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Abstract. For a,b > 0 with a �= b , let NS (a,b) denote the Neuman-Sándor mean defined by

NS (a,b) =
a−b

2arcsinh a−b
a+b

and Ap (a,b) , Lp (a,b) denote the r -order power and Lehmer means. Based on our earlier
worker [27], we prove that

αpAp < NS < Ap and Ap < NS � βpAp

holds if and only if p � 4/3 and p � p0 , respectively, where

αp =
(
21/p−1

)
/ ln(1+

√
2) if p ∈ [1/4/3,∞),

βp =

⎧⎪⎨
⎪⎩

NS (1,x0)/Ap (1,x0) if p ∈ (1, p0],
21/p−1/ ln

(
1+

√
2
)

if p ∈ (0,1],
∞ if p ∈ (−∞,0]

are the best constants, here x0 is the unique root of the equation

NS (1,x) =
A(1,x)A2 (1,x)
Lp0−1 (1,x)

on (0,1) , and p �→ αpAp is decreasing on (0,∞) . Also, we have

α4/3A4/3 < Ap0 < NS < A4/3 < α−1
4/3Ap0 .

Our results clearly are generations of known ones.

1. Introduction

Throughout the paper, we assume that a,b ∈ (0,∞) := R+ with a �= b . The clas-
sical power mean of order p and Lehmer mean of a and b are defined by

Ap = Ap(a,b) =
(

ap +bp

2

)1/p

if p �= 0 and A0 = A0(a,b) =
√

ab, (1.1)

Lp = Lp(a,b) =
ap+1 +bp+1

ap +bp , (1.2)
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respectively. It is well-known that the functions p �→ Ap(a,b) is continuous and strictly
increasing on R (see [1], [9]) and log-convex on (−∞,0) and log-concave on (0,∞)
(see [23, Conclusion 1]). While the function p �→ Lp(a,b) is also continuous and
increasing on R (see [9], [22, Conclusion 1]) and log-convex on (−∞,−1/2) and log-
concave on (−1/2,∞) (see [22, Conclusion 2]).

As special cases of power mean, the arithmetic mean, geometricmean and quadratic
mean are A = A(a,b) = A1 (a,b) , G = G(a,b)= A0 (a,b) and Q = Q(a,b) = A2 (a,b) ,
respectively. Clearly, the Lehmer mean can be expressed by power means as

Lp = Ap+1
p+1A

−p
p (1.3)

In 2003, Neuman and Sándor defined in [12] a new mean

NS = NS (a,b) =
a−b

2arcsinh a−b
a+b

=
a−b

2ln
a−b+

√
2(a2+b2)

a+b

, (1.4)

and first established
G < L < P < A < NS < T < Q (1.5)

and π
2

P > A > arcsinh (1)NS >
π
2

T, (1.6)

where L is the well-known logarithmic mean, P and T stand for the first and second
Seiffert means (see [17], [16], [18]). Lately, Constin and Toader [5, Theorem 1] showed
that A3/2 can be put between NS and T , that is,

NS < A3/2 < T, (1.7)

and they obtained the following nice chain of inequalities for certain means:

G < L < A1/2 < P < A < NS < A3/2 < T < A2. (1.8)

In 2012, Yang [27] first established the optimal evaluations for Neuman-Sándor mean
by power means

A ln2
lnln(3+2

√
2)

< NS < A4/3, (1.9)

where (ln2)/ ln ln
(
3+2

√
2
)

and 4/3 are the best possible constants, and obtained a

more nice chain of inequalities for bivariate means:

A0 < L < A1/3 < Alnπ 2 < P < A2/3 < I < Aln2

< A ln2
lnln(3+2

√
2)

< NS < A4/3 < Alogπ/2 2 < T < A5/3,

where I is the identric (exponential) mean of positive numbers a and b (also see [11],
[20], [15], [8], [6], [7], [26]). Very recently, Constin and Toader in [4] and Chu and
Long in [2] gave other proofs of (1.9), respectively.
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Other inequalities for Neuman-Sándor mean can be found in [2], [3], [10], [13],
[14], [21], [28], [29].

This paper is based on our earlier work [27] and treats mainly the estimates for
Neuman-Sándor mean NS by power means Ap and their relative errors for all p ∈ R .
In Section 2, we give some useful lemmas. The main results are contained Section
3, which not only solve the best estimate problems for Neuman-Sándor mean NS by
power means Ap , but also give relative errors of estimates for all p ∈ R . Also, as by-
products, we establish a chain of Ky Fan type inequalities involving the two means and
another best estimate for NS . In the last section, we give several remarks on bounds
for Neuman-Sándor mean in terms of power means by using the monotonicity and log-
convexity of the function p �→ Ap and p �→ 21/pAp on (0,∞) . An optimal estimate for
Neuman-Sándor mean NS by Lehmer mean Lp is incidentally presented.

