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Abstract. For a,b >0 with a # b, let NS(a,b) denote the Neuman-Sdndor mean defined by
a—>b

NS(a,b) = ———
(a.5) 2arcsinhz+;z

and A, (a,b), Z,(a,b) denote the r-order power and Lehmer means. Based on our earlier
worker [27], we prove that
o,A, <NS <A, and A, <NS < B,A,
holds if and only if p >4/3 and p < po, respectively, where
a, = (2”/’*') JIn(1+2)if p € [1/4/3,00),

NS(1,x0) /A, (1,x0) if p € (1,po],
B, = 2'/”’l/ln(1+\/§> if pe0,1],
w if p € (—0,0]

are the best constants, here xq is the unique root of the equation

A(1,x)Az(1,x)

NS(1,x) = Zo ()

on (0,1),and p — apA), is decreasing on (0,e°). Also, we have
O(4/3A4/3 <Ap, <NS§ <A4/3 < (X;/13A,,0.

Our results clearly are generations of known ones.

1. Introduction

Throughout the paper, we assume that a,b € (0,00) := R with a # b. The clas-
sical power mean of order p and Lehmer mean of a and b are defined by

P pp\ /P
Ap:Ap(a,b):<#> if p#0and Ag = Ag(a,b) = Vab,  (1.1)
ap+l_|_bp+l
f =$p(a,b)=W, (12)
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respectively. It is well-known that the functions p — A, (a,b) is continuous and strictly
increasing on R (see [1], [9]) and log-convex on (—oe,0) and log-concave on (0,oo)
(see [23, Conclusion 1]). While the function p — .Z},(a,b) is also continuous and
increasing on R (see [9], [22, Conclusion 1]) and log-convex on (—oo, —1/2) and log-
concave on (—1/2,e0) (see [22, Conclusion 2]).
As special cases of power mean, the arithmetic mean, geometric mean and quadratic

mean are A=A (a,b) =A; (a,b), G=G(a,b) =Ay(a,b) and Q= Q(a,b) = A, (a,b),
respectively. Clearly, the Lehmer mean can be expressed by power means as

Ly =ADTIALP (1.3)

In 2003, Neuman and Sandor defined in [12] a new mean

a—>b a—>b
NS=NS(a,b) = _ = , (1.4)
(a,5) 2arcsinh % a—b+/2(a2+b?)
2 —
and first established
G<KL<KP<ASNS<T<Q (1.5)
and
T . T
§P>A>arcsmh(1)NS> ET’ (1.6)

where L is the well-known logarithmic mean, P and T stand for the first and second
Seiffert means (see [17], [16], [18]). Lately, Constin and Toader [5, Theorem 1] showed
that A3 /2 can be put between NS and T, that is,

NS<A3/2<T, (L.7)
and they obtained the following nice chain of inequalities for certain means:
G<L<A|p<P<ANS<A3,<T <A (1.8)

In 2012, Yang [27] first established the optimal evaluations for Neuman-Sdndor mean
by power means

A In2 <NS<A4/3, (1.9)
Inin(3+2v2)
where (In2) /Inln (3 + 2\/5) and 4/3 are the best possible constants, and obtained a
more nice chain of inequalities for bivariate means:

Ag < L<A1/3 <A1nﬂ2 <P<A2/3 <I <A
<A m <NS<A4/3 <A10gﬂ/22<T<A5/3,
lnln(3+2\/§)

where [ is the identric (exponential) mean of positive numbers a and b (also see [11],
[20], [15], [8], [6], [7], [26]). Very recently, Constin and Toader in [4] and Chu and
Long in [2] gave other proofs of (1.9), respectively.
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Other inequalities for Neuman-Sandor mean can be found in [2], [3], [10], [13],
[14], [21], [28], [29].

