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THE STEINER SYMMETRIZATION OF

LOG–CONCAVE FUNCTIONS AND ITS APPLICATIONS
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(Communicated by G. Sinnamon)

Abstract. In this paper, we give a new definition of functional Steiner symmetrizations on log-
concave functions. Using the functional Steiner symmetrization, we give a new proof of the
classical Prékopa-Leindler inequality on log-concave functions.

1. Introduction

Functional Steiner symmetrization, as a kind of important rearrangement of func-
tions, has been studied in [1, 3, 4, 5, 6, 7, 8]. For a nonnegative measurable function
f , the familiar definition of its Steiner symmetrization (see [3, 4, 5, 8]) is defined as
follows:

DEFINITION 1.1. For a nonnegative measurable function f on R
n vanishing at

infinity, its Steiner symmetrization is defined as

Su f (x) =
∫ ∞

0
XSuE(t)(x)dt, (1.1)

where SuE(t) is the Steiner symmetrization of the level set E(t) := {x∈ R
n : f (x) > t}

about the hyperplane u⊥ and XSuE(t) denotes the characteristic function of SuE(t) .

In this paper, for log-concave functions, we give a new definition of the functional
Steiner symmetrization. Our definition provides a new approach to the original defin-
tion, but we do not use geometric Steiner symmetrization and our approach is more
suitable for certain functional problems.

DEFINITION 1.2. For an integrable log-concave function f : R
n → R and a hy-

perplane H = u⊥ (u∈ Sn−1 ) in R
n , for any x = x′+ tu∈ R

n , where x′ ∈H and t ∈ R ,
we define the Steiner symmetrization Su f (or SH f ) of f about H by

(Su f )(x) = inf
λ∈[0,1]

sup
t1∈R

[ f (x′ + t1u)λ f (x′ +(t1 +2t)u)1−λ ]. (1.2)
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By Remark 1, Su f is also log-concave.
A central inequality connected with the Minkowski sum of two bodies A,B ⊂ R

n

and a parameter 0 � λ � 1 is the Brunn-Minkowski inequality:

Voln(λA+(1−λ )B) � Voln(A)λVoln(B)1−λ .

The Prékopa-Leindler inequality (e.g., [10]) is the functional analogue of the Brunn-
Minkowski inequality: For given log-concave functions f ,g ∈ L1 : R

n → R
+ and 0 �

λ � 1,

∫
Rn

sup{ f (x)λ g(y)1−λ : λx+(1−λ )y = z}dz �
(∫

Rn
f (z)dz

)λ (∫
Rn

g(z)dz

)1−λ
.

Prékopa-Leindler inequality is closely related to the reverse Young’s inequality and
a number of other important and classical inequalities in analysis. Prékopa-Leindler
inequality is a reverse form of Hölder’s inequality and a particular case of the reverse
Brascamp-Lieb inequalities (see [2, 9]). In this paper, using the functional Steiner
symmetrization, we give a new proof of the Prékopa-Leindler inequality on the log-
concave functions.

2. The equivalence between new and original definitions

In this section, for log-concave functions, we prove the new definition is equivalent
to the original definition. First, we give the Steiner symmetrization on convex sets.

DEFINITION 2.1. Let K be a non-empty convex set in R
n and let H be a hyper-

plane in R
n with unit normal vector u . The Steiner symmetrization SHK of K about

H is defined as:

SHK = {x′ + 1
2
(t1− t2)u : x′ ∈ PH(K), ti ∈ IK(x′) for i = 1,2}, (2.1)

where PH(K) = {x′ ∈ H : x′ + tu ∈ K for some t ∈ R} is the projection of K onto the
hyperplane H and IK(x′) = {t ∈ R : x′ + tu∈ K} .

It is well-known that the Steiner symmetrization of the subgraph of f is equivalent
to the subgraph of the Steiner symmetrization of f , i.e.,

Su(S f ) = SSu f ,

where S f = {(x, t)∈ R
n+1 : 0 < t � f (x)} denotes the subgraph of f and Su f is given

by Definition 1.1. Therefore, in order to prove the equivalence between Definition 1.1
and Definition 1.2, it is sufficient to prove that

Su(S f ) = SSu f , (2.2)

where Su f is given in Definition 1.2.
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PROPOSITION 2.1. For an integrable log-concave function f : R
n → R and a

hyperplane H = u⊥ (u ∈ Sn−1 ) in R
n , for any x′ ∈ H , let φ1(t) = Su f (x′ + tu) and

φ(t) = f (x′ + tu) , then φ1 is an even log-concave function about t ∈ R and for any
s � 0

Vol1([φ1 � s]) = Vol1([φ � s]).