2. Lemmas

In the sequel, the function gp defined on (0,1) by

gp (x) = xp+2 + xp+1 +2xp− x2−p− x3−p−2x4−p +(p−1)x4− x3 + x− p+1 (2.1)

play an important role, where p ∈ R . We first deal with the sign of gp (x) .

LEMMA 1. For real number p ∈ R , let the function gp be defined on (0,1) by
(2.1). Then gp (x) < 0 for x ∈ (0,1) if and only if p � 4/3 and gp (x) > 0 if and only
if p � 1 .

Proof. Firstly we show that p �→ gp (x) is decreasing on R for x ∈ (0,1) . Indeed,
differentiation leads to

∂gp (x)
∂ p

=
(
xp+1 + xp+2 + x2−p + x3−p +2x4−p +2xp) lnx+

(
x4 −1

)
< 0

for x ∈ (0,1) .
Secondly, we need two limits limx→1− (1− x)−1 gp (x) and limx→0+ gp (x) . Ap-

plication of L’Hospital’s rule gives

lim
x→1−

gp (x)
1− x

= 16−12p. (2.2)

To obtain the second limit, we write gp (x) as

gp (x) =
(
x2 + x+2

)
xp− x2−p (

1+ x+2x2)+(p−1)x4 − x3 + x− p+1,

which easily yields

lim
x→0+

gp (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∞ if p > 2,
−2 if p = 2,
−p+1 if 0 < p < 2,
3 if p = 0,
∞ if p < 0.

(2.3)
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Now we prove that gp (x) < 0 for x ∈ (0,1) if and only if p � 4/3. If gp (x) � 0
for x ∈ (0,1) , then we have

lim
x→1−

gp (x)
1− x

� 0 and lim
x→0+

gp (x) � 0,

which, by (2.2) and (2.3), reveals that p � 4/3, that is, the condition p � 4/3 is neces-
sary.

Next we show that p � 4/3 is sufficient. Since p �→ gp (x) is decreasing on R for
x ∈ (0,1) , it suffices to prove that gp (x) < 0 for x ∈ (0,1) when p = 4/3. We have

g4/3 (x) = x− x3 +
1
3
x4− x2/3 +2x4/3− x5/3 + x7/3−2x8/3 + x10/3− 1

3
,

and therefore

3g4/3
(
x3) = x12 +3x10−3x9−6x8 +3x7−3x5 +6x4 +3x3−3x2−1.

Factoring yields that for x ∈ (0,1)

3g4/3
(
x3) = (x−1)3 (x+1)

(
x8 +2x7 +7x6 +9x5 +9x4 +9x3 +7x2 +2x+1

)
< 0,

which proves the sufficiency.
Lastly, we prove that gp (x) > 0 for x ∈ (0,1) if and only if p � 1. Similarly, the

necessary condition easily follows from

lim
x→1−

gp (x)
1− x

� 0 and lim
x→0+

gp (x) � 0,

which, by (2.2) and (2.3), yields p � 1.
If p � 1, then by the monotonicity of p �→ gp (x) it is derived that

gp (x) � g1 (x) = 2x
(
1− x2) > 0,

which proves the sufficiency and the whole proof is complete. �

LEMMA 2. Let the function gp be defined on (0,1) by (2.1). Then there is a
unique x1 ∈ (0,1) such that gp (x) < 0 for x ∈ (0,x1) and gp (x) > 0 for x ∈ (x1,1) if
p ∈ (1,4/3) .

Proof. We prove the desired result stepwise.

Step 1: We have g(4)
p (x) > 0 for x ∈ (0,1) when p ∈ (1,4/3) .
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Differentiations yield

g′p (x) = (p+2)xp+1 +(p+1)xp +2pxp−1 +(p−2)x1−p (2.4)

+(p−3)x2−p +2(p−4)x3−p +4(p−1)x3−3x2 +1,

g′′p (x) = (p+1)(p+2)xp + p(p+1)xp−1 +2p(p−1)xp−2 (2.5)

−(p−1)(p−2)x−p− (p−2)(p−3)x1−p

−2(p−3)(p−4)x2−p +12(p−1)x2 −6x,

g′′′p (x) = p(p+1)(p+2)xp−1 + p(p−1)(p+1)xp−2 (2.6)

