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INEQUALITIES AND ASYMPTOTIC EXPANSIONS OF THE

WALLIS SEQUENCE AND THE SUM OF THE WALLIS RATIO

NEVEN ELEZOVIĆ, LONG LIN ∗ AND LENKA VUKŠIĆ

(Communicated by J. Pečarić)

Abstract. The asymptotic expansions for the Wallis sequence is studied in details, and explicit
formulae for coefficients are given in their simplest form. This enables improvement of some
basic inequalities connected with this sequence. Furthermore we establish identity, inequality
and asymptotic expansion for the sum of the Wallis ratio.

1. Introduction

The famous Wallis sequence
(
Wn
)
n�1 is defined by

Wn =
n

∏
k=1

4k2

4k2−1
(n ∈ N := {1,2,3, . . .}).

Wallis (1655) showed that W∞ = π/2.
In [8], Hirschhorn proved that for n � 1,

π
2

(
1− 1

4n+ 7
3

)
< Wn <

π
2

(
1− 1

4n+ 8
3

)
, (1.1)

which is stronger than Lampret’s result [9]:

π
2

(
1− 1.1

4n

)
< Wn <

π
2

(
1− 0.8

4n

)
(1.2)

and Păltănea’s result [10]:

π
2

√
2n

2n+1
< Wn <

π
2

√
2n+1
2n+2

(n � 1). (1.3)

The first aim of this paper is to establish more accurate bounds of these inequali-
ties.
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It is known in the literature that

Pn :=
(2n−1)!!

(2n)!!
=

Γ(n+ 1
2)√

πΓ(n+1)

is called the Wallis ratio. Here, we employ the special double factorial notation as
follows:

(2n)!! = 2 ·4 ·6 · · ·(2n) = 2nn!,

(2n−1)!! = 1 ·3 ·5 · · ·(2n−1) = π−1/22nΓ(n+ 1
2),

0!! = 1, (−1)!! = 1

(see [1, p. 258]), Γ denotes the gamma function.
The second aim of this paper is to establish an identity, inequality and asymptotic

expansion of the sum of the Wallis ratio ∑n
k=0

(2k−1)!!
(2k)!! (see Section 5).

In [8], the author pointed out that if the ck are given by x∑k�0 ckx2k/(2k)! =
tanh(x/4) then

Wn ∼ π
2

(
1+

1
2n

)−1

∏
k�0

exp
( ck

n2k+1

)

∼ π
2

(
1− 1

4n
+

5
32n2 −

11
128n3 +

83
2048n4 −

143
8192n5 + · · ·

)
(n → ∞). (1.4)

We shall present how one can obtain explicit algorithm for the asymptotic ex-
pansion of Wn through the powers of the variable n+ α , where α is an independent
parameter. Since this expansion is starting point for related inequalities, we shall start
with this question.

2. Asymptotic expansion of the Wallis sequence

We will establish asymptotic expansion for Wn considering that

Wn =
π
2
· 1

n+ 1
2

[
Γ(n+1)
Γ(n+ 1

2 )

]2

=
π
2
· Γ(n+1)2

Γ(n+ 1
2 )Γ(n+ 3

2)
. (2.1)

The following asymptotic expansion of the multiple quotients of two gamma func-
tions has been proved in [4]:

THEOREM A. Let t− s = v−u and let r > 0 . It holds

Γ(x+ t)Γ(x+u)
Γ(x+ s)Γ(x+ v)

∼
(

∞

∑
m=0

Pm(t,s,u,v)
xm

) 1
r

, (2.2)
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where polynomials (Pm) are defined by

P0(t,s,u,v) = 1,

Pm(t,s,u,v) =
r
m

m

∑
k=1

(−1)k+1

k+1
[Bk+1(t)−Bk+1(s)+Bk+1(u)−Bk+1(v)]Pm−k. (2.3)

Bk(t) are Bernoulli polynomials defined by following generating function:

xetx

ex −1
=

∞

∑
k=0

Bk(t)
xk

k!
. (2.4)

