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ON SOME INEQUALITIES FOR UNITARILY INVARIANT NORMS

XIAOHUI FU AND CHUANJIANG HE

(Communicated by M. Krni¢)

Abstract. In this paper, we pre%ent several inequalities for unitarily invariant norms by using the
convexity of the function g (r HA’XB2 TpAT ’XB’H on the interval [0,2]. Our results are
refinements of some existing 1nequa11tles

1. Introduction

Let M,(C) be the space of n x n complex matrices. Let ||-|| denote any unitarily
invariant norm on M, (C). So, ||UAV|| = ||A| for all A € M,,(C) and for all unitary
matrices U,V € M,(C). For A € M,(C), let s;(A) > --- > s, (A) be the singular

values of A, i.e., the eigenvalues of the positive semidefinite matrix |A| = (AA*)% . The
Ky Fan k-norm ||-|[ ; is defined as

1Al gy Es, k=1,...,n,

and the Schatten p-norm || - ||, is defined as

N

<

N
8

Mp=<iﬁm0 — (trlA]")

It is known that the Ky Fan k-norm ||-|[, and the Schatten p-norm ||-||, are
unitarily invariant [1].

Let A, B, X be n x n complex matrices such that A, B are positive semidefinite
and suppose that

o(v)=|A"XB'""V+A"XBY||, 0<v<l (L.1)

The function ¢ is a continuous convex function on interval [0, 1] and attains its mini-
mum at v = 1 and its maximumat v =0 and v =1 [2].
Replacing A, B by A%, B? in (1.1) and then putting r = 2v, we define
r)=|AXB*"+A*XB'||,  0<r<2.

Mathematics subject classification (2010): 47A63.
Keywords and phrases: Unitarily invariant norm, convex function, inequality.

© M, Zagreb 727

Paper JMI-07-66


http://dx.doi.org/10.7153/jmi-07-66

728 X1A0HUI FU AND CHUANJIANG HE

The function g is clearly convex on [0,2] and attains its minimum at » = 1. Conse-
quently g (1) < g(r), which implies that

2||AXB| < ||A7XB* "+ A*'XB

. 0<r<2. (1.2)

Zhan proved in [3] thatif A, B, X are n x n complex matrices such that A and B
are positive semidefinite, then

|A"XB> "+ A*"XB'|| < 2 |A%X +tAXB+ X B, (1.3)
t+2
for r € [%,3] and € (—2,2]. So it follows from (1.2) and (1.3) that
2||AXB|| < ||A’XB* "+ A*"XB'|| < t% |A*X +tAXB+XB||. (1.4)

Bhatia and Kittaneh in [4] proved that if A and B are positive semidefinite, then
1
|AB|| < ZH(A+B)2H. (1.5)

In this paper, we will give several refinements of the inequalities (1.4) and a re-
finement of (1.5).

2. Main results

We begin this section with a refinement of the following inequality in (1.4)

2)AXB| < 2= |A%X +tAXB + X B||.
t+2

THEOREM 2.1. Let A, B, X be n x n complex matrices such that A and B are
positive semidefinite. Then

2||AXB| + 2 (f? |A"XB*~" +A*"XB’||dr—2 AXB)
2 (2.1)
<2 |A%X +tAXB + X B[,
t+2

where%grg%, —2<t<2.

Proof. We present the proof in two cases:
a) For % < r < 1, by the convexity of the function g, Wang et al. [5] have
proved that

¢(N < 2r—1)g(1)+(2-2r)g (%) .

By integrating both sides of the inequality above, we have

/:g(r)dr < g(l)/: (2r—1)dr+g (%) /: (2—2r)dr,

2
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/ g(r (1)+ig<;> (2.2)

b) For 1 <r< %, by the convexity of the function g, Wang et al. [5] have
proved that

which implies

e < (2r-2)g (3 ) + G- 2 ).