+2p(p−1)(p−2)xp−3 + p(p−1)(p−2)x−p−1

+(p−1)(p−2)(p−3)x−p +2(p−2)(p−3)(p−4)x1−p

+24(p−1)x−6,

g(4)
p (x)
p−1

= p(p+1)(p+2)xp−2 (2.7)

+p(p+1)(p−2)xp−3 +2p(p−2)(p−3)xp−4

−p(p+1)(p−2)x−p−2− p(p−2)(p−3)x−p−1

−2(p−2)(p−3)(p−4)x−p +24

:= I1 + I2 + I3 + I4,

where

I1 = p(p+1)(p+2)xp−2 > 0,

I2 = p(p+1)(p−2)xp−3 +2p(p−2)(p−3)xp−4

= p(2− p)xp−4 (2(3− p)− (p+1)x)
> p(2− p)xp−3 (2(3− p)− (p+1)) = p(2− p)xp−3 (5−3p) > 0,

I3 = −p(p+1)(p−2)x−p−2− p(p−2)(p−3)x−p−1

= p(2− p)x−p−2 ((p+1)− (3− p)x)
> p(2− p)x−p−2 ((p+1)− (3− p)) = 2p(2− p)x−p−2 (p−1) > 0,

I4 = 2(2− p)(3− p)(4− p)x−p +24 > 0

Hence, g(4)
p (x) > 0 for x ∈ (0,1) when p ∈ (1,4/3) .

Step 2: Let p1 ≈ 1.2102 be the root of equation

h(p) = 8p3−30p2 +94p−84 = 0.

Then g′′′p (x) < 0 for x ∈ (0,1) when p ∈ (1, p1) , and there is unique x3 ∈ (0,1) such
that g′′′p (x) < 0 for x ∈ (0,x3) and g′′′p (x) > 0 for x ∈ (x3,1) when p ∈ (p1,4/3) .

Differentiation yields

h′ (p) = 24p2−60p+94=
3
2

(4p−5)2 +
113
2

> 0.



716 ZHEN-HANG YANG

In view of h(1) = −12 < 0 and h(4/3) = 188/27 > 0, the equation h(p) = 0 has a
unique root p1 ≈ 1.2102 such that h(p) < 0 for p ∈ (1, p1) and h(p) > 0 for p ∈
(p1,4/3) .

1) When p ∈ (1, p1) , from g(4)
p (x) > 0 for x ∈ (0,1) it is deduced that

g′′′p (x) < g′′′p (1) = 8p3−30p2 +94p−84 = h(p) < 0.

2) When p ∈ (p1,4/3) , to prove the part two of this step, it suffices to verify that
g′′′p (0+) < 0 and g′′′p (1) > 0. Simple computation yields

sgng′′′p
(
0+)

= sgn (p(p−1)(p−2)) < 0,

g′′′p (1) = 8p3−30p2 +94p−84 = h(p) > 0,

which proves the desired result.

Step 3: There is a unique x2 ∈ (0,1) such that g′′p (x) > 0 for x ∈ (0,x2) and
g′′p (x) < 0 for x ∈ (x2,1) when p ∈ (1,4/3).

We distinguish two cases to prove this step.
In the case of p ∈ (1, p1) , we see that g′′′p (x) < 0 for x ∈ (0,1) . It together with

sgng′′p
(
0+)

= sgn (−(p−1)(p−2)) > 0,

g′′p (1) = 12(3p−4) < 0,

leads to the desired assertion.
In the case of p ∈ (p1,4/3) , we see that there is a unique x3 ∈ (0,1) such that

g′′′p (x) < 0 for x ∈ (0,x3) and g′′′p (x) > 0 for x ∈ (x3,1) . It follows that g′′p (x) <
g′′p (1) < 0 for x ∈ (x3,1) , which in combination with g′′p (0+) > 0 reveals that there is
a unique x2 ∈ (0,x3) such that g′′p (x) > 0 for x ∈ (0,x2) and g′′p (x) < 0 for x ∈ (x2,1) .

This completes the step.

Step 4: There are two numbers x11 ∈ (0,x2) ,x12 ∈ (x2,1) such that g′p (x) < 0 for
x ∈ (0,x11)∪ (x12,1) and g′p (x) > 0 for x ∈ (x11,x12) when p ∈ (1,4/3) .

