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Abstract. In this paper, we find the greatest values α , λ and the least values β , μ such that
the double inequalities α [5A(a,b)/6 + H(a,b)/6] + (1− α)A5/6(a,b)H1/6(a,b) < P(a,b) <
β [5A(a,b)/6+H(a,b)/6]+ (1−β)A5/6 (a,b)H1/6(a,b) and λ [A(a,b)/3+2Q(a,b)/3] + (1−
λ)A1/3(a,b)Q2/3(a,b) < T (a,b) < μ [A(a,b)/3+2Q(a,b)/3]+(1−μ)A1/3(a,b)Q2/3(a,b) hold
for all a,b > 0 with a �= b . Here A(a,b) , H(a,b) , Q(a,b) , P(a,b) and T (a,b) denote the
arithmetic, harmonic, quadratic, first Seiffert and second Seiffert means of two positive numbers
a and b , respectively.

1. Introduction

For a,b > 0 with a �= b , the first and second Seiffert means P(a,b) [13] and
T (a,b) [14] are defined by

P(a,b) =
a−b

4arctan(
√

a/b)−π
(1.1)

and

T (a,b) =
a−b

2arctan[(a−b)/(a+b)]
, (1.2)

respectively.
Recently, both means P and T have been the subject of intensive research. In

particular, many remarkable inequalities for P and T can be found in the literature [2,
4, 5, 7–12, 14–17]. The first Seiffert mean P(a,b) can be rewritten as (see [9], Eq.
(2.4))

P(a,b) =
a−b

2arcsin[(a−b)/(a+b)]
. (1.3)

Let A(a,b)= (a+b)/2, G(a,b)=
√

ab , H(a,b)= 2ab/(a+b) , Q(a,b)=
√

(a2+b2)/2,
I(a,b) = 1/e(bb/aa)1/(b−a) , L(a,b) = (b−a)/(logb− loga) , and Lr(a,b) = (ar+1 +
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br+1)/(ar +br) be the arithmetic, geometric, harmonic, quadratic, identric, logarithmic
and r -th Lehmer means of two positive real numbers a and b with a �= b . Then

min{a,b} < H(a,b) = L−1(a,b) < G(a,b) = L−1/2(a,b) < L(a,b) < I(a,b)

< A(a,b) = L0(a,b) < Q(a,b) < max{a,b}.

Seiffert [13–15] established that

L(a,b) < P(a,b) < I(a,b), (1.4)

A(a,b) < T (a,b) < Q(a,b),

P(a,b) >
3A(a,b)G(a,b)

A(a,b)+2G(a,b)
, (1.5)

P(a,b) >
A(a,b)G(a,b)

L(a,b)
, (1.6)

P(a,b) >
2
π

A(a,b)

for all a,b > 0 with a �= b .
In [6], Jagers proved that the inequality

M1/2(a,b) < P(a,b) < M2/3(a,b) (1.7)

holds for a,b > 0 with a �= b , where Mr(a,b)= [(ar +br)/2]1/r (r �= 0) and M0(a,b) =√
ab denotes the r -th power mean of a and b .

According to Carlson [1] and Pfaff [3], Sándor [11] found that the first Seiffert
mean P(a,b) is the common limit of the sequences given by

x0 = G(a,b), y0 = A(a,b), xn+1 =
xn + yn

2
, yn+1 =

√
xn+1yn,(n � 0),

and by using the sequential method, the following more general results were given:

xn < P(a,b) < yn, (1.8)

3
√

xny2
n < P(a,b) <

xn +2yn

3
(1.9)

for all n � 0 and a,b > 0 with a �= b . In particular, for n = 1 from (1.8) and n = 0
from (1.9) one has

A(a,b)+G(a,b)
2

< P(a,b) <

√
A(a,b)+G(a,b)

2
A(a,b),

A(a,b)2/3G(a,b)1/3 < P(a,b) <
2A(a,b)+G(a,b)

3
. (1.10)
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The lower bound in (1.10) are better than that in (1.5) and (1.6), and the upper
bound in (1.10) are better than that in (1.4) and (1.7) (see [11]). In fact, infinitely many
refinements for P(a,b) have been proved by use of (1.8) and (1.9).

