 1
2α

∣∣∣∣∣< bn√
nx(bn− x)

, (9)

(ii) Q(α)
nk′ (x/bn) <

bn√
nx(bn− x)

. (10)

Proof. (i) By mean value theorem, we have∣∣∣∣∣
(

∑
nx/bn<k�n

pnk(x/bn)

)α

− 1
2α

∣∣∣∣∣= α (ξnk(x/bn))
α−1

∣∣∣∣∣
(

∑
nx/bn<k�n

pnk(x/bn)

)
− 1

2

∣∣∣∣∣ ,
(11)

where ξnk(x/bn) lies between 1
2 and ∑nx/bn<k�n pnk(x/bn) .

In view of (6) and all n > 256b2
n

25x(bn−x) , we have

∑
nx/bn<k�n

pnk(x/bn) >
1
4

. (12)

Hence ξnk(x/bn) > 1
4 holds for n >

256b2
n

25x(bn−x) .
From (11), (6) and noting 3.2α < 4α , we get (9) immediately.
(ii) Using the mean value theorem, we get

Q(α)
nk′ (x/bn) = α

(
ηnk′(x/bn)

)α−1[Jn,k′(x/bn)− Jn,k′+1(x/bn)]

= α
( 1

ηnk′(x/bn)

)1−α
pn,k′(x/bn) , (13)

where Jn,k′+1(x/bn) < ηnk′(x/bn) < Jn,k′(x/bn).
But in view of (12), we know

ηnk′(x/bn) > Jn,k′+1(x/bn) = ∑
j>nx/bn

pn j(x/bn) >
1
4
.

From (13),(4) and noting 2α < 4α , we deduce that

Q(α)
nk′ (x/bn) <

α41−αbn√
2enx(bn− x)

<
bn√

nx(bn− x)
. �
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LEMMA 6. (i) For α � 1 and 0 � t < x , there holds

Kn,α

(
x
bn

,
t
bn

)
� αx(bn− x)

n(x− t)2 . (14)

(ii) For α � 1 and 0 � x < t , there holds

1−Kn,α

(
x
bn

,
t
bn

)
� αx(bn − x)

n(x− t)2 . (15)

Proof. (i) By a simple calculation, we get

Cn(1,x) = 1,

Cn(t,x) = x,

Cn(t2,x) = x2 +
x(bn− x)

n
.

Thus

Cn((t − x)2,x) =
x(bn− x)

n
. (16)

Now from the fact that |xα − yα | � α|x− y| with 0 � x , y � 1 and α � 1, we get

Kn,α

(
x
bn

,
t
bn

)
= ∑

kbn� nt

Q(α)
nk

(
x
bn

)
� α ∑

kbn� nt

pnk

(
x
bn

)
� α ∑

kbn� nt

(kbn/n− x)2

(t − x)2 pnk

(
x
bn

)
� α

Cn((t − x)2,x)
(t− x)2 .

(14) now follows from (16).
(ii) Using a similar method we can get (15) easily. �

LEMMA 7. (i) For 0 < α � 1 and 0 � t < x , there holds

Kn,α

(
x
bn

,
t
bn

)
� Kn,1

(
x
bn

,
t
bn

)
� x(bn − x)

n(x− t)2 . (17)

(ii) For 0 < α � 1 and 0 � x < t , there holds

1−Kn,α

(
x
bn

,
t
bn

)
� Aαx(bn − x)

n(x− t)2 , (18)

where Aα is a positive constant depending only on α .

Proof. (i) Along the same lines of the proof of [2, Lemma 4] and the inequality of
(14), we can get (17) easily.
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(ii) Since 0 � x < t , so | kbn
n − x|/|t− x|� 1 for all k � nt/bn . Thus we have

1−Kn,α

(
x
bn

,
t
bn

)
= 1− ∑

k�nt/bn

Q(α)
nk (x/bn) � ∑

k�nt/bn

Q(α)
nk (x/bn)

= ∑
k�nt/bn

(
Jα
n,k(x/bn)− Jα

n,k+1(x/bn)
)

=

(
∑

k� nt/bn

pnk(x/bn)

)α

�
(

∑
k�nt/bn

| kbn
n − x|2/α

|t− x|2/α pnk(x/bn)

)α

� b2
n

(t− x)2

(
n

∑
k=0

∣∣∣∣ kn − x
bn

∣∣∣∣2/α
pnk(x/bn)

)α

.