Due to Step 3 and the facts that

sgng′p
(
0+)

= sgn (p−2) < 0,

g′p (1) = 4(3p−4) < 0,

in order to prove this step, it is enough to verify that g′p (x2) > 0.
In fact, if g′p (x2) < 0 then g′p (x) < g′p (x2) < 0 for x ∈ (0,x2) and g′p (x) <

g′p (x2) < 0 for x ∈ (x2,1) , and then g′p (x) < 0 for x ∈ (0,1) . It follows that gp (x) >
gp (1) = 0, which, by Lemma 1, leads to p � 1. It is clearly a contradiction. Hence
there must be g′p (x2) > 0, which completes the Step 4.

Step 5: There is a unique x1 ∈ (x11,x12) such that gp (x) < 0 for x ∈ (0,x1) and
gp (x) > 0 for x ∈ (x1,1) if p ∈ (1,4/3).

From Step 4 and the facts that

gp
(
0+)

= 1− p < 0, gp
(
1−

)
= 0,
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we have the following variance table of gp (x) :

x 0+ (0,x11) x11 (x11,x12) x12 (x12,1) 1
g′p (x) − − 0 + 0 − −
gp (x) − ↘ − ↗ + ↘ 0

where
gp (x11) < gp

(
0+)

= 1− p < 0 and gp (x12) > gp (1) = 0.

Thus the step follows. �
For real number p ∈ R , let the function fp be defined on (0,1) by

fp (x) = arcsinh
x−1
x+1

−
√

2
x−1

(x+1)
√

x2 +1

xp +1
xp−1 +1

. (2.8)

Differentiating fp (x) and simplifying lead to

f ′p (x) =
√

2(1− x)xp(√
x2 +1

)3
(x+1)2 (x+ xp)2

gp (x) , (2.9)

where gp (x) is defined by (2.1). By Lemma 1 and 2, we easily obtain

LEMMA 3. Let fp be defined on (0,1) by (2.8). Then
(i) fp is decreasing on (0,1) if and only if p � 4/3 ;
(ii) fp is increasing on (0,1) if and only if p � 1 ;
(iii) there is a unique x1 ∈ (0,1) such that fp is decreasing on (0,x1) and increas-

ing on (x1,1) if p ∈ (1,4/3) .

Using Lemma 3 we can prove the following

LEMMA 4. Let fp be defined on (0,1) by (2.8). Then
(i) fp (x) > 0 for x ∈ (0,1) if and only if p � 4/3 ;
(ii) fp (x) < 0 for x ∈ (0,1) if and only if p � 1 ;
(iii) there is a unique x0 ∈ (0,x1) to satisfy fp (x0) = 0 such that fp (x) > 0 for

x ∈ (0,x0) and fp (x) < 0 for x ∈ (x0,1) if p ∈ (1,4/3) .

Proof. We first show two limits as follows:

lim
x→1−

fp (x)

(1− x)3
=

1
8

(
p− 4

3

)
, (2.10)

fp
(
0+)

= lim
x→0+

fp (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln
(√

2−1
)

+
√

2 if p > 1,

ln
(√

2−1
)

+
√

2
2 if p = 1,

ln
(√

2−1
)

if p < 1.

(2.11)



718 ZHEN-HANG YANG

In fact, application of L’Hospital rule leads to (2.10), and direct computation yields
(2.11).

(i) If fp (x) > 0 for x ∈ (0,1) then there must be limx→1− (1− x)−3 fp (x) � 0 and
limx→0+ fp (x) � 0, which by (2.10) and (2.11) indicates p � 4/3.

We now prove fp (x) > 0 for x ∈ (0,1) if p � 4/3. From part one of Lemma 3 it
is deduced that fp (x) > fp (1) = 0.

(ii) Similarly, if fp (x) < 0 for x∈ (0,1) then we have limx→1− (1− x)−3 fp (x) � 0
and limx→0+ fp (x) � 0, which by (2.10) and (2.11) yields p � 1. Conversely, if p � 1,
then by part one of Lemma 3 it is derived that fp (x) < fp (1) = 0.

(iii) By part three of Lemma 3, when p∈ (1,4/3) , fp is decreasing on (0,x1) and

increasing on (x1,1) , then fp (x) < fp (1) = 0 for x∈ (x1,1) but fp (0+)= ln
(√

2−1
)

+
√

2 > 0. This indicates the desired result.
This proves the lemma. �
Now let us consider the function Fp be defined on (0,1) by

Fp (x) = ln NS(1,x)
Ap(1,x) =

⎧⎨
⎩

ln x−1
2arcsinh x−1

x+1
− 1

p ln xp+1
2 if p �= 0,

ln x−1
2arcsinh x−1

x+1
− 1

2 lnx if p = 0.
(2.12)

Differentiation yields

F ′
p (x) =

xp−1 +1
xp +1

1

2(x−1)arcsinh x−1
x+1

× fp (x) , (2.13)

where fp (x) is defined by (2.8). By Lemma 4 the following is immediate.