Recall some properties of Bernoulli polynomials:

B2k+1 = 0, (k � 1),

Bk(0) = (−1)kBk(1) = Bk,

Bk(1− t) = (−1)kBk(t),

Bk(t +1)−Bk(t) = ktk−1,

(−1)kBk(−t) = Bk(t)+ ktk−1,

Bk( 1
2 ) = −(1−21−k)Bk,

Bk( 1
4 ) = (−1)kBk( 3

4 ) = −2−k(1−21−k)Bk − k4−kEk−1,

(2.5)

where Bn is n -th Bernoulli number and En is n -th Euler number.
Let x = n+ α, t = 1−α, s = 1

2 −α, u = 1−α and v = 3
2 −α . Then from (2.1)

and Theorem A follows

Wn ∼ π
2

(
∞

∑
m=0

Pm(α)(n+ α)−m

)1/r

, (2.6)

where

P0(α) = 1,

Pm(α) =
r
m

m

∑
k=1

(−1)k+1

k+1

[
2Bk+1(1−α)−Bk+1( 1

2−α)−Bk+1( 3
2−α)

]
Pm−k(α). (2.7)

Applying (2.5) to t = 1
2 −α we get

Pm(α) =
2r
m

m

∑
k=1

(−1)k+1

k+1

[
Bk+1(1−α)−Bk+1( 1

2 −α)− 1
2 (k+1)( 1

2 −α)k
]
Pm−k(α).

(2.8)
From the form of Pm we notice that the natural choice of α is 0 or 1

2 . We also
want to choose other values of α such that coefficients of polynomials Pm are as sim-
ple as they can be, in the sense that we can express them in terms of Bernoulli and
Euler numbers. According to properties of Bernoulli polynomials mentioned above,
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that would happen in the case 1−α = 1− ( 1
2 −α) or 1−α = −( 1

2 −α) wherefrom it
follows α = 1

4 or α = 3
4 .

We are now ready to state the following theorem.

THEOREM 2.1. The following asymptotic expansion holds true:

Wn ∼ π
2

(
∞

∑
m=0

Pm(n+ α)−m

)1/r

, (2.9)

where P0 = 1 and

1. for α = 0

Pm =
2r
m

m

∑
k=1

(−1)k+1

k+1

[
(2−2−k)Bk+1 − (k+1)2−k−1

]
Pm−k; (2.10)

2. for α = 1
4

Pm =
r
m

m

∑
k=1

(−1)k+14−k(Ek −1)Pm−k; (2.11)

3. for α = 1
2

Pm =
r
m

�m+1
2 �

∑
k=1

2
k
(4−k −1)B2kPm−2k+1; (2.12)

4. for α = 3
4

Pm =
r
m

m

∑
k=1

4−k(Ek −1)Pm−k; (2.13)

Proof. Let us denote

Ck(α) = Bk+1(1−α)−Bk+1( 1
2 −α)− (k+1)( 1

2 −α)k. (2.14)

We have

Ck(0) = (−1)k+1Bk+1 +(1−2−k)Bk+1 − (k+1)2−k−1

= ((−1)k+1 +1−2−k)Bk+1− (k+1)2−k−1

= (2−2−k)Bk+1− (k+1)2−k−1

which proves (2.10).
Furthermore,

Ck( 1
4 ) = Bk+1( 3

4 )−Bk+1( 1
4)− 1

2
(k+1)4−k. (2.15)
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For odd k , using (2.5)

Ck( 1
4 ) = − 1

2(k+1)4−k. (2.16)

For even k we have

Ck( 1
4 ) = 2Bk+1( 3

4)− 1
2
(k+1)4−k

= 2(k+1)4−k−1Ek − 1
2
(k+1)4−k

=
1
2
(k+1)4−k(Ek −1),

which coincides with (2.16) if k is odd. Hence, (2.11) is proved.
If α = 1

2 then we have

Ck( 1
2) = Bk+1( 1

2 )−Bk+1(0) = −(2−2−k)Bk+1.