This paper is based on our earlier work [27] and treats mainly the estimates for
Neuman-Sandor mean NS by power means A, and their relative errors for all p € R.
In Section 2, we give some useful lemmas. The main results are contained Section
3, which not only solve the best estimate problems for Neuman-Sdndor mean NS by
power means A, but also give relative errors of estimates for all p € R. Also, as by-
products, we establish a chain of Ky Fan type inequalities involving the two means and
another best estimate for NS. In the last section, we give several remarks on bounds
for Neuman-Sdndor mean in terms of power means by using the monotonicity and log-
convexity of the function p— A, and p — 21/pA p on (0,e0). An optimal estimate for
Neuman-Sdndor mean NS by Lehmer mean .%), is incidentally presented.

2. Lemmas

In the sequel, the function g, defined on (0,1) by
gp(x) =xP 2P 2xl 2P PP (p— D)t P x—p 1 (20)
play an important role, where p € R. We first deal with the sign of g, (x).

LEMMA 1. For real number p € R, let the function g, be defined on (0,1) by
(2.1). Then g, (x) <O for x € (0,1) ifand only if p > 4/3 and g, (x) > 0 if and only
fp<l

Proof. Firstly we show that p — g, (x) is decreasing on R for x € (0,1). Indeed,
differentiation leads to

d
gap—(x) = (P 4P P24 P 40P 4 204 P 20 ) Inx + (x* — 1) <0
p

for x € (0,1).
Secondly, we need two limits lim, (1 —x)' gp(x) and lim, o+ g, (x). Ap-
plication of L’Hospital’s rule gives

tim 220 _ 16 12p. 2.2)
X

x—17 1 —

To obtain the second limit, we write g, (x) as

gp(x)= (x2—|—x—|—2)xp—x27p (1 —|—x—|—2x2) +(p—Dx* =X +x—p+1,

which easily yields
—oo if p>2,
-2 if p=2,
lim+gp(x) =< —p+1 if 0<p<?2, (2.3)
=0 3 if p=0,

oo if p<O.
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Now we prove that g, (x) <0 for x € (0,1) if and only if p >4/3.If g, (x) <0
for x € (0,1), then we have

tim 429 <0 and lim g, () <0,

x—1- —X x—0+
which, by (2.2) and (2.3), reveals that p > 4/3, that is, the condition p > 4/3 is neces-
sary.
Next we show that p > 4/3 is sufficient. Since p — g, (x) is decreasing on R for
x € (0,1), it suffices to prove that g, (x) <0 for x € (0,1) when p =4/3. We have

1 1
243 () R I 5)64 23 0y M3 53 4T/ g 8/3 4 (10/3 T

and therefore
38473 (xg) =x2 4 3x10 -3 —6x® + 347 — 30+ 6x* +32° — 3% — 1.
Factoring yields that for x € (0,1)
3843 () = (x—1)* (x+ 1) (x8 4207 + 760 495 4+ 9x* 903 + 7o 4 2+ 1) <0,
which proves the sufficiency.

Lastly, we prove that g, (x) > 0 for x € (0,1) if and only if p < 1. Similarly, the
necessary condition easily follows from

Jim 820

x—17 I =X

>0 and li >0,
and_ lim gp(x)

which, by (2.2) and (2.3), yields p < 1.
If p <1, then by the monotonicity of p — g, (x) it is derived that

8 () > g1 (x) =2x(1-2) >0,

which proves the sufficiency and the whole proof is complete. [

LEMMA 2. Let the function g, be defined on (0,1) by (2.1). Then there is a
unique x; € (0,1) such that g, (x) <0 for x € (0,x1) and g, (x) > 0 for x € (x1,1) if
pe(1,4/3).