Proof. By equality (1.2), it is clear that φ1 is an even function. For any s � 0, if
[φ � s] = [t0, t0 +2t] , next we prove that φ1 is log-concave and [φ1 � s] = [−t,t] . First
we prove

φ1(t) = φ(t0) = φ(t0 +2t) = s, (2.3)

where φ(t0) = φ(t0 +2t) = s is clear. By (1.2), we have

φ1(t) = inf
λ∈[0,1]

sup
t1∈R

[ f (x′ + t1u)λ f (x′ +(t1 +2t)u)1−λ ]

� inf
λ∈[0,1]

[ f (x′ + t0u)λ f (x′ +(t0 +2t)u)1−λ ]

= s. (2.4)

On the other hand, we prove that there is some λ ∈ (0,1) such that

sup
t1∈R

[φ(t1)λ φ(t1 +2t)1−λ ] = s.

Since φ is a log-concave function defined in R and by Theorem 1.5.2 in [11], both the
right derivative φ ′

r and the left derivative φ ′
l exist. It is clear that φ ′

r(t0 + 2t) � 0 and

φ ′
r(t0) � 0, if φ ′

r(t0)−φ ′
r(t0 +2t) �= 0, then let λ0 = −φ ′

r(t0+2t)
φ ′
r(t0)−φ ′

r(t0+2t) ; if φ ′
r(t0)−φ ′

r(t0 +
2t) = 0, since φ ′

r(t0 +2t) � 0 and φ ′
r(t0) � 0, we have φ ′

r(t0 +2t) = 0 and φ ′
r(t0) = 0,

for this case, let λ0 be any real number on (0,1) . Let Φ(t ′) = φ(t ′)λ0φ(t ′ + 2t)1−λ0 ,
then Φ(t ′) is also log-concave, its right derivative at t ′ = t0 satisfies

Φ′
r(t0) = λ0φ ′

r(t0)+ (1−λ0)φ ′
r(t0 +2t) = 0.

Thus
sup
t1∈R

[φ(t1)λ0φ(t1 +2t)1−λ0] = [φ(t0)λ0φ(t0 +2t)1−λ0] = s.

Thus, φ1(t) = s .
Next, we prove that φ1 is log-concave. Since φ1 is even, it suffices to prove that

for any 0 � t1 < t2 and 0 < α < 1,

φ1(αt1 +(1−α)t2) � φα
1 (t1)φ1−α

1 (t2). (2.5)

By (2.3), there are t0 , t ′1 and t ′2 satisfying

φ1(t1) = φ(t ′1) = φ(t ′1 −2t1), (2.6)
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φ1(t2) = φ(t ′2) = φ(t ′2 −2t2) (2.7)

and

φ1(αt1 +(1−α)t2) = φ(t0) = φ(t0 −2(αt1 +(1−α)t2)). (2.8)

Since φ is log-concave, we have

φ(αt ′1 +(1−α)t ′2) � φ(t ′1)
α φ(t ′2)

1−α = φ1(t1)α φ1(t2)1−α (2.9)

and

φ(αt ′1 +(1−α)t ′2−2(αt1 +(1−α)t2)) � φ(t ′1 −2t1)α φ(t ′2 −2t2)1−α

= φ1(t1)α φ1(t2)1−α . (2.10)

Since the distance between αt ′1 +(1−α)t ′2 and αt ′1 +(1−α)t ′2 − 2(αt1 +(1−α)t2)
is 2(αt1 +(1−α)t2) and φ is log-concave, by the second equality in (2.8), we have

φ(t0) � φ(αt ′1 +(1−α)t ′2) (2.11)

or

φ(t0 −2(αt1 +(1−α)t2)) � φ(αt ′1 +(1−α)t ′2−2(αt1 +(1−α)t2)). (2.12)

By (2.8)-(2.12), we have

φ1(αt1 +(1−α)t2) � φα
1 (t1)φ1−α

1 (t2),

which implies that φ1 is log-concave.
Since φ1 is even and log-concave and (2.3), we have [φ1 � s] = [−t,t] , which

implies that for any s � 0, Vol1([φ1 � s]) = Vol1([φ � s]) . �

REMARK 1. By the similar proof of Proposition 2.1, we can prove that Su f given
in (1.2) is also log-concave. By Proposition 2.1, for any x′ ∈ u⊥ , if φ(t) = f (x′ + tu) ,
then Su(Sφ ) = SSuφ . Since x′ ∈ u⊥ is arbitrary, we have Su(S f ) = SSu f .