By integrating both sides of the inequality above, we have

/1%g(r)dr<g <%> /1% (2”_2)dr+g(l)/1% B2

which implies
5 1 1 (3
<-g(D+-g(2). 2.
| styar 4g()+4g<2) 2.3)

It follows from (2.2), (2.3) and g (3) =g (%) that

2/;g(r)dr<g(1)+g<%)7
1>+2</jg<r>dr—g<1>> <g(§).

2||AXB|| + 2 (j? |AYXB*>~" + A*"XB"||dr—2 AXB)
2

which is equivalent to

The last inequality is

< HA%XB% +AIXB}

By (1.3), we obtain
2||AXB|| + 2([12 |AX B>+ A" ’XB’||dr—2AXB)
iz |A%X +tAXB +XB?||.

The proof is completed. [J

REMARK 1. Since the function g attains its minimum at » = 1, we have

Cear—g )= [ ) -g)ar=0.
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which implies

3
/12 |A"XB* " +A* "XB'||dr — 2 ||AXB|| >0,
2

and so the inequality (2.1) is a refinement of the inequality

2JAXB] < —— |A%X +tAXB+XB||
) '

REMARK 2. By a simple substitution and the triangle inequality, we know that
the inequality (2.1) is equivalent to

2HA%XB%

+4 (jf* |AYXBIY 4 AV XBY[lav — || AT x B2
7

2

<= HAXHA%XB% +XBH
12

< |[AX+XB|,  0<r<2,

which implies that

2HA%XB%

3 1 1
+a( f1|AYXB'Y +A-VXBY||dv — HA7X37
< |AX +XB|.
Zou and He in [6] obtained the following inequality

2HA%XB%

2 (I anxst At ay -2 fjalxs!

) (2.5)
< |AX +XB|.

The right side of the inequality (2.4) is the same as that of the inequality (2.5). Never-
theless, it is easy to see that the left side of the inequality (2.4) could not be compared
with that of the inequality (2.5). Thus, neither (2.4) nor (2.5) is uniformly better than
the other.

Below we will give some refinements of the first inequality in (1.4).

LEMMA 2.1. [7,8] (Hermite-Hadamard Inequality) Let h be a real-valued func-
tion which is convex on the interval |a,b). Then

(25) <5t [ o< 210

Applying Lemma 2.1 to the function g(r) = HA’XB2_’+A2_’XB’H on the inter-
val [£,2—&] when & € [§,1) and on the interval [2—&,&] when & € (1,3] respec-
tively, we achieve a refinement of the first inequality in (1.4).
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THEOREM 2.2. Let A, B, X be n x n complex matrices such that A and B are

positive definite. Then

2-¢
2||AXBH < ﬁ ‘/& |‘A’XBz_"+A2—rXBerr

< HA5X32—5 +A2_5X35H,
where % <&KL % It should be noticed here that in the inequality(2.6),

: 1 2-4 v 2—v 2—v v
%:mlm'/é |AYX B> + A2 X B’ || dv

=2||AXB].

Proof. First assume that % < & < 1. It follows from Lemma 2.1 that

E+2-¢ 12 g()+g2-8)
g( 5 )<2_2§/§ g(r)dr < =—=———,

that is

2-¢
<oz [ sar<a@).

where g(r) = ||[A”XB>"+A* "XB'||. Thus

1 2-¢ r 2—r 2—r r
2||[AXB|| < ﬁé |A"XB>"+A>"XB'||dr

< HA‘EXBz’é + A ExBE H .

(2.6)

2.7)

Then assume that 1 < & < % The proof is similar to the case of % <E<1,s0we

obtain
1 ¢ 2— 2—
2||AXB|| < —/ |A"XB>"+A>"XB" | dr
28-2)2¢

< HA5XBZ‘5 +A>°XB* H ,

where g(r) = ||A’XB* "+ A*"XB'||.

