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THE STEINER SYMMETRIZATION OF
LOG-CONCAVE FUNCTIONS AND ITS APPLICATIONS

YOUJIANG LIN AND GANGSONG LENG

(Communicated by G. Sinnamon)

Abstract. In this paper, we give a new definition of functional Steiner symmetrizations on log-
concave functions. Using the functional Steiner symmetrization, we give a new proof of the
classical Prékopa-Leindler inequality on log-concave functions.

1. Introduction

Functional Steiner symmetrization, as a kind of important rearrangement of func-
tions, has been studied in [1, 3, 4, 5, 6, 7, 8]. For a nonnegative measurable function
f, the familiar definition of its Steiner symmetrization (see [3, 4, 5, 8]) is defined as
follows:

DEFINITION 1.1. For a nonnegative measurable function f on R” vanishing at
infinity, its Steiner symmetrization is defined as

Suf )= || 25, 0t (1.1)

where S,E(t) is the Steiner symmetrization of the level set E(¢) := {x € R": f(x) >t}
about the hyperplane " and s () denotes the characteristic function of S,E(z).

In this paper, for log-concave functions, we give a new definition of the functional
Steiner symmetrization. Our definition provides a new approach to the original defin-
tion, but we do not use geometric Steiner symmetrization and our approach is more
suitable for certain functional problems.

DEFINITION 1.2. For an integrable log-concave function f : R” — R and a hy-
perplane H = u* (v € 8" !)in R", forany x = x’ +tu € R", where X € H and t € R,
we define the Steiner symmetrization S, f (or Sgf) of f about H by

(Suf)(x) = inf sup[f(X +nu) f(x + (1, +20)u)' ). (1.2)
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By Remark 1, S, f is also log-concave.
A central inequality connected with the Minkowski sum of two bodies A,B C R”
and a parameter 0 < A < 1 is the Brunn-Minkowski inequality:

Vol,(AA + (1 —A)B) > Vol,(A)*Vol,(B)' ~*.

The Prékopa-Leindler inequality (e.g., [10]) is the functional analogue of the Brunn-
Minkowski inequality: For given log-concave functions f,g € L' : R" — RT and 0 <
A<,

[ soplrte e s (1= iy =2daz> ([ 162 dZ> (/Rnng)”

Prékopa-Leindler inequality is closely related to the reverse Young’s inequality and
a number of other important and classical inequalities in analysis. Prékopa-Leindler
inequality is a reverse form of Holder’s inequality and a particular case of the reverse
Brascamp-Lieb inequalities (see [2, 9]). In this paper, using the functional Steiner
symmetrization, we give a new proof of the Prékopa-Leindler inequality on the log-
concave functions.

2. The equivalence between new and original definitions

In this section, for log-concave functions, we prove the new definition is equivalent
to the original definition. First, we give the Steiner symmetrization on convex sets.

DEFINITION 2.1. Let K be a non-empty convex set in R” and let H be a hyper-
plane in R"” with unit normal vector u. The Steiner symmetrization SyK of K about
H is defined as:

1
—(t1 —t)u: X' € Pu(K), t; € Ixg(X') fori = 1,2}, (2.1)

SyK = {x/—f— 3

where Py(K) ={x € H: x'+tu € K for some € R} is the projection of K onto the
hyperplane H and Ix(xX') ={t e R: X' +ru e K}.

It is well-known that the Steiner symmetrization of the subgraph of f is equivalent
to the subgraph of the Steiner symmetrization of f,i.e.,

Su(Ff) = yguﬂ

where .7 = {(x,1) € R"1:0 <1 < f(x)} denotes the subgraphof f and S, f is given
by Definition 1.1. Therefore, in order to prove the equivalence between Definition 1.1
and Definition 1.2, it is sufficient to prove that

Su (yf) = <ySuf7 (22)

where S, f is given in Definition 1.2.
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PROPOSITION 2.1. For an integrable log-concave function f :R" — R and a
hyperplane H = u* (u € §" ') in R", for any X' € H, let ¢1(t) = S,f(x' +1tu) and
0(t) = f(X' +1tu), then ¢y is an even log-concave function about t € R and for any
s=>0

Vol ([¢1 = s]) = Vol ([¢ = s]).