LEMMA 5. Let Fp be defined on (0,1) by(2.12). Then
(i) Fp is increasing on (0,1) if and only if p � 4/3 ;
(ii) Fp is decreasing on (0,1) if and only if p � 1 ;
(iii) there is a unique x0 ∈ (0,1) to satisfy fp (x0) = 0 such that Fp is increasing

on (0,x0) and decreasing on (x0,1) if p ∈ (1,4/3) .

3. Main results

Now we are in a position to state and prove our main results, which are contained
the following three theorems. The first one gives the right estimate for Neuman-Sándor
mean by power mean and its relative error.

THEOREM 1. For a,b > 0 with a �= b, the inequality NS < Ap holds if and only
if p � 4/3 . Moreover, we have

αpAp < NS < Ap (3.1)

for p � 4/3 , where αp =
(
21/p−1

)
/ ln(1+

√
2) is the best possible constant.
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Proof. In order to prove the desired result, we need to verify two limit relations:

lim
x→1−

Fp (x)

(x−1)2
= − 1

24
(3p−4), (3.2)

Fp
(
0+)

= lim
x→0+

Fp (x) =

{
ln 21/p−1

ln(1+
√

2) if p > 0,

∞ if p � 0.
(3.3)

In fact, using power series expansion gives

Fp (x) = − 1
24

(3p−4)(x−1)2 +O
(
(x−1)3

)
,

which yields (3.2). While (3.3) easily follows by direct calculations.
Now we prove the inequality NS < Ap holds for all a,b > 0 with a �= b if and

only if p � 4/3. By symmetry, we assume that b > a > 0. Then inequality NS < Ap

is equivalent to
lnNS (1,x)− lnAp (1,x) = Fp (x) < 0,

where x = a/b ∈ (0,1) .
The necessity easily follows from limx→1− (x−1)−2 Fp (x) � 0 and limx→0+ Fp (x)

� 0. Solving the simultaneous inequalities for p gives p � 4/3.
The sufficiency can be obtained by part one of Lemma 5. Indeed, we have Fp (x) <

Fp (1) = 0 for x ∈ (0,1) if p � 4/3.
Utilizing the monotonicity of the function Fp on (0,1) , we have

lnαp = ln
21/p−1

ln
(
1+

√
2
) = Fp

(
0+)

< Fp (x) < Fp
(
1−

)
= 0,

which implies (3.1).
Thus the proof of Theorem 1 is finished. �
As a consequence of Theorem 1, we have

COROLLARY 1. For a,b > 0 with a �= b, the following estimate inequalities hold:

α4/3A4/3 < NS < A4/3, (3.4)

α2Q < NS < Q, (3.5)

α∞ max(a,b) < NS < max(a,b) , (3.6)

where α4/3 = ( 4
√

2ln(1+
√

2))−1 ≈ 0.954 , α2 = (
√

2ln(1+
√

2))−1 ≈ 0.802 and α∞ =
(2ln(1+

√
2))−1 ≈ 0.567 are the best possible constants.

Proof. Putting p = 4/3,2 in Theorem 1 yields (3.4) and (3.5). By Theorem 1, in
order to show (3.6), it suffices to verify that

lim
p→∞

Ap = max(a,b) and α∞ =
1

2ln
(
1+

√
2
) .
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For this purpose, we assume that b > a > 0. Then by a simple computation we have

lim
p→∞

lnAp = lnb+ lim
p→∞

ln((a/b)p +1)− ln2
p

= lnb,

which in conjunction with

α∞ = lim
p→∞

21/p−1

ln
(
1+

√
2
) =

1

2ln
(
1+

√
2
)

gives (3.6). �
Next we establish the left estimate for Neuman-Sándor mean by power mean and

give its relative error.

THEOREM 2. For a,b > 0 with a �= b, the inequality NS > Ap holds if and only
if p � p0 = (ln2)/(ln ln(3+2

√
2)) ≈ 1.223 . Moreover, we have

Ap < NS � βpAp (3.7)

for p � p0 , where

βp =

⎧⎪⎪⎨
⎪⎪⎩

NS(1,x0)
Ap(1,x0)

if p ∈ (1, p0],

21/p−1

ln(1+
√

2) if p ∈ (0,1],

∞ if p ∈ (−∞,0]

is the best possible constant, here x0 is the unique root of the equation fp (x) = 0 on
(0,1) , fp (x) is defined by (2.8).