3. Proof of Prékopa-Leindler inequality

LEMMA 3.1. Let 0 < λ < 1 and let f , g ∈ L1 : R
+ → R

+ be log-concave func-
tions, then

∫ +∞

0
sup{ f (x)λ g(y)1−λ : x � 0,y � 0,λx+(1−λ )y = z}dz

�
(∫ +∞

0
f (z)dz

)λ (∫ +∞

0
g(z)dz

)1−λ
. (3.1)
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Proof. We can assume without loss of generality that f and g are bounded with

sup
x∈R+

f (x) = sup
x∈R+

g(x) = 1.

If t � 0, x � 0 and y � 0, f (x) � t , and g(y) � t , let

Φ(z) = sup{ f (x)λ g(y)1−λ : x � 0, y � 0, λx+(1−λ )y = z},
then

Φ(αx+(1−α)y) � f (x)λ g(y)1−λ � t.

With the notation for upper level sets,

[Φ � t] ⊃ α[ f � t]+ (1−α)[g � t],

where [ f � t] = {x ∈ R
+ : f (x) � t} . The sets on the right-hand side are nonempty, so

by Fubini’s theorem and the arithmetic-geometric mean inequality, we obtain∫ +∞

0
Φ(z)dz �

∫ 1

0
Vol1([Φ � t])dt �

∫ 1

0
Vol1(α[ f � t]+ (1−α)[g � t])dt

= α
∫ 1

0
Vol1([ f � t])dt +(1−α)

∫ 1

0
Vol1([g � t])dt

= α
∫ +∞

0
f (z)dz+(1−α)

∫ +∞

0
g(z)dz

�
(∫ +∞

0
f (z)dz

)α (∫ +∞

0
g(z)dz

)1−α
. (3.2)

�

LEMMA 3.2. If h1 , h2 are one-dimensional increasing convex functions defined
on [0,+∞) , then, for 0 < λ < 1 ,∫

Rn
sup{e−[λh1(|x|)+(1−λ )h2(|y|)] : λx+(1−λ )y = z}dz

�
(∫

Rn
e−h1(|z|)dz

)λ (∫
Rn

e−h2(|z|)dz

)1−λ
.

Proof. By the polar coordinate transformation and the monotonicity of functions
h1 and h2 , we have∫

Rn
sup{e−[λh1(|x|)+(1−λ )h2(|y|)] : λx+(1−λ )y = z}dz

=
∫

Sn−1

∫ +∞

0
sup{e−[λh1(|x|)+(1−λ )h2(|y|)] : λx+(1−λ )y = rθ}rn−1drdθ

=
∫

Sn−1

∫ +∞

0
sup{e−[λh1(r1)+(1−λ )h2(r2)] : λ r1θ1 +(1−λ )r2θ2 = rθ}rn−1drdθ

= ωn

∫ +∞

0
sup{e−[λh1(r1)+(1−λ )h2(r2)] : λ r1 +(1−λ )r2 = r}rn−1dr. (3.3)
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For r1 � 0 and r2 � 0 such that λ r1 +(1−λ )r2 = r , we have

rλ
1 r1−λ

2 � λ r1 +(1−λ )r2 = r.

Hence, we have

sup

{(
e−h1(r1)rn−1

1

)λ (
e−h2(r2)rn−1

2

)1−λ
: λ r1 +(1−λ )r2 = r, r1 � 0, r2 � 0

}

� rn−1 sup
{

e−[λh1(r1)+(1−λ )h2(r2)] : λ r1 +(1−λ )r2 = r, r1 � 0, r2 � 0
}

.

Therefore, by (3.3) and Lemma 3.1, we have∫
Rn

sup{e−[λh1(|x|)+(1−λ )h2(|y|)] : λx+(1−λ )y = z}dz

� ωn

∫ +∞

0
sup

{(
e−h1(r1)rn−1

1

)λ (
e−h2(r2)rn−1

2

)1−λ
: λ r1 +(1−λ )r2 = r,

r1 � 0, r2 � 0
}

dr.