Since Bk+1 = 0 for even k , easily follows (2.12).
Finally, using (2.5)

Ck( 3
4 ) = Bk+1( 1

4 )−Bk+1(− 1
4 )− (−1)k 1

2 (k+1)4−k

= (−1)k+1Bk+1( 3
4)− (−1)k+1Bk+1( 1

4 )− (−1)k+1 1
2 (k+1)4−k

= (−1)k+1Ck( 1
4).

The proof of the theorem is completed. �

Calculating the first few values of Pm(α) for observed shifts α from Theorem 2.1
we get, using r = 1:

Wn ∼ π
2

[
1− 1

4n
+

5
32n2 −

11
128n3 +

83
2048n4 −

143
8192n5 + · · ·

]
, (2.17)

Wn ∼ π
2

[
1− 1

4
(
n+ 1

4

) +
3

32
(
n+ 1

4

)2 − 3

128
(
n+ 1

4

)3
+

3

2048
(
n+ 1

4

)4 − 3

8192
(
n+ 1

4

)5 + · · ·
]
, (2.18)

Wn ∼ π
2

[
1− 1

4
(
n+ 1

2

) +
1

32
(
n+ 1

2

)2 +
1

128
(
n+ 1

2

)3
− 5

2048
(
n+ 1

2

)4 − 23

8192
(
n+ 1

2

)5 + · · ·
]
, (2.19)
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Wn ∼ π
2

[
1− 1

4
(
n+ 3

4

) − 1

32
(
n+ 3

4

)2 +
1

128
(
n+ 3

4

)3
+

11

2048
(
n+ 3

4

)4 − 11

8192
(
n+ 3

4

)5 + · · ·
]
, (2.20)

Notice that substitution N = 4n + 1 gives us simpler form of Wallis expansion.
For example, from (2.18):

Wn ∼ π
2

[
1− 1

N
+

3
2N2 − 3

2N3 +
3

8N4 −
3

8N5 +
159
16N6 −

159
16N7 + · · ·

]
. (2.21)

Also, another choice of r gives expansions which can be useful in determining
lower and upper bounds in various forms. For example, taking r = 2 and using (2.8)
we obtain:

Wn ∼ π
2

√
∞

∑
m=0

Pm(α)(n+ α)−m (2.22)

where
P0(α) = 1,

P1(α) = 1
2 α − 3

8 ,

P2(α) = − 1
2α2 + 3

4 α − 1
4 ,

P3(α) = − 1
2α3 + 9

8 α − 3
4 α + 19

128 ,

P4(α) = − 1
2α4 + 3

2 α3− 3
2 α2 + 19

32α − 21
256

P5(α) = − 1
2α5 + 15

8 α4 − 5
2 α3 + 95

64 α2− 105
256 α + 49

1024

(2.23)

For α = 0 the standard expansion can be written:

Wn ∼ π
2

√
1− 1

2n
+

3
8n2 −

1
4n3 +

19
128n4 −

21
256

+ . . .

However, the inspection of the coefficients in (2.23) shows that P2(α) = 0 for α = 1
2 or

α = 1. This leads to the following expansions which are related with inequality (1.3):

Wn ∼ π
2

√
1− 1

2(n+ 1
2)

+
1

8(n+ 1
4 )2

− 1

128(n+ 1
2 )4

− 1

256(n+ 1
2 )5

+ . . . (2.24)

∼ π
2

√
1− 1

2(n+1)
− 1

8(n+1)2 +
3

128(n+1)4 +
3

256(n+1)5 + . . .. (2.25)

The lower bound in (1.3) is given by the first term in (2.24).
Further, we can see that for α = 3

4 the second term P1( 3
4 ) is equal to zero. This

will imply the new, better lower bound in (1.3) which will be proved in the Section 4.
The corresponding asymptotic expansion is

Wn ∼ π
2

√
1− 1

2(n+ 3
4 )

+
1

32(n+ 3
4 )3

+
1

128(n+ 3
4 )4

− 3

512(n+ 3
4 )5

+ . . .. (2.26)
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3. Asymptotic expansions of the second type