(2.8)

The inequalities in (2.6) follow by the inequalities (2.7) and (2.8). The proof is

completed. [

Applying Lemma 2.1 to the function g (r) = HA’XBZ_’ +AXTX B’H on the inter-
val [£,1] when & € [$,1), and on the interval [1,&] when & € (1,3] respectively, we

obtain the following result.
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THEOREM 2.3. Let A, B, X be n x n complex matrices such that A and B are
positive definite. Then

HAZ SxBi-% +A7—‘XBz+2

1 1
< —— A'XB> "+ A*>"XB||d
1—&’4 | [dr

< %x 45X B> 8 4 275X BE | 4 lax) - 29)

< HA‘EXBz’é +A2ExBE H .
where % <&KL % It should be noticed here that in the inequality (2.9),

'/ |A*XB*" + A* "X B'||dv| = 2| AXB||.

€—>1\1—§\

Proof. First assume that % < & < 1. It follows from Lemma 2.1 that

g(é;l) 1—5/ );rg(l),

where g(r) = ||A’XB*""+A?"XB"||. Thus

1—5/8

< %x HA5X32—5 +A2—5X35H +|AxB| (2.10)

HA2+§XBT7 +A2 zXBz+z

< HA5X32—5 £ A xRS H . (by (1.2)

Then assume that 1 < & < % The proof is similar to the case of % <E<1,s0we

obtain
1 ¢
< —5_1/1 g(r)dr

1
<5 HA’5XB2‘5 +A2—5X35H +lAxB| 21D

HA2+3XBT7 +A3*% Bit +5

< HA5X32—5 £ A xRS H . (by (1.2)

where g(r) = ||A’XB>"+A>"XB'||.

The 1nequa11tles in (2.9) follow by the inequalities (2.10) and (2.11). The proof is
completed. [

The inequalities (2.9) and (1.2) yield another refinement of the first inequality in
(1.4).
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COROLLARY 2.1. Let A, B, X be nxn complex matrices such that A and B are
positive definite. Then

2/|AXB]| < HAz Sxpi-5 yAd-Sxpits

(2.12)

/ |ATX B> + A2 X B dr

Il—él
< HA5X32 SpAr 5XB’5H,

where % <&KL % It should be noticed here that in the inequality(2.12),

g '/ [A"XB*>" +A*"XB"||dv| = 2| AXB|.

§~>l ‘1—

In the sequel, we achieve another reﬁnement of the second inequality in (1.4).

Applying Lemma 2.1 to the function g (r HA’XB2 T HATTX B’H on the inter-
val [§,&] when & € (1,1], and on the 1nterva1 [£,3] when & € [1,3) respectively, we
get the following result.

THEOREM 2.4. Let A, B, X be n x n complex matrices such that A and B are

positive semidefinite. Then
(a)for%gégl, —2<t<2,

=% é 1 1 ¢ r 2—r 2—r r
|atixpis At sxpith < g, IWXB T XE ar
—2Y2
1
< 5% HA‘§XBz’5 +AXSXB* H
X (2.13)
+5x HA%XB% +ASXB?
2
< — ||A’X +1AXB+XB*||.
r+2
It should be noticed here that in the inequality(2.13),
lim, 1[ 47X B>+ 4> X B || dv = [abXB3 + adxBH|.
-1t 8—2 /%
3
(b) for 1<E< 5, —2<1<2,
3
HA%+%XB%—%+A%—%XB§+% < 3 §/2]|A’X32*’+A2*’XB’]|dr
I
l
- HA5X32 A2 5XB‘5H
(2.14)

n 5 x HAfXBf LAIXB?