Proof. By equality (1.2), it is clear that ¢; is an even function. For any s > 0, if
[¢ > s] = [to, 20 + 2¢], next we prove that ¢; is log-concave and [¢ > s] = [—¢,¢]. First
we prove

¢1() = 0(t0) = 910 +2t) = s, (2.3)
where ¢ (1) = ¢ (19 + 2¢) = s is clear. By (1.2), we have

01(1) = inf sup[F(¥ + 1) f(¥ + (11 +20)u)' 7]

2€[0,1]4 er
> inf [f(X +tou)* (X + (to+20)u) =]
A€l0.1]
= . 2.4)

On the other hand, we prove that there is some A € (0,1) such that

sup[¢ (1)} (1 +21) A =s.

tHeR

Since ¢ is a log-concave function defined in R and by Theorem 1.5.2 in [1 1], both the
right derivative ¢/ and the left derivative ¢, exist. It is clear that ¢/(ro +27) <0 and
9/(t0) > 0. if 9/(10) — 9}(t0 +21) # 0, then let g = 72020 if 9/ (10) — 9/ (10 +
2t) =0, since ¢/ (19 +2t) <0 and ¢,(t9) > 0, we have ¢/ (fo+2¢) =0 and ¢/(1p) =0,

for this case, let Ay be any real number on (0,1). Let ®(¢') = (") oo (¢' +21)' 0,

then @(¢') is also log-concave, its right derivative at ' = 1, satisfies

D (to) = Ao (t0) + (1 — A0) 9y (10 +21) = 0.
Thus
sup [9(11) @ (11 +20)' ) = [9(10) 0 B (19 +20)' 4] =>s.

nekr

Thus, ¢1(1) =s
Next, we prove that ¢; is log-concave. Since ¢; is even, it suffices to prove that
forany0<tj<nand 0< o <1,

g1 (ot + (1= a)n) = of' ()9 *(12). (2.5)

By (2.3), there are 79, ¢ and #} satisfying

o1(t1) = 9(17) = 9(1; —211), (2.6)
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91(12) = 9(13) = 9 (1, — 212) 2.7)
and
o1(aty + (L—a)rn) =o(to) = (1o — 2(aty + (1 — 00)12)). (2.3)
Since ¢ is log-concave, we have
¢(ar] + (1 —o)r3) > ¢(17)*9(12)' % = 41 (1)) 91 (12) ' (2.9)
and

o(at; +(1— o)ty —2(at + (1 — o)) = o(t] —2t) %P (th — 21)'
= ¢1(1) %91 ()" . (2.10)

Since the distance between o] + (1 — a)rh and ou] + (1 — o0)th — 2(ot; + (1 — a)12)
is 2(ot; + (1 — o)1) and ¢ is log-concave, by the second equality in (2.8), we have

9(t0) = ¢(an + (1 - 0)) (2.11)
or
O(to—2(ot1 +(1—0)tr)) = ¢ (at] + (1 — o)th —2(at + (1 — a)n)).  (2.12)
By (2.8)-(2.12), we have
o1 (a1 +(1— o)) > 9 ()9 “(12),
which implies that ¢; is log-concave.

Since ¢; is even and log-concave and (2.3), we have [¢; > s| = [—t,7], which
implies that for any s > 0, Vol ([¢; = s]) = Vol ([¢p =s]). O

REMARK 1. By the similar proof of Proposition 2.1, we can prove that S, f given
in (1.2) is also log-concave. By Proposition 2.1, for any x' € u*, if ¢(t) = f(x' +tu),
then S, (%) = Fs,0. Since x’ € u' is arbitrary, we have S,(.7f) = .5, .

3. Proof of Prékopa-Leindler inequality

LEMMA 3.1. Let 0< A < 1 andlet f, g€ L' : RT — R* be log-concave func-
tions, then

~+oo
/O sup{f(x)*g(y)" *:x>0,y>0,2x+ (1—A)y=z}dz

( ()erf(z)dz)/l (/()erg(z)dz) lil. (3.1)

WV
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Proof. We can assume without loss of generality that f and g are bounded with

sup f(x) = sup g(x) = 1.

xeR+ xeR+

Ifr>0,x>0and y >0, f(x) >1,and g(y) >1, let
D(z) = sup{f(x)" g(»)' *: x>0, y>0, Ax+(1-A)y=2z},

then
D(ax+ (1—a)y) > f(x) g * >1.