�
(

ωn

∫ +∞

0
e−h1(r)rn−1dr

)λ (
ω

∫ +∞

0
e−h2(r)rn−1dr

)1−λ

=
(∫

Rn
e−h1(|z|)dz

)λ (∫
Rn

e−h2(|z|)dz

)1−λ
.

this completes the proof. �

LEMMA 3.3. Let u ∈ Sn−1 and λ ∈ (0,1) , if φi : R
n → R are convex functions

and e−φi ∈ L1 , i = 1,2 then for every z

inf{λSuφ1(x)+ (1−λ )Suφ2(y); λx+(1−λ )y = z}
� Su (inf{λ φ1(x)+ (1−λ )φ2(y); λx+(1−λ )y = z}) . (3.4)

Proof. Let x = x′+ t1u , y = y′+ t2u and z = z′ + tu , where x′,y′,z′ ∈ u⊥ , then we
have

Su (inf{λ φ1(x)+ (1−λ )φ2(y); λx+(1−λ )y = z})
= sup

α∈[0,1]
inf
t′∈R

[
α inf

{
λ φ1(x)+ (1−λ )φ2(y); λx+(1−λ )y = z′ + t ′u

}
+(1−α) inf

{
λ φ1(x)+ (1−λ )φ2(y); λx+(1−λ )y = z′ +(t ′+2t)u

}]
= sup

α∈[0,1]
inf
t′∈R

[
α inf

{
λ φ1(x′ + t ′1u)+ (1−λ )φ2(y′ + t ′2u); λx′ +(1−λ )y′ = z′,

λ t ′1 +(1−λ )t ′2 = t ′
}

+(1−α) inf
{

λ φ1(x′ + t ′′1 u)+ (1−λ )φ2(y′ + t ′′2 u);

λx′ +(1−λ )y′ = z′,λ t ′′1 +(1−λ )t ′′2 = t ′ +2t
}]
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= sup
α∈[0,1]

inf
t′∈R

[
α inf

{
λ φ1(x′+t ′1u)+(1−λ )φ2

(
z′−λx′

1−λ
+

t ′−λ t ′1
1−λ

u

)
; x′ ∈ u⊥,t ′1 ∈ R

}

+(1−α) inf

{
λ φ1(x′+t ′′1 u)+(1−λ )φ2

(
z′−λx′

1−λ
+

t ′+2t−λ t ′′1
1−λ

u

)
; x′ ∈ u⊥, t ′′1 ∈ R

}]

� sup
α∈[0,1]

inf
(t′,t′1,t′′1 )∈R3

inf
x′∈u⊥

[
α

{
λ φ1(x′+t ′1u)+(1−λ )φ2

(
z′−λx′

1−λ
+

t ′−λ t ′1
1−λ

u

)}

+(1−α)
{

λ φ1(x′ + t ′′1u)+ (1−λ )φ2

(
z′ −λx′

1−λ
+

t ′ +2t−λ t ′′1
1−λ

u

)}]
. (3.5)

On the other hand, we have

inf{λSuφ1(x)+ (1−λ )Suφ2(y); λx+(1−λ )y = z}
= inf

{
λSuφ1(x′ + t1u)+ (1−λ )Suφ2

(
z′ −λx′

1−λ
+

t−λ t1
1−λ

u

)
; x′ ∈ u⊥,t1 ∈ R

}

= inf
{x′∈u⊥,t1∈R}

{
λ sup

α∈[0,1]
inf

t′1∈R

[αφ1(x′ + t ′1u)+ (1−α)φ1(x′ +(t ′1 +2t1)u)]

+(1−λ ) sup
α∈[0,1]

inf
t′2∈R

[
αφ2

(
z′−λx′

1−λ
+t ′2u

)
+(1−α)φ2

(
z′−λx′

1−λ
+

(
t ′2+2

t−λ t1
1−λ

)
u

)]}

� inf
{x′∈u⊥, t1∈R}

sup
α∈[0,1]

{
λ inf

t′1∈R

[αφ1(x′ + t ′1u)+ (1−α)φ1(x′ +(t ′1 +2t1)u)]

+(1−λ ) inf
t′2∈R

(
αφ2

(
z′−λx′

1−λ
+t ′2u

)
+(1−α)φ2

(
z′−λx′

1−λ
+(t ′2+2

t−λ t1
1−λ

)u
))}

� sup
α∈[0,1]

inf
{x′∈u⊥, t1∈R}

{
λ inf

t′1∈R

[αφ1(x′ + t ′1u)+ (1−α)φ1(x′ +(t ′1 +2t1)u)]