Then, by Hölder’s inequality with p,q > 1 and 1
p + 1

q = 1, we have(
n

∑
k=0

∣∣∣∣ kn − x
bn

∣∣∣∣2/α
pnk(x/bn)

)α

=

(
n

∑
k=0

∣∣∣∣ kn − x
bn

∣∣∣∣2/α
(pnk(x/bn))

1/p (pnk(x/bn))
1/q

)α

�
(

n

∑
k=0

∣∣∣∣ kn − x
bn

∣∣∣∣2p/α
pnk(x/bn)

)α/p

.

Choosing p = α[1/α +1] , then 2p/α = 2[1/α +1] is an even positive integer. From
[6, Theorem 1.5.1], we have(

n

∑
k=0

∣∣∣∣ kn − x
bn

∣∣∣∣2/α
pnk(x/bn)

)α

� Aα
x
bn

(
1− x

bn

)
n−1,

where Aα is a positive constant depending only on α . This completes the proof of
(18). �

LEMMA 8. (i) For α � 1 , f ∈ BV [0,∞) and x ∈ (0,bn) , we have

∣∣Cn,α
(
gx,x)

∣∣� 3αb2
n

nx(bn− x)

n

∑
k=1

x+(bn−x)/
√

k∨
x−x/

√
k

(gx). (19)

(ii) For 0 < α � 1 , f ∈ BV [0,∞) and x ∈ (0,bn) , when n > 256b2
n

25x(bn−x) , we have

∣∣Cn,α
(
gx,x)

∣∣� Aαb2
n

nx(bn− x)

n

∑
k=1

x+(bn−x)/
√

k∨
x−x/

√
k

(gx). (20)

Proof. (i) We recall the Lebesgue-Stieltjes integral representations

Cn,α(gx,x) =
∫ bn

0
gx(t)dtKn,α

(
x
bn

,
t
bn

)
. (21)
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Decompose the integral of (21) into three parts as follows

Cn,α(gx,x) =
∫ bn

0
gx(t)dtKn,α

(
x
bn

,
t
bn

)
= Σ1 + Σ2 + Σ3 , (22)

where

Σ1 =
∫ x− x√

n

0
gx(t)dtKn,α

(
x
bn

,
t
bn

)
, Σ2 =

∫ x+ bn−x√
n

x− x√
n

gx(t)dtKn,α

(
x
bn

,
t
bn

)
,

Σ3 =
∫ bn

x+ bn−x√
n

gx(t)dtKn,α

(
x
bn

,
t
bn

)
.

Observing that gx(x) = 0, we first have∣∣Σ2
∣∣ =

∫ x+ bn−x√
n

x− x√
n

|gx(t)−gx(x)|dtKn,α

(
x
bn

,
t
bn

)

�
x+(bn−x)/

√
n∨

x−x/
√

n

(gx) � 1
n−1

n

∑
k=2

x+(bn−x)/
√

k∨
x−x/

√
k

(gx). (23)

To estimate Σ1 , let y = x− x/
√

n . Using Lebesgue-Stieltjes integration by parts and
(14), we have∣∣Σ1

∣∣ =
∣∣∣∣∫ y

0
gx(t)dtKn,α

(
x
bn

,
t
bn

)∣∣∣∣
=
∣∣∣∣gx(y+)Kn,α

(
x
bn

,
y
bn

)
−
∫ y

0
Kn,α

(
x
bn

,
t
bn

)
dtgx(t)

∣∣∣∣
�

x∨
y+

(gx)Kn,α

(
x
bn

,
y
bn

)
+
∫ y

0
Kn,α

(
x
bn

,
t
bn

)
dt(−

x∨
t

(gx))

�
x∨

y+
(gx)

αx(bn − x)
n(x− y)2 +

αx(bn− x)
n

∫ y

0

1
(x− t)2 dt(−

x∨
t

(gx)).

Since ∫ y

0

1
(x− t)2 dt(−

x∨
t

(gx)) = −
∨x

t (gx)
(x− t)2

∣∣∣y+
0

+
∫ y

0

2
∨x

t (gx)
(x− t)3 dt,

we have ∣∣Σ1
∣∣� αx(bn− x)

nx2

x∨
0

(gx)+
αx(bn− x)

n

∫ y

0

2
∨x

t (gx)
(x− t)3 dt.