Wallis product can be written as:

Wn =
π
2
· 1

n+ 1
2

[
Γ(n+1)
Γ(n+ 1

2)

]2

. (3.1)

This form is convenient for applying results proved in [2]:

THEOREM B. It holds[
Γ(x+ t)
Γ(x+ s)

] 1
t−s

∼
∞

∑
m=0

Qm(t,s)x−m+1 (3.2)

where Qm are polynomials of order m defined by

Q0(t,s) = 1,

Qm(t,s) =
1
m

m

∑
k=1

(−1)k+1 Bk+1(t)−Bk+1(s)
(k+1)(t− s)

Qm−k(t,s). (3.3)

Now we have

1
x+u

[
Γ(x+ t)
Γ(x+ s)

] 1
t−s

∼ 1
x
· 1
1+ u

x

(
∞

∑
m=0

Qm(t,s)x−m+1

)

=

(
∞

∑
m=0

(−1)m um

xm

)(
∞

∑
m=0

Qm(t,s)
1
xm

)
=

∞

∑
m=0

dmx−m

where

dm =
m

∑
k=0

(−1)m−kum−kQk(t,s).

Substitution x = n+ α , t = 1−α and s = u = 1
2 −α gives us asymptotic expan-

sion

Wn ∼
∞

∑
m=0

dm(n+ α)−m (3.4)

where

dm =
m

∑
k=0

(−1)m−k( 1
2 −α)m−kQk(1−α, 1

2 −α). (3.5)

In the case α = 0 we have

Qm(1, 1
2) =

1
m

m

∑
k=1

(−1)k+1 Bk+1(1)−Bk+1( 1
2 )

1
2 (k+1)

Qm−k(1, 1
2 )

=
1
m

m

∑
k=1

(−1)k+1 2
[
(−1)k +1−2−k

]
Bk+1

k+1
Qm−k(1, 1

2)

=
1
m

�m+1
2 �

∑
k=1

2(1−2−2k)
k

B2kQm−2k+1(1, 1
2 ). (3.6)
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If α = 1
4 , then

Qm( 3
4 , 1

4 ) =
1
m

m

∑
k=1

(−1)k+1 Bk+1( 3
4 )−Bk+1( 1

4)
1
2 (k+1)

Qm−k( 3
4 , 1

4 )

= − 1
m

�m
2 �

∑
k=1

2B2k+1
1
2(2k+1)

Qm−2k( 3
4 , 1

4 )

= − 1
m

�m
2 �

∑
k=1

4−2kE2kQm−2k( 3
4 , 1

4 ). (3.7)

For α = 1
2

Qm( 1
2 ,0) =

1
m

m

∑
k=1

(−1)k+1 Bk+1( 1
2 )−Bk+1(0)
1
2 (k+1)

Qm−k( 1
2 ,0)

=
1
m

m

∑
k=1

−(2−2−k)
1
2(k+1)

Bk+1Qm−k( 1
2 ,0)

=
1
m

�m+1
2 �

∑
k=1

2
k
(4−k −1)B2kQm−2k+1( 1

2 ,0). (3.8)

We notice that Qm( 1
2 ,0) satisfy the same recursive formula (2.12) as polynomials Pm

from Theorem 2.1.
In the last case, α = 3

4 ,

Qm( 1
4 ,− 1

4 ) =
1
m

m

∑
k=1

(−1)k+1 Bk+1( 1
4 )−Bk+1(− 1

4 )
1
2 (k+1)

Qm−k( 1
4 ,− 1

4 )

=
1
m

m

∑
k=1

(−1)k+1−(k+1)4−k(Ek −1)
1
2(k+1)

Qm−k( 1
4 ,− 1

4 )

=
1
m

m

∑
k=1

2(−1)k+14−k(Ek −1)Qm−k( 1
4 ,− 1

4). (3.9)

4. Inequalities for the Wallis sequence

The beginning of asymptotic expansion (2.6) for r = 1 read as

Wn ∼ π
2

(
1−

1
4

n+ α
+

5
32 − α

4

(n+ α)2 +
− 11

128 + 5α
16 − α2

4

(n+ α)3 + . . .