Proof. We prove the desired result stepwise.
Step 1: We have g (x) > 0 for x € (0,1) when p € (1,4/3).
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Differentiations yield
gy (¥) = (P42 + (p+ D)a” +2px" 4 (p—2)x' 7 (2.4)
+(p=3)TPH2(p—-4X P +4(p—1)x* -3 +1,

gr(®) = (p+1)(p+2)xP+p(p+1)x" " +2p(p—1)xP? (2.5)

—(p=D(p-2)x "= (p—2)(p—3)x""7
—2(p—3) (p—4)x2_p+ 12(p— l)x2 — 6x,

gy x) =pp+1)(p+2)x " +pp—1)(p+ 1) (2.6)
+2p(p—1)(p—2)x"+p(p—1)(p—2)x 7!
+(p—1D)(p=2)(p-3)x"+2(p—2)(p—3)(p—4)x' 7

+24(p—1)x—6,
4)

g;_(? = p(p+1)(p+2)2 @)
+p(p+1)(p—2)x" 3 +2p(p—2)(p—3)x"*
—p(p+1)(p—2)x P2 —p(p—2)(p—3)x 7!
—2(p-2)(p—=3)(p—4)x"+24

=L+ L+ 5L+,
where
L=pp+1)(p+2)x»2>0,
L=pp+1)(p-2)x"+2p(p—2)(p—3)x"*

B=p)—(p+1)x)
B=p)—(p+1)=p2—p)x*(5-3p)>0,
L=—pp+1)(p—2)x"*—p(p—-2)(p—3)x """
p2—p)x "2 ((p+1)—(3—p)x)

>pQ2-p)x P ((p+1)=(B3—p)=2p2—p)x " *(p—1)>0,
22—-p)B3—p)(d—p)x"+24>0

Hence, g§74) (x) >0 for x € (0,1) when p € (1,4/3).
Step 2: Let p; ~ 1.2102 be the root of equation

h(p) =8p® —30p*+94p —84=0.

Then g}/ (x) <0 for x € (0,1) when p € (1,p1), and there is unique x3 € (0, 1) such

that g}’ (x) < 0 for x € (0,x3) and g}/ (x) > 0 for x € (x3,1) when p € (p1,4/3).

Differentiation yields

3 113
' (p) =24p> — 60p +94 = 5(4p—5)2+T >0.
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In view of h(1) = —12 <0 and h(4/3) = 188/27 > 0, the equation h(p) =0 has a
unique root p; ~ 1.2102 such that h(p) <0 for p € (1,p;1) and h(p) >0 for p €
(p1,4/3).

1) When p € (1, p1), from g§,4) (x) >0 for x € (0,1) itis deduced that

gy (x) < gy (1)= 8p> —30p>+94p —84=h(p) < 0.

2) When p € (p1,4/3), to prove the part two of this step, it suffices to verify that
g, (07) <0 and g’ (1) > 0. Simple computation yields
sgng,, (07) =sen (p(p—1)(p—2)) <0,

gl (1) = 8p> —30p*+94p —84=h(p) >0,
which proves the desired result.

Step 3: There is a unique x; € (0,1) such that g} (x) > 0 for x € (0,x2) and
gy (x) <0 for x € (x2,1) when p € (1,4/3).
We distinguish two cases to prove this step.

In the case of p € (1,p1), we see that g}/ (x) < 0 for x € (0,1). It together with

seng) (07) = sgn (~(p— 1)(p—2)) >0,
gl(1) = 12(3p—4) <0,

leads to the desired assertion.

In the case of p € (p1,4/3), we see that there is a unique x3 € (0, 1) such that
gy (x) <0 for x € (0,x3) and g}/ (x) >0 for x € (x3,1). It follows that g}, (x) <
g, (1) <0 for x € (x3,1), which in combination with gj (0*) > 0 reveals that there is
a unique x; € (0,x3) such that g} (x) >0 for x € (0,x2) and g}, (x) <0 for x € (x2,1).

This completes the step.

Step 4: There are two numbers x;; € (0,x2),x12 € (x2,1) such that g;, (x) <0 for
x € (0,x11)U(x12,1) and g;, (x) > 0 for x € (x11,x12) when p € (1,4/3).
Due to Step 3 and the facts that

sgng), (07) = sgn (p—2) <0,
g, (1) =4(3p—4) <0,

in order to prove this step, it is enough to verify that g}, (x2) > 0.