Putting t = x− x/
√

u for the last integral, we get∣∣Σ1
∣∣ � αx(bn − x)

nx2

x∨
0

(gx)+
αx(bn − x)

nx2

∫ n

1

x∨
x−x/

√
u

(gx)du

� αx(bn − x)
nx2

⎡⎣ x∨
0

(gx)+
n

∑
k=1

x∨
x−x/

√
k

(gx)

⎤⎦ . (24)
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Using the similar method and (15) to estimate |Σ3| , we obtain

∣∣Σ3
∣∣� αx(bn− x)

n(bn− x)2

⎡⎣ bn∨
x

(gx)+
n

∑
k=1

x+(bn−x)/
√

k∨
x

(gx)

⎤⎦ . (25)

Combining the estimates of (22), (23), (24) and (25), also noting the properties of∨b
a( f ) and 1/(n−1) � αb2

n/[nx(bn− x)] for x ∈ (0,bn) , we get

|Cn,α(gx,x)| � α[(bn− x)2 + x2]
nx(bn− x)

⎡⎣ bn∨
0

(gx)+
n

∑
k=1

x+(bn−x)/
√

k∨
x−x/

√
k

(gx)

⎤⎦
+

1
n−1

n

∑
k=2

x+(bn−x)/
√

k∨
x−x/

√
k

(gx)

� 2αb2
n

nx(bn− x)

n

∑
k=1

x+(bn−x)/
√

k∨
x−x/

√
k

(gx)+
1

n−1

n

∑
k=2

x+(bn−x)/
√

k∨
x−x/

√
k

(gx)

� 3αb2
n

nx(bn− x)

n

∑
k=1

x+(bn−x)/
√

k∨
x−x/

√
k

(gx).

This completes the proof of (19).
(ii) Using the same method and (17), (18), we can also get (20) easily. �

3. Proof of Theorem 1 and Theorem 2

Let f satisfy the conditions of Theorem 1 and Theorem 2. We can decompose
f (t) into four parts as

f (t) =
1
2α f (x+)+(1− 1

2α ) f (x−)+gx(t)+
f (x+)− f (x−)

2α ŝign(t− x)

+δx(t)
[

f (x)− 1
2α f (x+)−

(
1− 1

2α

)
f (x−)

]
,

where

ŝign(t− x) =

⎧⎨⎩
2α −1, t > x;

0, t = x;
−1, t < x.

δx(t) =
{

1, t = x;
0, t �= x.
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gx(t) is defined in (1). Therefore,∣∣∣∣Cn,α( f ,x)− 1
2α f (x+)−

(
1− 1

2α

)
f (x−)

∣∣∣∣
� |Cn,α(gx,x)|+

∣∣∣ f (x+)− f (x−)
2α Cn,α

(
ŝign(t− x),x

)
+
[
f (x)− 1

2α f (x+)−
(

1− 1
2α

)
f (x−)

]
Cn,α(δx,x)

∣∣∣. (26)

By direct calculation, we get

Cn,α(δx,x) = εn(x/bn)Q
(α)
nk′ (x/bn)

and

Cn,α
(
ŝign(t− x),x

)
= ∑

k>nx/bn

(2α −1)Q(α)
nk (x/bn)+ ∑

k<nx/bn

(−1)Q(α)
nk (x/bn)

= 2α ∑
k>nx/bn

Q(α)
nk (x/bn)−1+ εn(x/bn)Q

(α)
nk′ (x/bn)

= 2α

(
∑

k>nx/bn

pnk(x/bn)

)α

−1+ εn(x/bn)Q
(α)
nk′ (x/bn),

where εn(x/bn) is defined in (2).
Therefore, we have∣∣∣∣ f (x+)− f (x−)

2α Cn,α
(
ŝign(t−x),x

)
+
[

f (x)− 1
2α f (x+)−

(
1− 1

2α

)
f (x−)

]
Cn,α(δx,x)

∣∣∣∣
=

∣∣∣∣∣∣[ f (x+)− f (x−)
][(

∑
nx
bn

<k

pnk(x/bn)
)α− 1

2α

]
+
[
f (x)− f (x−)

]
εn(x/bn)Q

(α)
nk′ (x/bn)

∣∣∣∣∣∣ .
(27)

By combining the estimates given by (26), (19), (27), (7) and (8), we obtain Theorem
1; and by combining the estimates given by (26), (20), (27), (9) and (10), we obtain
Theorem 2.
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bounded variation functions, J. Approx. Theory. 95 (1998), 369–387.

[4] X. M. ZENG, Bounds for Bernstein basis functions and Meyer-König-Zeller basis functions, J. Math.
Anal. Appl. 219 (1998), 364–376.

[5] A. N. SHIRYAYEV, Probability, Springer-Verlag, New York,1984.
[6] G. G. LORENTZ, Bernstein Polynomials, Univ. of Toronto Press, Tornoto,1953.
[7] V. GUPTA, An estimate on the convergence of Baskakov-Bézier operators, J. Math. Anal. Appl. 312
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