)
.

Therefore, for α = 5
8 the second coefficient is equal to zero and it holds

Wn ∼ π
2

(
1− 1

4n+ 5
2

)
+O

(
1
n3

)
.
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The first few terms in this expansion are

Wn ∼ π
2

(
1−

1
4

n+ 5
8

+
3

256

(n+ 5
8 )3

+
3

2048

(n+ 5
8)4

−
51

16384

(n+ 5
8 )5

−
75

65536

(n+ 5
8 )6

+
2253

1048576

(n+ 5
8)7

+ · · ·
)

.

This fact motivated us to observe Theorem 4.1, which gives more accurate bounds for
the Wallis sequence Wn .

THEOREM 4.1. For all integers n � 1 ,

π
2

(
1−

1
4

n+ 5
8

+
3

256

(n+ 5
8)3

+
3

2048

(n+ 5
8 )4

−
51

16384

(n+ 5
8 )5

−
75

65536

(n+ 5
8 )6

)

< Wn <
π
2

(
1−

1
4

n+ 5
8

+
3

256

(n+ 5
8 )3

+
3

2048

(n+ 5
8 )4

)
. (4.1)

In order to prove Theorem 4.1, we need the following result.

LEMMA A. [see [12]] For n � 0 , the following Brouncker’s continued fraction
formula holds true:[

Γ(n+ 1
2 )

Γ(n+1)

]2

=
4

1+4n+
12

2+8n+
32

2+8n+
52

2+8n+
. . .

. (4.2)

By (4.2), we have the following inequality [7, p. 742]:

16(19+92n+96n2+128n3)
105+704n+1920n2+2048n3 +2048n4 =

4

1+4n+
12

2+8n+
32

2+8n+
52

2+8n

<

[
Γ(n+ 1

2 )
Γ(n+1)

]2

<
4

1+4n+
12

2+8n+
32

2+8n+
52

2+8n+
72

2+8n

=
4(789+2912n+6848n2+4096n3 +4096n4)

945+6756n+18880n2+32000n3 +20480n4+16384n5 (n ∈ N). (4.3)
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Proof of Theorem 4.1. The Wallis sequence can be expressed as

Wn =
π

2n+1

[
Γ(n+1)
Γ(n+ 1

2)

]2

.

By using the second inequality in (4.3), we have for n � 1,

2
π

Wn−
(

1−
1
4

n+ 5
8

+
3

256

(n+ 5
8 )3

+
3

2048

(n+ 5
8)4

−
51

16384

(n+ 5
8 )5

−
75

65536

(n+ 5
8)6

)

=
2

2n+1

[
Γ(n+1)
Γ(n+ 1

2)

]2

−
(

1−
1
4

n+ 5
8

+
3

256

(n+ 5
8 )3

+
3

2048

(n+ 5
8)4

−
51

16384

(n+ 5
8 )5

−
75

65536

(n+ 5
8)6

)

>
2

2n+1

(
4(789+2912n+6848n2+4096n3 +4096n4)

945+6756n+18880n2+32000n3+20480n4 +16384n5

)−1

−
(

1−
1
4

n+ 5
8

+
3

256

(n+ 5
8 )3

+
3

2048

(n+ 5
8)4

−
51

16384

(n+ 5
8 )5

−
75

65536

(n+ 5
8)6

)

=

3
(
8933109+29070400(n−1)+34036160(n−1)2

+17031680(n−1)3+3076096(n−1)4
)

2(789+2912n+6848n2+4096n3 +4096n4)(2n+1)(8n+5)6 > 0.