Wang and Chu [16] proved that the inequality

P(a,b) > A5/6(a,b)H1/6(a,b) (1.11)

holds for all a,b > 0 with a �= b .
Indeed, inequality (1.11) is exactly the left side of inequality (1.10) because of

A(a,b)H(a,b) = G2(a,b) . Therefore, it due to Sándor [11].
In [5, 7], the authors given the bounds for P and T in terms of power mean as

follows
Mlog2/logπ(a,b) < P(a,b),

Mlog2/log(π/2)(a,b) < T (a,b) < M5/3(a,b)

for all a,b > 0 with a �= b .
Recently, Chu et al. [2, 17] proved that the inequalities

L−1/6(a,b) < P(a,b) < L0(a,b),

L0(a,b) < T (a,b) < L1/3(a,b)

and
2
π

A(a,b)+
(

1− 2
π

)
H(a,b) < P(a,b) <

5
6
A(a,b)+

1
6
H(a,b) (1.12)

hold for a,b > 0 with a �= b .
In [12], Sándor found that T (a,b) is the common limit of the sequences {un} and

{vn} given by

u0 = A(a,b), v0 = Q(a,b), un+1 =
un + vn

2
, vn+1 =

√
un+1vn, (n � 0),

and established a more general inequality:

3
√

unv2
n < T (a,b) <

un +2vn

3
(1.13)

for all n � 0 and a,b > 0 with a �= b . Particular, for n = 0 and n = 1 from (1.13) we
get

Q2/3(a,b)A1/3(a,b) < T (a,b) <
2
3
Q(a,b)+

1
3
A(a,b), (1.14)

3

√
Q(a,b)

(
Q(a,b)+A(a,b)

2

)2

< T (a,b)

<
1
3

(
Q(a,b)+A(a,b)

2
+2

√
Q(a,b)+A(a,b)

2
Q(a,b)

)
.

In fact, infinitely many refinements for T (a,b) have been proved by use of (1.13).



662 YUMING CHU, BAOYU LIU AND MIAOKUN WANG

Motivated by inequalities (1.10), (1.12) and (1.14), it is natural to ask what are the
greatest values α , λ and the least values β , μ such that the double inequalities

α[5A(a,b)/6+H(a,b)/6]+ (1−α)A5/6(a,b)H1/6(a,b) < P(a,b)

< β [5A(a,b)/6+H(a,b)/6]+ (1−β )A5/6(a,b)H1/6(a,b)

and

λ [A(a,b)/3+2Q(a,b)/3]+ (1−λ )A1/3(a,b)Q2/3(a,b) < T (a,b)

< μ [A(a,b)/3+2Q(a,b)/3]+ (1− μ)A1/3(a,b)Q2/3(a,b)

hold for all a,b > 0 with a �= b .
The purpose of this paper is to answer these questions. All numerical computations

are carried out using MATHEMATICA software.

2. Lemmas

In order to establish our main results we need two lemmas, which we present in
this section.

LEMMA 2.1. Let f (x)=−p2x12−2p2x11−3p2x10−(4p2+6p)x9−(5p2+12p)x8

+(6p2 − 30p)x7 + (7p2 − 48p)x6 +(8p2 − 66p)x5 + (9p2 − 108p+ 24)x4 + (10p2 −
108p+ 48)x3 − (25p2 + 36p− 36)x2 + 24(1− p)x + 12(1− p) . Then the following
statements are true:

(1) If p = 8/25 , then f (x) > 0 for x ∈ (0,1);
(2) If p = 12/(5π) , then there exists γ ∈ (0,1) such that f (x) > 0 for x ∈ (0,γ)

and f (x) < 0 for x ∈ (γ,1) .