In fact, if g},(x2) <O then g},(x) < g}, (x2) <0 for x € (0,x2) and g, (x) <
g (x2) <0 for x € (x2,1), and then g}, (x) <0 for x € (0,1). It follows that g, (x) >
gp (1) = 0, which, by Lemma 1, leads to p < 1. It is clearly a contradiction. Hence
there must be g/, (x2) > 0, which completes the Step 4.

Step 5: There is a unique x; € (x11,x12) such that g, (x) <0 for x € (0,x;) and
gp(x) >0 for x € (x1,1) if p € (1,4/3).
From Step 4 and the facts that

gp(07)=1-p<0, g,(17)=0,
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we have the following variance table of g, (x):

X 0" | (0,x11) | x11 | (xinux12) | x12 | (e, 1) | 1
g (x) | — — 0 + 0 — —
8p (x) - N\ — / + N 0

where
gp(x11)<gp(0+)=1—p<0 and gp(x12) >gp(1)=0.

Thus the step follows. [

For real number p € R, let the function f;, be defined on (0, 1) by

x—1 x—1 xP 41
x) = arcsinh -2 . 2.8
fp() x+l (x_'_l)\/mxp—l_'_l ( )

Differentiating f,, (x) and simplifying lead to

V2(1 —x)xP

fp(x) =
' ( x2+1>3(x+1)2(x+xp)2

8gp(x), (2.9)

where g, (x) is defined by (2.1). By Lemma 1 and 2, we easily obtain

LEMMA 3. Let f, be defined on (0,1) by (2.8). Then

(i) fp is decreasing on (0,1) if and only if p > 4/3;

(ii) fp is increasing on (0,1) ifand only if p < 1;

(iii) there is a unique x| € (0,1) such that f, is decreasing on (0,x1) and increas-
ing on (x1,1) if p € (1,4/3).

Using Lemma 3 we can prove the following

LEMMA 4. Let f, be defined on (0,1) by (2.8). Then

(i) fp(x) >0 for x € (0,1) ifand only if p > 4/3;

(ii) fp(x) <0 for x € (0,1) ifand only if p<1;

(iii) there is a unique xo € (0,x1) to satisfy f,(x0) = 0 such that f,(x) >0 for
x € (0,x0) and f,(x) <0 for x € (x0,1) if p € (1,4/3).

Proof. We first show two limits as follows:

. Jp () _1 _‘_‘
xl_lfflf (1-x)° 8 (p 3)’ (2.10)

In(vV2—1)+v2 if p>1,
fp (07) = lim f,(x)={ In(v2-1 +2 i p=1, (.11
In(v2-1 if p<l1.
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In fact, application of L’Hospital rule leads to (2.10), and direct computation yields
@.11).

) If f, (x) >0 for x € (0,1) then there must be lim, ;- (1 —x)° fp(x) >0 and
lim, o+ fp (x) > 0, which by (2.10) and (2.11) indicates p > 4/3.

We now prove f, (x) >0 for x € (0,1) if p >4/3. From part one of Lemma 3 it
is deduced that f, (x) > f, (1) =0.

(i) Similarly, if f, (x) <0 for x € (0,1) then we have lim, ;- (1 —x) fr(x) <0
and lim, o+ f, (x) <0, which by (2.10) and (2.11) yields p < 1. Conversely, if p <1,
then by part one of Lemma 3 it is derived that f, (x) < f, (1) =0.

(iii) By part three of Lemma 3, when p € (1,4/3), f, is decreasing on (0,x;) and

increasing on (x1,1), then f, (x) < f, (1) =0 for x € (x;,1) but f, (07) =1In <\/§— 1)

+4/2 > 0. This indicates the desired result.
This proves the lemma. [J]

Now let us consider the function F, be defined on (0, 1) by

el Ly Pl
F (x) -1 NS(lx) In 2arcsinh§% pln 2 if p 7é 07 2.12)
P - Ap 17 B L — l 1 — .
p(1,%) In Tresih I 2 Inx if p=0.
Differentiation yields
xP 1
Fy (0= — X fp(x), (2.13)

xP+1 2(x—1)arcsinh i

x+1
where f), (x) is defined by (2.8). By Lemma 4 the following is immediate.
LEMMA 5. Let F, be defined on (0,1) by(2.12). Then
(i) F, is increasing on (0,1) if and only if p > 4/3;
(ii) F, is decreasing on (0,1) if and only if p < 1;

(iii) there is a unique xo € (0,1) to satisfy f, (x0) =0 such that F, is increasing
on (0,x0) and decreasing on (xo,1) if p € (1,4/3).