Using the first inequality in (4.3), we have for n � 1,

2
π

Wn−
(

1−
1
4

n+ 5
8

+
3

256

(n+ 5
8 )3

+
3

2048

(n+ 5
8 )4

−
51

16384

(n+ 5
8 )5

)

=
2

2n+1

[
Γ(n+1)
Γ(n+ 1

2 )

]2

−
(

1−
1
4

n+ 5
8

+
3

256

(n+ 5
8)3

+
3

2048

(n+ 5
8 )4

)

<
2

2n+1
105+704n+1920n2+2048n3 +2048n4

16(19+92n+96n2+128n3)

−
(

1−
1
4

n+ 5
8

+
3

256

(n+ 5
8 )3

+
3

2048

(n+ 5
8 )4

)

= −
3
(
16405+43504(n−1)+34752(n−1)2+8704(n−1)3

)
8(19+92n+96n2+128n3)(2n+1)(8n+5)4 < 0.

The proof of Theorem 4.1 is complete. �

From the inequality (4.1), the better lower bound than (1.1) can be obtained.
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COROLLARY 4.2. For all integers n � 1 it holds

Wn >
π
2

(
1− 1

4n+ 5
2

)
. (4.4)

The constant 5
2 is the best possible.

Proof. It is sufficient to prove that it holds

A = 3
256(n+ 5

8 )3 + 3
2048(n+ 5

8)2 − 51
16384(n+ 5

8 )− 75
65536 � 0

for all integers n � 1. But this is evident since

A = 3
256n3 + 3

128n2 + 51
4096n+ 45

131072 .

Let us prove that 5
2 cannot be replaced by any a > 5

2 . From (4.1) one conclude
that

Wn − π
2

(
1− 1

4n+ 5
2

)
= O(n−3). (4.5)

Therefore, for any constant a > 5
2 , we have

Wn− π
2

(
1− 1

4n+a

)
= Wn− π

2

(
1− 1

4n+ 5
2 +(a− 5

2)

)

= Wn− π
2

(
1− 1

4n+ 5
2

·
[
1− a− 5

2

4n+ 5
2

+O(n−2)
])

= Wn− π
2

(
1− 1

4n+ 5
2

)
− π

2
· a− 5

2

(4n+ 5
2 )2

+O(n−3)

and this is in contradiction with (4.5). �

REMARK 4.3. In the inequality (1.1) the left side is asymptotic, inequality is al-
ways strict and one gets equality when n → ∞ . In the right side however, equality can
be obtained for n = 1, if one replace the constant 8

3 with better one, say b , such that it
holds:

W1 =
π
2

(
1− 1

4+b

)
(4.6)

wherefrom it follows

b =
32−9π
3π −8

≈ 2.6149.

The constant 8
3 is just a nice rational approximation greater than this value of b . In

searching for the better constant, interesting continued fraction appears:

b = 2+
1

1+
1

1+
1

1+
1

1+
1

2.08 · · ·

<
34
13

= 2.6153 · · · .
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The constant 8
3 is the third approximant in this sequence.

The refinement of the inequality (1.3) will be proved using another technique and
results which can be also interesting for itself.

THEOREM 4.4. Let function f be defined as

f (x) =
Γ(x+1)2

Γ(x+1− s)Γ(x+1+ s)

√
x+ s2 + 1

2

x− s2 + 1
2

, (s > 0). (4.7)

Then the function log( f (x)) is completely monotonic on (s−1,∞) .

It follows that f (x) � 1, and for s = 1
2 we have the following:

COROLLARY 4.5. For all integers n � 1 it holds

Wn >
π
2

√
4n+1
4n+3

. (4.8)

The constant 3
2 in the expression

Wn >
π
2

√
1− 1

2n+ 3
2

is the best possible.

Proof of Theorem 4.4. Using the following integral representations [1]:

logΓ(x) =
∫ ∞

0

[
(x−1)e−t − 1− e(1−x)t

et −1

]
dt
t

,

logx =
∫ ∞

0
[e−t − e−xt ]

dt
t

it is easy to obtain

log( f (x)) =
∫ ∞

0
h(t)

e−xt

t(et −1)
dt.

Here, function h(t) is defined by

h(t) = 2−2cosh(st)+ cosh(s2 + 1
2)t − cosh(s2 − 1

2)t =
∞

∑
k=1

c2k

(2k)!
t2k

where
c2k = (s2 + 1

2 )2k − (s2− 1
2)2k −2s2k.