Proof. Part (1) follows easily from

f (x) =
4

625
(1− x)(16x11 +48x10 +96x9 +460x8 +1140x7 +2544x6

+4832x5 +8004x4 +9510x3 +7250x2 +3825x+1275)> 0

for all x ∈ (0,1) if p = 8/25.
For part (2), if p = 12/(5π) , then simple computations lead to

6p2−30p =
72(12−25π)

25π2 < 0, (2.1)

7p2−48p =
144(7−20π)

25π2 < 0, (2.2)

8p2−66p =
144(8−25π)

25π2 < 0, (2.3)

9p2−108p+24 =
24(54−270π +25π2)

25π2 < 0, (2.4)
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10p2−108p+48 =
48(6−27π +5π2)

5π2 < 0, (2.5)

−25p2−36p+36 =
36(−20−12π +5π2)

5π2 < 0, (2.6)

f (0) = 12(1− p) > 0, (2.7)

f (1) = 144−450p= 144− 1080
π

< 0, (2.8)

f ′(x) =−12p2x11−22p2x10−30p2x9−9(4p2 +6p)x8−8(5p2 +12p)x7

+7(6p2−30p)x6 +6(7p2−48p)x5 +5(8p2−66p)x4

+4(9p2−108p+24)x3+3(10p2−108p+48)x2

−2(25p2 +36p−36)x+24(1− p),

f ′(0) = 24(1− p) > 0, (2.9)

f ′(1) = 336−1830p =
24(14π −183)

π
< 0 (2.10)

and

f ′′(x) =−132p2x10−220p2x9−270p2x8−72(4p2 +6p)x7−56(5p2 +12p)x6

+42(6p2−30p)x5 +30(7p2−48p)x4 +20(8p2−66p)x3

+12(9p2−108p+24)x2+6(10p2−108p+48)x

−2(25p2 +36p−36). (2.11)

It follows from (2.1)–(2.6) and (2.11) that

f ′′(x) < 0 (2.12)

for x ∈ (0,1) . Hence f ′(x) is strictly decreasing on (0,1) .
Inequalities (2.9) and (2.10) together with the monotonicity of f ′(x) lead to the

conclusion that there exists x0 ∈ (0,1) , such that f ′(x) > 0 for x∈ (0,x0) and f ′(x) < 0
for x ∈ (x0,1) . Thus f (x) is strictly increasing on (0,x0) and strictly decreasing on
(x0,1) .

Therefore, part (2) follows from (2.7) and (2.8) together with the piecewise mono-
tonicity of f (x) . �

LEMMA 2.2. Let g(x) = 3(1− q)x6 + 6(1− q)x5 − (4q2 + 6q− 9)x4 + (4q2 −
18q+12)x3 +(3q2−12q+6)x2−2q2x−q2 . Then the following statements are true:

(1) If q = 4/5 , then g(x) > 0 for x ∈ (1, 6
√

2);
(2) If q = [12/π − 3 3

√
2]/[2

√
2 + 1− 3 3

√
2] = 0.821 · · · , then there exists ξ ∈

(1, 6
√

2) such that g(x) < 0 for x ∈ (1,ξ ) and g(x) > 0 for x ∈ (ξ , 6
√

2) .

Proof. Part (1) follows easily from

g(x) =
1
25

(x−1)(15x5 +45x4 +86x3 +90x2 +48x+16)> 0
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for all x ∈ (1, 6
√

2) if q = 4/5.
For part (2), if q = [12/π−3 3

√
2]/[2

√
2+1−3 3

√
2] = 0.821 · · · , then simple com-

putations lead to
−4q2−6q+9 = 1.377 · · · > 0, (2.13)

4q2−18q+12= −0.0823 · · ·< 0, (2.14)