+(1−λ ) inf
t′2∈R

(
αφ2

(
z′−λx′

1−λ
+t ′2u

)
+(1−α)φ2

(
z′−λx′

1−λ
+(t ′2+2

t−λ t1
1−λ

)u
))}

= sup
α∈[0,1]

inf
{x′∈u⊥, (t1,t′1,t′2)∈R3}

{
λ [αφ1(x′ + t ′1u)+ (1−α)φ1(x′ +(t ′1 +2t1)u)]

+(1−λ )
(

αφ2

(
z′ −λx′

1−λ
+ t ′2u

)
+(1−α)φ2

(
z′ −λx′

1−λ
+(t ′2 +2

t−λ t1
1−λ

)u
))}

= sup
α∈[0,1]

inf
{x′∈u⊥, (t1,t′1,t′2)∈R3}

{
α

(
λ φ1(x′ + t ′1u)+ (1−λ )φ2

(
z′ −λx′

1−λ
+ t ′2u

))

+(1−α)
(

λ φ1(x′ +(t ′1 +2t1)u)+ (1−λ )φ2

(
z′ −λx′

1−λ
+(t ′2 +2

t−λ t1
1−λ

)u
))}

.

(3.6)
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In the above inequality, let

⎡
⎣t ′1
t ′2
t1

⎤
⎦ =

⎡
⎣ 1 0 0
− λ

1−λ 0 1
1−λ

− 1
2

1
2 0

⎤
⎦

⎡
⎣T ′

1
T ′
2

T1

⎤
⎦ , by (3.5) and (3.6), we

have

inf{λSuφ1(x)+ (1−λ )Suφ2(y); λx+(1−λ )y = z}
� sup

α∈[0,1]
inf

(T1,T ′
1 ,T ′

2)∈R3
inf

x′∈u⊥

[
α

{
λ φ1(x′ +T ′

1u)+ (1−λ )φ2

(
z′ −λx′

1−λ
+

T1 −λT ′
1

1−λ
u

)}

+(1−α)
{

λ φ1(x′ +T ′
2u)+ (1−λ )φ2

(
z′ −λx′

1−λ
+

T1 +2t−λT ′
2

1−λ
u

)}]
� Su (inf{λ φ1(x)+ (1−λ )φ2(y); λx+(1−λ )y = z}) . (3.7)

This completes the proof. �

THEOREM 3.4. Let 0 < λ < 1 and let f , g ∈ L1 : R
n → R

+ be log-concave
functions, then

∫
Rn

sup{ f (x)λ g(y)1−λ : λx+(1−λ )y = z}dz �
(∫

Rn
f (z)dz

)λ (∫
Rn

g(z)dz

)1−λ
.

Proof. By the uniform convergence and integral invariance of functional Steiner
symmetrizations (see, e.g., [3, 4, 8] for references), there is a sequence of directions
{ui} so that

lim
i→∞

‖Sui · · ·Su1 f (x)− e−h1(|x|)‖1 = 0

and
lim
i→∞

‖Sui · · ·Su1g(x)− e−h2(|x|)‖1 = 0,

where h1 and h2 are one-dimensional increasing convex functions and
∫
Rn f (x)dx =∫

Rn e−h1(|x|)dx ,
∫
Rn g(x)dx =

∫
Rn e−h2(|x|)dx . Taking limit i → ∞ , by the continuity of

integral in L1(Rn) and Lemma 3.2 and Lemma 3.3, we have∫
Rn

sup{ f (x)λ g(y)1−λ : λx+(1−λ )y = z}dz

�
∫

Rn
sup{e−[λh1(|x|)+(1−λ )h2(|y|)] : λx+(1−λ )y = z}dz

�
(∫

Rn
e−h1(|z|)dz

)λ (∫
Rn

e−h2(|z|)dz

)1−λ

=
(∫

Rn
f (z)dz

)λ (∫
Rn

g(z)dz

)1−λ
.

This completes the proof. �

Acknowledgement. The authors are most grateful to the referee for his many ex-
cellent suggestions for improving the original manuscript.



THE STEINER SYMMETRIZATION OF LOG-CONCAVE FUNCTIONS AND ITS APPLICATIONS 677

RE F ER EN C ES

[1] S. ARTSTEIN, B. KLARTAG, V. D. MILMAN, On the Santalò point of a function and a functional
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