Proof. Clearly, the inequality NS > Ap is equivalent to lnNS (1,x)− lnAp (1,x) =
Fp (x) > 0, where x = a/b∈ (0,1) . Now we show that Fp (x) > 0 holds for all x∈ (0,1)
if and only if p � p0 .

From the simultaneous inequalities limx→1− (x−1)−2 Fp (x)� 0 and limx→0+ Fp (x)
� 0 together with (3.2) and (3.3) it is deduced that p � p0 , which implies the necessity.

We now prove the condition p � p0 is sufficient. To this end, we distinguish two
cases to prove it.

In the case of p � 1, since Fp is decreasing on (0,1) by part two of Lemma 5, it
follows that

0 = Fp (1) < Fp (x) � Fp
(
0+)

=

{
1
p ln2− lnln

(
3+2

√
2
)

if p > 0,

∞ if p � 0.
(3.8)

In the case of p ∈ (1, p0] , by part three of Lemma 5, we see that there is a unique
x0 ∈ (0,1) to satisfy fp (x0) = 0 such that Fp is increasing on (0,x0) and decreasing
on (x0,1) . It is acquired that

0 � 1
p

ln2− lnln
(
3+2

√
2
)

= Fp
(
0+)

< Fp (x) < Fp (x0) for x ∈ (0,x0)

0 = Fp (1) < Fp (x3) < Fp (x0) for x ∈ (x0,1) ,
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that is,
0 < Fp (x) � Fp (x0) (3.9)

for all x ∈ (0,1) , which proves the sufficiency.
Inequalities (3.7) follows from (3.8) and (3.9), which completes the proof. �
Letting p = p0 = (ln2)/(ln ln(3 + 2

√
2)) in Theorem 2 and solving the equa-

tion fp0 (x) = 0 on (0,1) by mathematical computation software, we find that x0 ∈
(0.1580,0.1581), and then, βp0 = NS (1,x0)/Ap (1,x0) ≈ 1.014. Letting p = 1, 1/2
in Theorem 2, we have

COROLLARY 2. For a,b > 0 with a �= b, the following estimate inequalities hold

Ap0 < NS < βp0Ap0 , (3.10)

A < NS < β1A, (3.11)
A+G

2
< NS < β1/2

A+G
2

, (3.12)

where βp0 ≈ 1.014 , β1 = 1/ ln(1 +
√

2) ≈ 1.135 and β1/2 = 2/ ln(1 +
√

2) ≈ 2.269
are the best constants.

REMARK 1. The estimate inequalities (3.11) is due to Neuman [12, (2.15)].

Now let us observe the estimate for Neuman-Sándor mean by power mean and its
relative error when p ∈ (p0,4/3) , where p0 = (ln2)/(ln ln(3+2

√
2)) .

THEOREM 3. Let 0 < a < b. Then, when p ∈ (p0,4/3) , there is a number c0 ∈
(0,1) such that

αpAp < NS < Ap for 0 < a < c0b, (3.13)

Ap < NS < γpAp for c0b < a < b, (3.14)

where αp =
(
21/p−1

)
/ ln(1 +

√
2) and γp = NS (1,x0)/Ap (1,x0) are the best con-

stants, here x0 is the unique root of the equation fp (x) = 0 on (0,1) , fp (x) is defined
by (2.8).

Proof. The part three of Lemma 5 tells us that there is a unique x0 ∈ (0,1) to
satisfy fp (x0) = 0 such that Fp defined on (0,1) by (2.12) is increasing on (0,x0)
and decreasing on (x0,1) if p ∈ (1,4/3) . Therefore, when p ∈ (p0,4/3) we have
Fp (x) > Fp (1) = 0 for x ∈ (x0,1) . This together with the fact

Fp
(
0+)

=
1
p

ln2− lnln
(
3+2

√
2
)

< 0

yields that there is a number c0 ∈ (0,1) such that

Fp
(
0+)

< Fp (x) < 0 for x ∈ (0,c0) ,
0 < Fp (x) < Fp (x0) for x ∈ (c0,1) .
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Letting x = a/b implies (3.13) and (3.14), which completes the proof. �
Additionally, it is worth pointing out that Lemmas 3, 4 and 5 not only serve for

the proof of our main results previous, but also can deduce some sharp inequalities.
For example, Lemma 5 implies a chain of Ky Fan type inequalities for Neuman-Sándor
mean and power mean.