With the notation for upper level sets,
(@15 alf >1]+(1-a)g>1),

where [f >1] = {x€R": f(x) >r}. The sets on the right-hand side are nonempty, so
by Fubini’s theorem and the arithmetic-geometric mean inequality, we obtain

1 1
dz>/0 Voll([<b>t])dt>/0 Voli (af > 1]+ (1 — a)[g > 1] )dt
1 1
:a/o Vozl([f>z])dz+(1—a)/0 Vol ([g > 1])dr
oo oo
o f(z)dz+(l—a)/ g(z)dz
0 0

( 0+wf(z)dz> " (/()erg(z)dz) l—a' (3.2)

O

WV

LEMMA 3.2. If hy, hy are one-dimensional increasing convex functions defined
on [0,+o0), then, for 0 <A < 1,

/ sup{e~ WD +1=2m0] . 3 x4 (1 2)y = 2}dz
Rn

A 1-1
> ( / em(lmdz) ( / ehz(ZI)dZ> ,

Proof. By the polar coordinate transformation and the monotonicity of functions
hy and hy, we have

/ sup{e~ WD +1=2)m()] . 2 x4 (1= )y = 2}dz
R~
- / 1 / sup{e (=20 2y 1 (1— A)y = r@}7 L drd0
§t=1J0
~+oo
- / 1 / sup{e”M+1=2m02)] 2 4110 4 (1= A)r26, = rO )"~ \drd6
sn=1J0

~+oo
= (Dn/ sup{e ) +=2mar2)l 2 4 (1= L)y =} Lar. (3.3)
0
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For r; > 0 and r, > 0 such that Ar; + (1 — A)r, = r, we have
r{Lr2 <An+({1—=A)rn=r
Hence, we have
h 1 A I 1 =4
sup{(e_ 1(’1)r1" ) (e_ 2(’2)r§" ) A+ (1 =A)n=rr>0,rn> 0}
< rn—lsup{e—[lhl(rl) (1=2A)hy(r2)] ?Lrl—l—(l—?L)rz:V, r =0, r2>O},
Therefore, by (3.3) and Lemma 3.1, we have
/ sup{e~PmDH=2] . 3¢ 4 (1 - A )y = 2)dz
oo 1-1
(un/ sup ( (”)r{’*l) ( ~ha(r2) 1) A+ (1 =A)rn=r,

r=0,m2 O}dr.

too A Foo
> (a),,/ e_hl(’)rﬂ_ldr) (a)/ e_hZ(’)r"_ldr)
0 0
A 1-1
_ ( / e—h1<zl>dz> ( / e—hz(lz)dz) .

this completes the proof. [

1-2

LEMMA 3.3. Let u € S" ' and A € (0,1), if ¢; : R" — R are convex functions
and e~ % € Ly, i = 1,2 then for every z

inf{AS,01 () + (1= A)Subs (v); Ax-+ (1 - L)y =z}
Su(inf {461 (¥) + (1= A)galy): Ax+ (1—A)y=2}). (3.4)

Proof. Let x=x"+tju, y=y +tou and z = 7' +tu, where x’,y’,7 € u', then we
have

Su (inf{A¢1(x) + (1 = A)9a(y); Ax+ (1 -A)y=2z})

= sup inf [ainf{A¢;(x)+ (1 =A)d(y); Ax+ (1 —A)y=2"+1"u}
ael0,1]/'€R

+(1- 1nf{?L¢1 @)+ (1=2)d(y); ?Lx—i—(l—?t)yzz’—l—(t’—f—Zt)u}]