3q2−12q+6 = −1.8302 · · ·< 0, (2.15)

g(1) = 36−45q < 0, (2.16)

g( 6
√

2) = 0.563 · · ·> 0 (2.17)

and

g′(x) =18(1−q)x5 +30(1−q)x4−4(4q2 +6q−9)x3 +3(4q2−18q+12)x2

+2(3q2−12q+6)x−2q2. (2.18)

It follows from (2.13)–(2.15) and (2.18) that

g′(x) >18(1−q)x2 +30(1−q)x2−4(4q2 +6q−9)x2 +3(4q2−18q+12)x2

+2(3q2−12q+6)x2−2q2x2

=6(22−25q)x2 > 0 (2.19)

for x ∈ (1, 6
√

2) . Hence g(x) is strictly increasing on (1, 6
√

2) .
Therefore, part (2) follows from (2.16) and (2.17) together with the monotonicity

of g(x) . �

3. Main results

THEOREM 3.1. The double inequality

α
[
5
6
A(a,b)+

1
6
H(a,b)

]
+(1−α)A5/6(a,b)H1/6(a,b) < P(a,b)

< β
[
5
6
A(a,b)+

1
6
H(a,b)

]
+(1−β )A5/6(a,b)H1/6(a,b)

holds for all a,b > 0 with a �= b if and only if α � 8/25 and β � 12/(5π) .

Proof. Firstly, we prove that the inequalities

P(a,b) >
8
25

[
5
6
A(a,b)+

1
6
H(a,b)

]
+

17
25

A5/6(a,b)H1/6(a,b), (3.1)

P(a,b) <
12
5π

[
5
6
A(a,b)+

1
6
H(a,b)

]
+

(
1− 12

5π

)
A5/6(a,b)H1/6(a,b) (3.2)

hold for all a,b > 0 with a �= b .
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Since P(a,b) , A(a,b) and H(a,b) are symmetric and homogenous of degree 1.
Without loss generality, we assume that a > b . Let r = (a−b)/(a+b) , r′ =

√
1− r2

and p ∈ {8/25,12/(5π)} . Then r ∈ (0,1) ,

P(a,b)
A(a,b)

=
r

arcsin(r)
,

H(a,b)
A(a,b)

= 1− r2,

P(a,b)−A5/6(a,b)H1/6(a,b)
5A(a,b)/6+H(a,b)/6−A5/6(a,b)H1/6(a,b)

=
r/arcsinr− (1− r2)1/6

5/6+(1− r2)/6− (1− r2)1/6
,

(3.3)

lim
r→0+

r/arcsinr− (1− r2)1/6

5/6+(1− r2)/6− (1− r2)1/6
=

8
25

, (3.4)

lim
r→1−

r/arcsinr− (1− r2)1/6

5/6+(1− r2)/6− (1− r2)1/6
=

12
5π

, (3.5)

P(a,b)− p

[
5
6
A(a,b)+

1
6
H(a,b)

]
− (1− p)A5/6(a,b)H1/6(a,b)

=A(a,b)
[

r
arcsinr

− p

(
1− 1

6
r2

)
− (1− p)r′1/3

]

=
A(a,b)[5p+ pr′2 +6(1− p)r′1/3]

6arcsinr

[
6r

5p+ pr′2 +6(1− p)r′1/3
− arcsinr

]
. (3.6)

Let

F(r) =
6r

5p+ pr′2 +6(1− p)r′1/3
− arcsinr. (3.7)

Then simple computations yield
F(0) = 0, (3.8)

F(1) =
6
5p

− π
2

, (3.9)

F ′(r) =
(1− r′1/3)2 f (r′1/3)

r′5/3
[
5p+ pr′2 +6(1− p)r′1/3

]2 , (3.10)

where the function f (·) is defined as in Lemma 2.1.
We divide the proof into two cases.
Case 1 p = 8/25. Then from (3.10) and Lemma 2.1(1) we clearly see that F ′(r) >