< 53 |A*X +tAXB+XB?|.
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It should be noticed here that in the inequality(2.14),

3
/; |A"X B> + 42X || dv = [ASX B3 + A% xB

Proof. (a) First assume that + 5 < & < 1. It follows from Lemma 2.1 that

g<é+%> g(&)+s(3)

__1 2 ’

where g(r) = ||[A”XB>"+A* "XB'||. Thus

1
% x HA5X32—5 +A2—5X35H

HAﬁzXBWf +AerBz+4

/, KB A KB ar
2

N

(2.15)
1 1 3 3.1
+ 5 X HA2X32 +A2XB2

2 2 2
<5 |A°X +1AXB+XB?|| ((by(1.3)),

(b) Assume that 1 < & < % The proof is similar to the case of% <&<1,s0we
obtain

1 3
HAﬁzXBrf +Ai-SxBiH| < 5 : /7 |ATX B2 + A2 X B || dr
2 g
i
<3 HA5X32—5 +A2ExB H

(2.16)
1 1 3 3.1
+ 5% HA2XB2 +A2XB?

— [[4*X +:AXB+ XB|| ((by(13)),

where g(r) = ||A’XB* "+ A*"XB'||.
The 1nequa11t1es in (2.13) and (2.14) follow by the inequalities (2.15) and (2.16),
respectively. The proof is completed. [

In view of the fact that the function g (r HA’XB2 "+ AZ'XB'| is decreasing

on the interval [1,1] and increasing on the 1nterval [1,3], by Theorem 2.4 we have the
following result, which is a refinement of the second inequality in (1.4).

COROLLARY 2.2. Let A, B, X be nxn complex matrices such that A and B are
positive semidefinite. Then
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(a)for%<§<l,—2<t<2,

[asxB2-8 +a2-6xE | < At ExpE5 4 at-Sxpi
Loys 2o 42—
< 1/1 |ATX B>+ A>"XB'|| dr
2712

< % X HA5X32—5 +A2—5X35H (2.17)

1 1 3 31
5 HAzXBz +A3XB}

— [l4*X +1axB+ XB?||.

It should be noticed here that in the inequality(2.17),

3 1/ |A"X B> 42X B || dv = [ASX B3 + A% xB
-4 83

3
(b) for 1<E<35,-2<1<2,

5 +A%*%XB%+%

HA5XB2*<5 +A2*<5XB~§H < HA%+%XB%’

3
<1 /é T ||ATX B> + A2 X BT || dr
% HA*EXBz"E LA ExBE H (2.18)

<

D | —roiw

1 1 3 3 1
5 HA7X37 +A3XB? H
— |A*X +tAXB +XB?|.

It should be noticed here that in the inequality (2.18),

3
/2 |A"X B>+ 42X || dv = [ASX B3 + A% xB

In the end, we give a refinement of inequality (1.5), by means of the inequality

(24).
THEOREM 2.5. Let A, B, X be n x n complex matrices such that A and B are

positive semidefinite. Then

3
2[1AB| + 4 ( JE F(v)dv - AB)
i (2.19)

N —
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where . , ; .
f(v) — HA7+VBZ—V +AZ—VB2+V

Proof. Let

A=
D=

X =A?B2.

Then by (2.4) we have

(2.20)

i 133
2||AB|| +4 (/1 F(v)ydv— ||AB||> < HAsz +AIB?
7
By the following inequality (see [4])

1
|33 +aiph <§H(A+B)2 :

it easily follows from (2.20) that

3
3 1
2||AB||+4 (/1 f(vydv— ||AB||> <3 |(A+B)?.
I
The proof is completed. []
REMARK 3. Obviously,
i
/" rvav—1aB| >0,
I
so the inequality (2.19) is a refinement of the inequality
1
laB < 7 [[(a+B)].

REMARK 4. Itis easy to know that (2.19) is equivalent to

3
3 1
IAB| +2 ([‘ HA%+VB%—V+A%—VB%+V dv—||AB||> <zl@+s7|. @2y
7

Zou and He [6] obtained the inequality

dv—2AB) < ! |A+B)?|. 22

1
|AB]|| + (/ HA%”B%*V L ARVBIHY ]
0

The right side of the inequality (2.21) is the same as that of the inequality (2.22).
Nevertheless, it is easy to see that the left side of the inequality (2.21) could not be
compared with that of the inequality (2.22). Thus, neither (2.21) nor (2.22) is uni-
formly better than the other.
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