3. Main results

Now we are in a position to state and prove our main results, which are contained
the following three theorems. The first one gives the right estimate for Neuman-Sandor
mean by power mean and its relative error.

THEOREM 1. For a,b > 0 with a # b, the inequality NS < A,, holds if and only
if p>=4/3. Moreover, we have

oA, < NS <A, 3.1)

for p>4/3, where oy, = (2'/771) /In(1+ /2) is the best possible constant.
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Proof. In order to prove the desired result, we need to verify two limit relations:

. F,(x) 1
lim 22 = —— (3p—4 32
x—lgl* (x—1)2 24( P ), (3-2)
2" i p>0
F,(07) = lim F,(x) = "oy NP (3.3)
p p .
x—0t oo if P < 0.

In fact, using power series expansion gives

g Bp= 91710 1)),

which yields (3.2). While (3.3) easily follows by direct calculations.

Now we prove the inequality NS < A, holds for all a,b > 0 with a # b if and
only if p >4/3. By symmetry, we assume that b > a > 0. Then inequality NS < 4,
is equivalent to

Fp(x)z

InNS(1,x) —1InA, (1,x) = F,(x) <0,

where x=a/b € (0,1).

The necessity easily follows from lim,_,;- (x— 1) "> F, » (x) <0 and lim,_,g+ Fp (x)
< 0. Solving the simultaneous inequalities for p gives p > 4/3.

The sufficiency can be obtained by part one of Lemma 5. Indeed, we have F), (x) <
F,(1)=0 forxe (0,1) if p>4/3.

Utilizing the monotonicity of the function F}, on (0,1), we have

21/p-1
In (1 +\/§)

Inay, =In =F,(0") <F,(x) <F,(17) =0,

which implies (3.1).
Thus the proof of Theorem 1 is finished. [J

As a consequence of Theorem 1, we have

COROLLARY 1. For a,b >0 with a # b, the following estimate inequalities hold.:

(X4/3A4/3 < NS < A4/3, (3.4)
nQ < NS<Q, (3.5)
Oomax (a,b) < NS < max (a,b), (3.6)

where 043 = (v2In(1+v/2)) "1 ~0.954, o, = (V2In(1+v?2)) ! 2 0.802 and o, =
(2In(1+4+/2))~! = 0.567 are the best possible constants.

Proof. Putting p =4/3,2 in Theorem [ yields (3.4) and (3.5). By Theorem 1, in
order to show (3.6), it suffices to verify that

1
lim A, = max (a,b) and O =

pes 21n(1+ﬁ)'
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For this purpose, we assume that b > a > 0. Then by a simple computation we have

1 P41)—In2
lim InA, = Inb + lim M(@/0)"+ D ~In2 _
p—oo p—oo p

Inb,

which in conjunction with

21/p—1 1
Obo = lim

P*“ln(1+ﬁ> " 2m <1+\/§)

gives (3.6). O
Next we establish the left estimate for Neuman-Sdndor mean by power mean and

give its relative error.

THEOREM 2. For a,b > 0 with a # b, the inequality NS > A,, holds if and only
if p< po=(In2) /(Inln(3 +2v/2)) ~ 1.223. Moreover, we have

Ay <NS< ByA, (3.7)
for p < po, where
Ty if pelpol,
=\ ity ¥ P,
00 if pe(—e,0]

is the best possible constant, here x is the unique root of the equation f,(x) =0 on
(0,1), fp(x) is defined by (2.8).