0 for r ∈ (0,1) . Thus F(r) is strictly increasing on (0,1) .
Therefore, inequality (3.1) follows from (3.6)–(3.8) together with the monotonic-

ity of F(r) .
Case 2 p = 12/(5π) . Then from (3.10) and Lemma 2.1(2) we know that there

exists λ0 ∈ (0,1)(=
√

1− γ6) such that F ′(r) < 0 for r ∈ (0,λ0) and F ′(r) > 0 for
r ∈ (λ0,1) . Hence F(r) is strictly decreasing on (0,λ0) and strictly increasing on
(λ0,1) .
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Note that equation (3.9) becomes

F(1) = 0. (3.11)

Therefore, inequality (3.2) follows from (3.6)–(3.8) and (3.11) together with the
piecewise monotonicity of F(r) , and Theorem 3.1 follows from (3.1) and (3.2) in con-
junction with the following statements.

• If α > 8/25, then equations (3.3) and (3.4) lead to the conclusion that there exists 0 <
δ1 < 1 such that P(a,b) < α [5A(a,b)/6+H(a,b)/6]+ (1−α)A5/6(a,b)H1/6(a,b)
for all a,b > 0 with (a−b)/(a+b)∈ (0,δ1) .

• If β < 12/(5π) , then equations (3.3) and (3.5) lead to the conclusion that there exists
0 < δ2 < 1 such that P(a,b)> β [5A(a,b)/6+H(a,b)/6]+(1−β )A5/6(a,b)H1/6(a,b)
for all a,b > 0 with (a−b)/(a+b)∈ (1− δ2,1) . �

THEOREM 3.2. The double inequality

λ
[
1
3
A(a,b)+

2
3
Q(a,b)

]
+(1−λ )A1/3(a,b)Q2/3(a,b) < T (a,b)

< μ
[
1
3
A(a,b)+

2
3
Q(a,b)

]
+(1− μ)A1/3(a,b)Q2/3(a,b)

holds for all a,b > 0 with a �= b if and only if λ � 4/5 and μ � μ0 = [12/π −
3 3
√

2]/[2
√

2+1−3 3
√

2] = 0.82104 · · ·.
Proof. Firstly, we prove that the inequalities

T (a,b) >
4
5

[
1
3
A(a,b)+

2
3
Q(a,b)

]
+

1
5
A1/3(a,b)Q2/3(a,b), (3.12)

T (a,b) < μ0

[
1
3
A(a,b)+

2
3
Q(a,b)

]
+(1− μ0)A1/3(a,b)Q2/3(a,b) (3.13)

hold for all a,b > 0 with a �= b .
Since T (a,b) , A(a,b) and Q(a,b) are symmetric and homogenous of degree 1.

Without loss generality, we assume that a > b . Let r = (a−b)/(a+b) , r∗ =
√

1+ r2

and q ∈ {4/5,μ0} . Then r∗ ∈ (1,
√

2) ,

T (a,b)
A(a,b)

=
r

arctan(r)
,

Q(a,b)
A(a,b)

=
√

1+ r2,

T (a,b)−A1/3(a,b)Q2/3(a,b)
A(a,b)/3+2Q(a,b)/3−A1/3(a,b)Q2/3(a,b)

=
r/arctanr− (1+ r2)1/3

1/3+2
√

1+ r2/3− (1+ r2)1/3
,

(3.14)

lim
r→0+

r/arctanr− (1+ r2)1/3

1/3+2
√

1+ r2/3− (1+ r2)1/3
=

4
5
, (3.15)
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lim
r→1−

r/arctanr− (1+ r2)1/3

1/3+2
√

1+ r2/3− (1+ r2)1/3
= μ0, (3.16)

T (a,b)−q

[
1
3
A(a,b)+

2
3
Q(a,b)

]
− (1−q)A1/3(a,b)Q2/3(a,b)

=A(a,b)
[ r
arctanr

− q
3

(1+2r∗)− (1−q)r∗2/3
]

=
A(a,b)[2qr∗+q+3(1−q)r∗2/3]

3arctanr

[
3r

2qr∗+q+3(1−q)r∗2/3
− arctanr

]
. (3.17)