It is obvious that c2 = 0. For k > 1 one has

c2k > (s2 + 1
2 )2k − (s2− 1

2 )2k −2ks2k

= (s4 + s2 +1)k − (s4− s2 +1)k− (2s2)k > 0.

Hence, it holds h(t) > 0 for all t > 0 and the claim follows. �
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REMARK 4.6. In the inequality (1.3) one can obtain best upper bound by taking
the value for n = 1. For example, from

Wn � π
2

√
1− 1

4n+b

for n = 1 one obtain

b =
128−9π2

9π2−64
= 1.5779 · · ·.

Continued fraction approximants of b , which are greater than b are: 2, 8
5 = 1.6, 30

19 =
1.5789 · · ·, etc. Taking 8

5 instead of b , one obtain upper bound

Wn <
π
2

√
10n+3
10n+8

.

5. Sum of the Wallis ratio

In this section, we consider the sum of the Wallis ratio ∑n
k=0

(2k−1)!!
(2k)!! . Theorem 5.1

below establishes a more general result. As a consequence, we obtain an identities as
follows:

n

∑
k=0

(2k−1)!!
(2k)!!

=
(2n+1)!!

(2n)!!
(n � 0). (5.1)

THEOREM 5.1. Let n � 1 be an integer, and a,b > 0 be two real numbers. Then

n

∑
k=1

Γ(k+a)
Γ(k+b)

=
1

a−b+1

[
Γ(n+1+a)

Γ(n+b)
− Γ(1+a)

Γ(b)

]
. (5.2)

Proof. We prove the representation formula (5.2) by using the principle of mathe-
matical induction. In our proof of the representation formula (5.2), we make use of the
recurrence formula:

Γ(z+1) = zΓ(z).

For n = 1, we find that

1

∑
k=1

Γ(k+a)
Γ(k+b)

=
Γ(1+a)
Γ(1+b)

=
1

a−b+1

[
(1+a)Γ(1+a)

Γ(1+b)
− bΓ(1+a)

Γ(1+b)

]
.

which shows that the formula (5.2) holds true for n = 1. We assume now that the
formula (5.2) holds true for a fixed positive integer n . Then, for n 
→ n+1 in (5.2), we
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have

n+1

∑
k=1

Γ(k+a)
Γ(k+b)

=
n

∑
k=1

Γ(k+a)
Γ(k+b)

+
Γ(n+1+a)
Γ(n+1+b)

=
1

a−b+1

[
Γ(n+1+a)

Γ(n+b)
− Γ(1+a)

Γ(b)

]
+

Γ(n+1+a)
Γ(n+1+b)

=
1

a−b+1

[
(n+b)Γ(n+1+a)

Γ(n+1+b)
− Γ(1+a)

Γ(b)

+
(a−b+1)Γ(n+1+a)

Γ(n+1+b)

]

=
1

a−b+1

[
(n+1+a)Γ(n+1+a)

Γ(n+1+b)
− Γ(1+a)

Γ(b)

]

=
1

a−b+1

[
Γ(n+2+a)
Γ(n+1+b)

− Γ(1+a)
Γ(b)

]
.

The proof of the formula (5.2) is thus completed by means of the principle of
mathematical induction on n . �

In particular, by taking a = 1
2 and b = 1 in (5.2) we obtain the following identity:

√
π +

n

∑
k=1

Γ(k+ 1
2 )

Γ(k+1)
=

(2n+1)Γ(n+ 1
2 )

Γ(n+1)
(n � 1), (5.3)

i.e.,
n

∑
k=0

Γ(k+ 1
2 )

Γ(k+1)
=

(2n+1)Γ(n+ 1
2 )

Γ(n+1)
(n � 0), (5.4)

which can be written as (5.1).
Theorem 5.2 provides sharp bounds for the sum of the Wallis ratio ∑n

k=0
(2k−1)!!
(2k)!! .