Proof. Clearly, the inequality NS > A, is equivalent to InNS (1,x) —InA, (1,x) =
F,(x) >0, where x=a/b € (0,1). Now we show that F), (x) > 0 holds forall x € (0,1)
if and only if p < pg.

From the simultaneous inequalities lim, ;- (x— 1) > F, »(x) >0 and lim, o+ F), (x)
> 0 together with (3.2) and (3.3) it is deduced that p < pg, which implies the necessity.

We now prove the condition p < py is sufficient. To this end, we distinguish two
cases to prove it.

In the case of p < 1, since F), is decreasing on (0,1) by part two of Lemma 5, it
follows that

%ln2—lnln<3+2\/§> if p>o0,
- if p<o.

0=F,(1) <F,(x) <F,(0") :{ (3.8)

In the case of p € (1, pg], by part three of Lemma 5, we see that there is a unique
xo € (0,1) to satisfy f, (xo) = O such that F, is increasing on (0,x0) and decreasing
on (xp,1). Itis acquired that

1
0< ;ln2—ln1n (3 +2\/§> =F, (0%) < F,(x) < Fp (xo) forx € (0,x0)

0=F,(1) <F,(x3) < Fpy(xp) forxe (xo,1),
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that is,
0 < Fp(x) < Fp(x0) (3.9
for all x € (0, 1), which proves the sufficiency.
Inequalities (3.7) follows from (3.8) and (3.9), which completes the proof. [l

Letting p = pg = (In2)/(InIn(3 +2+/2)) in Theorem 2 and solving the equa-
tion fp, (x) =0 on (0,1) by mathematical computation software, we find that xo €
(0.1580,0.1581), and then, B, = NS(1,x0) /A, (1,x0) ~ 1.014. Letting p =1, 1,2
in Theorem 2, we have

COROLLARY 2. For a,b> 0 with a # b, the following estimate inequalities hold

Apy < NS < BpoAps, (3.10)
A < NS < BiA, (3.1
A+G A+G

—_— 12
> < NS < By (3.12)

2 )

where Bp, ~ 1.014, By =1/In(1+4v/2) ~ 1.135 and B, =2/In(1 + v2) ~ 2.269
are the best constants.

REMARK 1. The estimate inequalities (3.11) is due to Neuman [12, (2.15)].

Now let us observe the estimate for Neuman-Sandor mean by power mean and its
relative error when p € (po,4/3), where pg = (In2) /(Inln(3 +2v/2)).

THEOREM 3. Let 0 < a < b. Then, when p € (po,4/3), there is a number cq €
(0,1) such that

@A, < NS<A, for0<a< cob, (3.13)

Ap < NS < YA, forcob<a<b, (3.14)

where 0y, = (21/1”1) /In(1++/2) and y, = NS(1,x0) /A, (1,x0) are the best con-
stants, here x is the unique root of the equation f,(x) =0 on (0,1), f, (x) is defined
by (2.8).

Proof. The part three of Lemma 5 tells us that there is a unique xo € (0,1) to
satisfy f, (xo) = O such that F}, defined on (0,1) by (2.12) is increasing on (0,xo)
and decreasing on (xo,1) if p € (1,4/3). Therefore, when p € (po,4/3) we have
F,(x) > F, (1) =0 for x € (xo,1). This together with the fact

F, (07) = %an—lnln (3+2v2) <0

yields that there is a number ¢ € (0,1) such that

F, (0%) < F,(x) <0forx € (0,co),
0 < Fy(x) < Fp(xg) forx € (co,1).
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Letting x = a/b implies (3.13) and (3.14), which completes the proof. [

Additionally, it is worth pointing out that Lemmas 3, 4 and 5 not only serve for
the proof of our main results previous, but also can deduce some sharp inequalities.
For example, Lemma 5 implies a chain of Ky Fan type inequalities for Neuman-Sandor
mean and power mean.

THEOREM 4. Forall ay,ay,by,by >0 with a; /by < ay/b, < 1, the following Ky
Fan type inequalities

(az,b2)

AP (a27b2) < NS(aZabZ)
(a1,by)

Ap(al,bl) NS(ahb])
hold if and only if p > 4/3 and q < 1.