= sup_inf [ainf {491 (¥ +1{u) + (1 = 1)y +thu)s Ax'+ (1= 2/ =7,
aco,1]/'€R

AL+ (1= ) = /} T a)inf{?upl W +1lu) + (1= 1) o(y +tlu);
A (1= A =2 A+ (1= A = z'+2zH
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= sup inf {amf{?upl(x +t1u)+(1-21) (Zl );Lx +t _)L)El ) X cutit) € R}

ael0,1]/'€R

;o o
+(1—-o) inf{l(bl (X +t{u)+(1-21) (Zl_);x —|—t +12t ;Ltl u) X eutt] e RH

< sup  inf  inf [a{l¢1(x’+t{u) (1= l)d’z( 1 );Lx+ }L?El )}

ae(0,1] (111 ) ER3 X ent

H(1-a) {?upl W +1fu)+ (1— Ao (Zl__ax 4l +12t__l)”1 u) H . (3.5)

On the other hand, we have

inf{A8,01(x) + (1 —A)Su(y); Ax+(1—A)y=2z}
= inf{?LSuq)l(x/-i-tlu) + (1 =21)Su¢ (z —llx + tl__lf u) X euty e R}

{x'eul y eR} a<0,11 €R

Z—x 7—Ax t—Atf
1) o (ST s - (S5 (225 )

> inf sup {JL inf [oedy (' +11u) + (1 — &) oy (¥ + (£ + 211 )u)]

{x'eut, 1 €R} oe0,1] 1 eR

—Ax /A A
+(1-2) ot (aon (S50t 1000 (52T f)))}

> sup inf {?L inf [0y (X +11u) + (1 — @) ¢y (' + (¢] + 21 )u)]

aclo,1]] {¥eut, ner} | feR

) / X , "X A
+(1_A>t;rel&( atn (S5 i) 1= (S5 2 T ))}

= sup inf {Alady (¥ + 1) + (1 — o)1 (¥ + (1] +211)u)]
ael0,1] {¥'eut, (11.1].15)€R3}

+(1=2) (“% ( = “5”> H e (le%)f/*(“z Rl )>}

= sup inf {(X(?L(bl(x’+t{u)+(1—7t) < +t2u>)
ael0,1] {¥'eut, (1] 15)eR}

7 —AxX

H(1-a) <x¢1(x’+(z1+2tl)u)+(1—/1)¢2< o (142 I_Af) ))}
(3.6)

= inf {QL sup inf [0 (X +2u) + (1 — o)y (X' + (¢] + 21 )u)]




676 YOUJIANG LIN AND GANGSONG LENG

f 1 0 07([r
In the above inequality, let 7| = |—125 0 L1 | | 73|, by (3.5) and (3.6), we
gl -+ 1 o0][nh

have
inf {4841 (x) + (1 = 1)Sud2(y); Ax+ (1 —2A)y =2z}
/ / Z/—A,)C/ T1—7LT1’
> sup inf 1nf[ {l(bl(x +T1u)+(1—7t)¢2< - + =) u)}

0€[0,1](T1,T{,T) €R3 ¥ et
AX Ty 420 — AT}
+(1—a>{l¢1<x’+Tz’u> (- "”( S 2”)}]

Sy (inf{A¢;(x) + (1 =A)da(y); Ax+ (1 =A)y=12}). 3.7
This completes the proof. [

THEOREM 3.4. Let 0 < A <1 and let f, g € L' : R" — R* be log-concave
functions, then

[ soplstetet' = e (1~ a=jae> ( [ siae) " ([ stae)

Proof. By the uniform convergence and integral invariance of functional Steiner
symmetrizations (see, e.g., [3, 4, 8] for references), there is a sequence of directions
{u;} so that

fim Sy -+ Sy f(x) = e M1V =
oo

and
lim [y, - Suy g (x) — e )| =0,

where h; and &y are one-dimensional increasing convex functions and [, f(x)dx =
Jane M Ddx, [, g(x)dx = [pne ™M) dx. Taking limit i — oo, by the continuity of
integral in L' (R") and Lemma 3.2 and Lemma 3.3, we have

[ S ) s Axt (1= )y =2}z

> / sup{e~ WD +(1=20m(b)] . 3 v 4 (1= )y = 2}dz
Rn

. (/nehl(IZ)dZ)l (/nem(zl)dZ)”
— (/nf(z)dz))L (/Rn g(z)dz) o

This completes the proof. [
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