THEOREM 4. For all a1,a2,b1,b2 > 0 with a1/b1 < a2/b2 < 1 , the following Ky
Fan type inequalities

Ap (a2,b2)
Ap (a1,b1)

<
NS (a2,b2)
NS (a1,b1)

<
Aq (a2,b2)
Aq (a1,b1)

(3.15)

hold if and only if p � 4/3 and q � 1 .

Proof. By Lemma 5 it is seen that Fp is increasing on (0,1) if and only if p � 4/3
and decreasing if and only if p � 1. Therefore, for a1,a2,b1,b2 > 0 with a1/b1 <
a2/b2 < 1, we have

ln
NS (1,a1/b1)
Ap (1,a1/b1)

< ln
NS (1,a2/b2)
Ap (1,a2/b2)

if and only if p � 4/3,

ln
NS (1,a1/b1)
Aq (1,a1/b1)

> ln
NS (1,a2/b2)
Aq (1,a2/b2)

if and only if q � 1,

which imply the desired result. �
Noting that fp (x) defined by (2.8) can be written as

fp (x) =
1
2

(1− x)
(

Lp−1 (1,x)
A(1,x)Q(1,x)

− 1
NS (1,x)

)
, (3.16)

and next utilizing Lemma 4, we have

THEOREM 5. For a,b > 0 with a �= b, the inequalities

AQ
Lp−1

< NS <
AQ

Lq−1
(3.17)

hold if and only if p � 4/3 and q� 1 , where A, Q stand for arithmetic mean, quadratic
mean, and Lr is the Lehmer mean defined by (1.2). Particularly, we have

AQ
L1/3

< NS < Q. (3.18)

Likewise, from Lemma 3 we see that fp is decreasing on (0,1) if p � 4/3 and
increasing if p � 1. It is obtained that

fp (1) < fp (x) < fp
(
0+)

if p � 4/3,

fp
(
0+)

< fp (x) < fp (1) if p � 1.

Using (2.11) and (3.16) and letting x = a/b , we get
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THEOREM 6. For 0 < a < b, the inequalities hold:

0 <
Lp−1

AQ
− 1

NS
<

√
2−ln(

√
2+1)

b−a if p � 4/3, (3.19)

−1
2

2ln(
√

2+1)−
√

2
b−a <

1
Q
− 1

NS
< 0 if p = 1, (3.20)

− ln(
√

2+1)
b−a <

Lp−1

AQ
− 1

NS
< 0 if p < 1. (3.21)

4. Remarks

In this section, we give several remarks on bounds for Neuman-Sándor mean by
power means. To this end, we also need the monotonicity and log-convexity results for
ratio of Stolarsky means, which are from [24, Theorem 3.5] and [25, Theorem 3.6],
respectively, where Stolarsky means are defined in [19] by

Sp,q(a,b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
q(ap−bp)
p(aq−bq)

)1/(p−q)

if p �= q, pq �= 0,

(
ap−bp

p(lna− lnb)

)1/p

if p �= 0, q = 0,

(
aq−bq

q(lna− lnb)

)1/q

if p = 0, q �= 0,

exp

(
ap lna−bp lnb

ap−bp − 1
p

)
if p = q �= 0,

√
ab if p = q = 0.

(4.1)

PROPOSITION 1. Let a,b,c,d > 0 with b/a > d/c � 1 . Then for fixed r,s ∈ R ,
(i) p �→ Spr,ps(a,b)/Spr,ps(c,d) is strictly increasing on R if r + s > 0 and de-

creasing on R if r+ s < 0 ;
(ii) p �→ Spr,ps(a,b)/Spr,ps(c,d) is strictly log-concave in p on (0,∞) and log-

convex on (−∞,0) if r + s > 0 , and strictly log-convex on (0,∞) and log-concave on
(−∞,0) if r+ s < 0 .

Assume that p,r,s > 0 and let a→ 0+ in the above proposition. Then Spr,ps(a,b)/
Spr,ps(c,d) = b/HD(pr, ps;c,d) , where

HD(pr, ps;c,d) =

⎧⎪⎨
⎪⎩

(
cpr −dpr

cps−dps

)1/(pr−ps)

if r �= s,p,r,s > 0,

e1/(pr)I1/(pr) (cpr,dpr) if r = s, p,r,s > 0,

(4.2)

here I(x,y) is the identric (exponential) mean of positive numbers x and y . By Propo-
sition 1 we have
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LEMMA 6. Let p,r,s,c,d > 0 with c �= d . Then for fixed r,s > 0 , the function
p �→ HD(pr, ps;c,d) defined by (4.2) is strictly decreasing on (0,∞) and log-convex
on (0,∞) .