Let

G(r) =
3r

2qr∗+q+3(1−q)r∗2/3
− arctanr. (3.18)

Then simple computations yield
G(0) = 0, (3.19)

G(1) =
3

2
√

2q+q+3(1−q) 3
√

2
− π

4
, (3.20)

G′(r) =
(1− r∗1/3)2g(r∗1/3)

r∗2
[
2qr∗+q+3(1−q)r∗2/3

]2 , (3.21)

where the function g(·) is defined as in Lemma 2.2.
We divide the proof into two cases.
Case A q = 4/5. Then from (3.21) and Lemma 2.2(1)we clearly see that G′(r) > 0

for r ∈ (0,1) . Thus G(r) is strictly increasing on (0,1) .
Therefore, inequality (3.12) follows from (3.17)–(3.19) together with the mono-

tonicity of G(r) .
Case B q = μ0 . Then from (3.21) and Lemma 2.2(2) we know that there exists

λ ∗
0 ∈ (0,1)(=

√
ξ 6−1) such that G′(r) < 0 for r ∈ (0,λ ∗

0 ) and G′(r) > 0 for r ∈
(λ ∗

0 ,1) . Hence G(r) is strictly decreasing on (0,λ ∗
0 ) and strictly increasing on (λ ∗

0 ,1) .
Note that equation (3.19) reduces to

G(1) = 0. (3.22)

Therefore, inequality (3.13) follows from (3.17)–(3.19) and (3.22) together with
the piecewise monotonicity of G(r) , and Theorem 3.2 follows from (3.12) and (3.13)
in conjunction with the following statements.

• If λ > 4/5, then equations (3.14) and (3.15) lead to the conclusion that there exists
0 < δ3 < 1 such that T (a,b)< λ [A(a,b)/3+2Q(a,b)/3]+(1−λ )A1/3(a,b)Q2/3(a,b)
for all a,b > 0 with (a−b)/(a+b)∈ (0,δ3) .

• If μ < μ0 , then equations (3.14) and (3.16) imply that there exists 0 < δ4 < 1 such
that T (a,b) > μ [A(a,b)/3+2Q(a,b)/3]+(1−μ)A1/3(a,b)Q2/3(a,b) for all a,b >
0 with (a−b)/(a+b)∈ (1− δ4,1) . �
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[9] E. NEUMAN AND J. SÁNDOR, On the Schwab-Borchardt mean, Math. Pannon. 14, 2 (2003), 253–266.
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[12] J. SÁNDOR, Über zwei Mittel von Seiffert, Die Wurzel. 36, (2002), 104–107.
[13] H. J. SEIFFERT, Problem 887, Nieuw Arch. Wisk. (4), 11, 2 (1993), 176–176.
[14] H. J. SEIFFERT, Aufgabe β16 , Die Wurzel, 29, (1995), 221–222.
[15] H. J. SEIFFERT,Ungleichungen für einen bestimmten Mittelwert, Nieuw Arch. Wisk. (4), 13, 2 (1995),

195–198.
[16] S. S. WANG AND Y. M. CHU, The best bounds of the combination of arithmetic and harmonic means

for the Seiffert’s mean, Int. J. Math. Anal. 4, 22 (2010), 1079–1084.
[17] M. K. WANG, Y. F. QIU AND Y. M. CHU, Sharp bounds for Seiffert means in terms of Lehmer means,

J. Math. Inequal. 4, 4 (2010), 581–586.

(Received November 8, 2012) Yuming Chu
School of Mathematics and Computation Sciences

Hunan City University
Yiyang 413000, China

e-mail: chuyuming@hutc.zj.cn

Baoyu Liu
School of Science Hangzhou Dianzi University

Hangzhou 310018, China
e-mail: 627847649@qq.com

Miaokun Wang
College of Mathematics and Econometrics

Hunan University
Changsha 410082, China
e-mail: wmk000@126.com

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