THEOREM 5.2. For all integers n � 0 , then

2

√
n+

3
4

<
n

∑
k=0

Γ(k+ 1
2 )

Γ(k+1)
� 2

√
n+

π
4

. (5.5)

The constants 3
4 and π

4 are the best possible.

Proof. By (5.4), inequality (5.5) can be rewritten as

3
4

<

(
Γ(n+ 3

2)
Γ(n+1)

)2

−n � π
4

(n � 0),

and this inequality follows from [5], Theorem 2. �
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Inequality (5.5) can be written as

2√
π

√
n+

3
4

<
n

∑
k=0

(2k−1)!!
(2k)!!

� 2√
π

√
n+

π
4

. (5.6)

From inequality (5.6) we obtain the limit formula for constant π :

2√
π

= lim
n→∞

n−1/2
n

∑
k=0

(2k−1)!!
(2k)!!

. (5.7)

Sofo [11] summarized some known representations for the constant π and established
new representations.

In order to present an asymptotic expansion for the sum of the Wallis ratio

∑n
k=0

(2k−1)!!
(2k)!! , we will need the following theorem from [3].

THEOREM C. It holds

Γ(x+ t)
Γ(x+ s)

∼ xt−s

(
∞

∑
m=0

Rm(t,s)x−m

)1/r

(5.8)

where polynomials Rm are defined by:

R0(t,s) = 1,

Rm(t,s) =
r
m

m

∑
k=1

(−1)k+1 Bk+1(t)−Bk+1(s)
k+1

Rm−k(t,s). (5.9)

THEOREM 5.3. The following asymptotic expansion holds true:

n

∑
k=0

Γ(k+ 1
2 )

Γ(k+1)
∼

∞

∑
m=0

2rm(α)

(n+ α)m+ 1
2

(n → ∞), (5.10)

where

r0(α) = 0,

rm(α) =
1
m

m

∑
k=1

(−1)k+1 Bk+1( 3
2 −α)−Bk+1(1−α)

k+1
rm−k(α). (5.11)

Proof. We apply Theorem 5.1 for a = 1
2 and b = 1:

n

∑
k=0

Γ(k+ 1
2)

Γ(k+1)
=

Γ( 1
2 )

Γ(1)
+

n

∑
k=1

Γ(k+ 1
2)

Γ(k+1)
=
√

π +2

[
Γ(n+ 3

2 )
Γ(n+1)

− Γ( 3
2 )

Γ(1)

]

= 2
Γ(n+ 3

2)
Γ(n+1)

(5.12)
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We use Theorem C for x = n+α , t = 3
2 −α , s = 1−α and r = 1. In that case t−s = 1

2
and we obtain

n

∑
k=0

Γ(k+ 1
2 )

Γ(k+1)
∼ 2(n+ α)

1
2

∞

∑
m=0

Rm( 3
2 −α,1−α)
(n+ α)m . (5.13)

Letting rm(α) = Rm( 3
2 −α,1−α) the proof of theorem is complete. �

REMARK 5.4. The same methods of this paper can be applied to find asymptotic
expansions of the following sums, see [6], 0.1670.2 and 0.157.4:

n

∑
k=0

(−1)k
(

n
k

)
Γ(k+b)
Γ(k+a)

=
Γ(b)

Γ(a−b)
· Γ(n+a−b)

Γ(n+a)
,

or
n

∑
k=1

k

(
n
k

)2

=
(2n−1)!
[(n−1)!]2

=
4n−1√

π
· Γ(n+ 1

2 )
Γ(n)

REMARK 5.5. Wallis product can be written in the form

∞

∏
k=1

(
1− 1

(2k)2

)
=

2
π

.

The similar result is also well known, [6], 0.262.3:

∞

∏
k=1

(
1− 1

(2k+1)2

)
=

π
4

.

Denote

Vn =
n−1

∏
k=1

(
1− 1

(2k+1)2

)
.

Then, it holds

Vn =
π
4
· Γ(n)Γ(n+1)

Γ(n+ 1
2 )2

and methods of Theorem 2.1 can be applied to this series.
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