Particularly, the function p �→ HD(2p, p;c,d) = 21/pAp is strictly decreasing on
(0,∞) and log-convex on (0,∞) .

Now we remark the best bounds for Neuman-Sándor mean NS in terms of power
means.

REMARK 2. Using the monotonicity of the function p �→ Ap and p �→ 21/pAp ,
we see that

p �→ αpAp =
21/p−1

ln(1+
√

2)
Ap =

1

2ln(1+
√

2)

(
21/pAp

)
is decreasing in p on (0,∞) . Thus the Corollary 1 can be improved as

α∞ max(a,b) < · · ·< α2Q < α4/3A4/3 < NS < A4/3 < Q < · · · < max(a,b) . (4.3)

In the same way, for p ∈ (0,1] the Corollary 2 can be partly improved as

G < · · ·< A+G
2

< A < NS < α1A < β1/2
A+G

2
< · · ·< ∞. (4.4)

The last problem is that for p∈ (1, p0] whether the right bound for NS in (3.7) βpAp is
decreasing with p . We guess that the answer is positive, which is posed as a conjecture.

CONJECTURE 1. Let p0 = (ln2)/(ln ln(3+2
√

2)) for p∈ (1, p0] . Then the func-
tion p �→ βpAp is decreasing with p on (1, p0] , where βp = NS (1,x0)/Ap (1,x0) , x0

is the unique root of the equation fp (x) = 0 on (0,1) , fp (x) is defined by (2.8).

REMARK 3. For the best bounds for Neuman-Sándor mean NS in terms of power
means given in (3.4) and (3.7), we have

α4/3A4/3 < Ap0 < NS < A4/3 < α−1
4/3Ap0 , (4.5)

where α4/3 = ( 4
√

2ln(1+
√

2))−1 , p0 = (ln2)/(ln ln(3+2
√

2)) .
In fact, since p �→ 21/pAp is strictly decreasing on (0,∞) , we have

21/p0Ap0 > 23/4A4/3, (4.6)

which implies that Ap0 > 2−1/p023/4A4/3 and A4/3 < 21/p02−3/4Ap0 . To show (4.5), it

is enough to verify that 2−1/p023/4 = α4/3 . We have

2−1/p023/4 = 23/4 exp
(
− ln2

p0

)
= 23/4 exp

(
− ln2 lnln(3+2

√
2

ln2

)
= 23/4

2 ln(1+
√

2)
= α4/3.

It should be noted that the relative error of estimate for NS by Ap0 given by (3.7)
is clearly superior to another ones given by (4.5), since α−1

4/3 = ( 4
√

2ln(1 +
√

2)) ≈
1.048 > βp0 ≈ 1.014, but the later can avoid some complicated computations and is
also rather small.
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REMARK 4. Using the log-convexity of the function p �→ Ap and p �→ 21/pAp we
can also give the best estimate for NS by Lehmer mean:

(2ln(1+
√

2))−1L1/6 < NS < L1/6. (4.7)

By NS < A4/3 given in (3.4) and Lr = Ar+1
r+1A

−r
r given by (1.3), for showing NS <

L1/6 , it suffices to check A4/3 < A7/6
7/6A

−1/6
1/6 , that is, A6/7

4/3A
1/7
1/6 < A7/6 , which follows

by that the function p �→ Ap is log-concave on (0,∞) (see [23, Conclusion 1]). On the
other hand, since p �→ 21/pAp is log-convex on (0,∞) by Lemma 6, we get

(
23/4A4/3

)6/7 (
26A1/6

)1/7
> 26/7A7/6,

which can be simplified to 23/4A4/3 > A7/6
7/6A

−1/6
1/6 = L1/6 . And, by (3.4) it is acquired

that

NS > α4/3A4/3 = 2−3/4α4/3

(
23/4A4/3

)
> 2−3/4α4/3L1/6 = (2ln(1+

√
2))−1L1/6.

Further, we assert that the right estimate for NS by Lehmer mean Lr is the best.
In fact, assume that 0 < a < b and let x = a/b ∈ (0,1) . Using power series expansion
gives

NS (1,x)
Lp (1,x)

= − 1
24

(6p−1)(x−1)2 +O
(
(x−1)3

)
,

which indicates that p � 1/6 is necessary for NS < Lp to hold.
Meanwhile, for ensuring that NS > θL1/6 is true for x ∈ (0,1) , it has to satisfy

that limx→0+
(
NS−θL1/6

)
= (2ln(1+

√
2))−1−θ � 0. That is, θ = (2ln(1+

√
2))−1

is the best.
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