< 4 (3.15)
A, '

Proof. By Lemma 5 it is seen that F,, is increasing on (0, 1) if and only if p >4/3
and decreasing if and only if p < 1. Therefore, for aj,az,by,by > 0 with a;/b; <
ay/by < 1, we have

NS(Lai/by) _, NS(l.aa/bs
A, (1,a1/by) A, (1,az/b,
NS(Lai/by) _ | NS(1.a2/bs
A, (1,a1/by) A, (1,a2/b;

In

if and only if p > 4/3,

In ifand only if g < 1,

)
)
)
)

which imply the desired result. [
Noting that f, (x) defined by (2.8) can be written as

1 Zp—1(1,x) 1
=—(1—- P ’ — 3.16
fr®)=50-x (A(Lx)Q(Lx) NS(1,x) )’ (3.16)
and next utilizing Lemma 4, we have
THEOREM 5. For a,b > 0 with a # b, the inequalities
AQ AQ
< NS < (3.17)
L1 Ly

holdifand onlyif p >4/3 and q < 1, where A, Q stand for arithmetic mean, quadratic
mean, and %, is the Lehmer mean defined by (1.2). Particularly, we have

<NS<OQ. (3.18)

Likewise, from Lemma 3 we see that f, is decreasing on (0,1) if p >4/3 and
increasing if p < 1. It is obtained that

fp (1) < fp(x) < £, (07) if p>4/3,
fp(07) < fplx) < £, (1) ifp< 1.

Using (2.11) and (3.16) and letting x = a/b, we get
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THEOREM 6. For 0 < a < b, the inequalities hold:

fpfl _ L \/E—ln(\/i-&-l)

0 ifp>4/3, 3.19
<A0 NS b ifp>4/ (3.19)
L 2in(v2+1)-v2 1 1 .
__ A el =1 2
5 e <g ns0¥r=l (3.20)
C(va+1)  Zpa .
o < Ag " NS <0ifp<1. (3.21)

4. Remarks

In this section, we give several remarks on bounds for Neuman-Sdndor mean by
power means. To this end, we also need the monotonicity and log-convexity results for
ratio of Stolarsky means, which are from [24, Theorem 3.5] and [25, Theorem 3.6],
respectively, where Stolarsky means are defined in [19] by

q(aP — bP 1/(p—q) .
(W) if p#q, pg#0,
aP — bP 1/p
S — if 0,g=0
(p(lna—lnb)) it p70.q=0,
Spqla,b) = al—p1 N\ " N (4.1)
(q(lna—lnb)) it p=0.q70.
a’lna—bPInb 1
T T 7 2 ) if p=qg#0
eXP( Py p) if p=q#0,
a if p=g=0.
Vab if 0

PROPOSITION 1. Let a,b,c,d >0 with b/a > d/c > 1. Then for fixed r,s € R,

(i) p = Sprps(a,b)/Sprps(c,d) is strictly increasing on R if r+s > 0 and de-
creasing on R if r+s5s <0y

(ii) p = Sprps(a,b)/Sprps(c,d) is strictly log-concave in p on (0,00) and log-
convex on (—e0,0) if r+s >0, and strictly log-convex on (0,e) and log-concave on
(—o0,0) if r+5<0.

Assume that p,r,s >0 and let « — 0" in the above proposition. Then S, ,s(a,b)/
Sprps(c,d) = b/ Hp(pr,ps;c,d), where

cPr — gpr
Hp(pr.ps;c,d) = (m
el/(l”)]l/(pr) (Cpr7dpr) if r= s, p,1s > 07

1/(pr—ps)
) ifr#£s,p,r,s>0, 4.2)

here I(x,y) is the identric (exponential) mean of positive numbers x and y. By Propo-
sition 1 we have
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LEMMA 6. Let p,r,s,c,d >0 with ¢ # d. Then for fixed r,s > 0, the function
p— Hp(pr,ps;c,d) defined by (4.2) is strictly decreasing on (0,e0) and log-convex
on (0,e0).

Particularly, the function p — #p(2p,p;c,d) = ZI/I’AP is strictly decreasing on
(0,00) and log-convex on (0,00).

Now we remark the best bounds for Neuman-Sdandor mean NS in terms of power
means.

REMARK 2. Using the monotonicity of the function p ~ A, and p ~— 2!/PA,,,
we see that

21/p=1 1
P S VD T (1) (21ra,)
is decreasing in p on (0,c). Thus the Corollary 1 can be improved as
Oomax (a,b) < -+ <000 < 043443 <NS<Ay;3<Q<-- <max(a,b). (4.3)
In the same way, for p € (0, 1] the Corollary 2 can be partly improved as

A+G A+G
G<- <%<A<NS<0:1A<[31/2 i

<< oo, (4.4)

The last problem is that for p € (1, pg] whether the right bound for NS in (3.7) B,A4, is
decreasing with p. We guess that the answer is positive, which is posed as a conjecture.

CONJECTURE 1. Let pg = (In2) /(Inln(3+2+/2)) for p € (1, po]. Then the func-
tion p — BpA, is decreasing with p on (1,po], where B, = NS(1,x0) /A, (1,x0), Xo
is the unique root of the equation f, (x) =0 on (0,1), f,(x) is defined by (2.8).

REMARK 3. For the best bounds for Neuman-Sdndor mean NS in terms of power
means given in (3.4) and (3.7), we have

OC4/3A4/3 <Ap0 < NS <A4/3 <0 4/3 P03 4.5)
where 03 = (V2In(1++v/2))~!, po = (In2) /(InIn(3+2v?2)).
In fact, since p — 2!/ PA) is strictly decreasing on (0,e0), we have
2VP0A, > 234, 5, (4.6)

which implies that A, > 271/P023/44, 5 and Ay/3 < 21/P0273/%4,, . To show (4.5), it
is enough to verify that 2-1/P023/4 = ¢, ;3. We have

27 1/Pop3/4 — 23/4exp< m) = 23/4exp< ln21nln(§£2‘/_> 21n(213f\[ = 03

It should be noted that the relative error of estimate for NS by Ap, given by (3.7)
is clearly superior to another ones given by (4.5), since a, /3 = (V2In(1 +v2)) =

1.048 > B,, ~ 1.014, but the later can avoid some complicated computations and is
also rather small.
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REMARK 4. Using the log-convexity of the function p+ A, and p 21/PA p WE
can also give the best estimate for NS by Lehmer mean:

(2In(1+v2)) "% /5 < NS < L 6. (4.7

By NS < Ay3 givenin (3.4) and .Z; = A’“A given by (1.3), for showing NS <

r+1
Z1/6. it suffices to check Ay/3 < ATSATMC that is, AZ%A}%

7/6%1/6
by that the function p — A, is log-concave on (0,2°) (see [23, Conclusion 1]). On the

other hand, since p — 2'/7A p is log-convex on (0,e0) by Lemma 6, we get

< Ay /65 which follows

(2%4a33)"" (2a16) " > 29 a6

which can be simplified to 23/4A4 5 > A%gA ) /16/ A J6- And, by (3.4) it is acquired
that

NS > oy 3443 =2y )3 (23/4A4/3> >27 %0y 3.2 16 = (2In(1+V2)) "% 6.

Further, we assert that the right estimate for NS by Lehmer mean %, is the best.
In fact, assume that 0 < a < b and let x =a/b € (0,1). Using power series expansion
gives
NS(I .X) 2 3
Y (ep—1)(x—1 0( 1 )
Z (1) 24(19 Jx=1)"+0((x—1)

which indicates that p > 1/6 is necessary for NS < .Z, to hold.
Meanwhile, for ensuring that NS > 6.%) /¢ is true for x € (0, 1), it has to satisfy

that lim, o+ (NS— 0.2, 6) = (2In(1++/2))"' =6 > 0. Thatis, 6 = (2In(1++/2))"!
is the best.
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