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JOSIP PEČARIĆ AND DORA POKAZ

(Communicated by A. Aglić Aljinović)

Abstract. In this paper, we discuss and prove n -exponential convexity of the linear functionals
obtained by taking the positive difference of Hardy-type and Boas-type inequalities. Also, we
give some examples related to our main results.

1. Introduction

Let us recall the classical Hardy inequality:
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where f is a non-negative function, such that f ∈ Lp(R+) .
We also note that (1.1) shows that the Hardy operator H, defined by setting

(H f )(x) :=
1
x

x∫
0

f (t)dt,

maps Lp into itself with operator norm p/(p−1).
R. P. Boas [2], proved that the inequality
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(1.2)

holds for all continuous convex functions Φ : [0,∞) → R , measurable non–negative
functions f : R+ → R , and non–decreasing bounded functions m : [0,∞) → R , where
M = m(∞) −m(0) > 0 and the inner integral on the left-hand side of (1.2) is the
Lebesgue–Stieltjes integral with respect to m . After its author, relation (1.2) was named
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the Boas inequality. In the case of a concave function Φ , it holds with reversed sign of
inequality.

Throughout this paper, all measures are assumed to be positive, all functions are
assumed to be positive and measurable and expressions of the form 0 ·∞, ∞

∞ and 0
0 are

taken to be equal to zero. Further, we set Nk = {1, 2, . . . , k} for k ∈ N . Moreover, by
a weight u = u(x) we mean a non-negative measurable function on the actual interval
or more general set.

In the sequel let (Ω1,Σ1,μ1) , (Ω2,Σ2,μ2) be measure spaces and let operator Ak
be defined as follows:

Ak f (x) :=
1

K(x)

∫
Ω2

k(x,y) f (y)dμ2(y), (1.3)

where f : Ω2 → R is a measurable function, k : Ω1×Ω2 → R is measurable and non-
negative kernel and

K(x) :=
∫

Ω2

k(x,y)dμ2(y) < ∞, x ∈ Ω1. (1.4)

Let U(k) denote the class of measurable functions g : Ω1 → R with the represen-
tation

g(x) =
∫

Ω2

k(x,y) f (y)dμ2(y),

where f : Ω2 → R is a measurable function.
In [9] this result is given:

THEOREM 1.1. Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces with posi-
tive σ -finite measures, u be a weight function on Ω1 , k be a non-negative measurable
function on Ω1 ×Ω2 , and K be defined on Ω1 by (1.4) . Suppose that K(x) > 0 for

all x ∈ Ω1 , that the function x �→ u(x) k(x,y)
K(x) is integrable on Ω1 for each fixed y ∈ Ω2 ,

and that v is defined on Ω2 by

v(y) :=
∫

Ω1

u(x)
k(x,y)
K(x)

dμ1(x) < ∞. (1.5)

If Φ is a convex function on the interval I ⊆ R , then the inequality∫
Ω1

u(x)Φ(Ak f (x))dμ1(x) �
∫

Ω2

v(y)Φ( f (y))dμ2(y) (1.6)

holds for all measurable functions f : Ω2 →R , such that f (y)∈ I for all y∈ Ω2 , where
Ak is defined by (1.3) .

Under assumptions of Theorem 1.1, we define a linear functional by taking the
positive difference of the inequality stated in (1.6) as:

Δ1(Φ) =
∫

Ω2

v(y)Φ( f (y))dμ2(y)−
∫

Ω1

u(x)Φ(Ak f (x))dμ1(x). (1.7)
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If we substitute k(x,y) by k(x,y) f2(y) and f by f1/ f2 , where fi : Ω2 → R , (i = 1,2)
are measurable functions in Theorem 1.1 we obtain the following result (for details see
[7]).

THEOREM 1.2. Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces with σ -
finite measures, u be a weight function on Ω1 and k be a non-negative measurable
function on Ω1×Ω2. Suppose that the function x �→ u(x) k(x,y)

g2(x) is integrable on Ω1 for
each fixed y ∈ Ω2, and that v is defined on Ω2 by

v(y) := f2(y)
∫

Ω1

u(x)k(x,y)
g2(x)

dμ1(x) < ∞.

If Φ is a convex function on the interval I ⊆ R, then the inequality

∫
Ω1

u(x)Φ
(

g1(x)
g2(x)

)
dμ1(x) �

∫
Ω2

v(y)Φ
(

f1(y)
f2(y)

)
dμ2(y) (1.8)

holds for all measurable functions fi : Ω2 → R, such that f1(y)
f2(y)

∈ I, and gi ∈ U(k),
(i = 1,2).

REMARK 1.1. If we take Ω1 = Ω2 = (a,b) , dμ1(x) = dx and dμ2(y) = dy the
inequality (1.8) becomes the inequality given in [6, Theorem 2.1].

Under assumptions of the Theorem 1.2, we define a linear functional by taking the
positive difference of the left-hand side and right-hand side of the inequality given in
(1.8) as:

Δ2(Φ) =
∫

Ω2

v(y)Φ
(

f1(y)
f2(y)

)
dμ2(y)−

∫
Ω1

u(x)Φ
(

g1(x)
g2(x)

)
dμ1(x). (1.9)

The discrete results about Hardy-type inequalities are given in [3]. Here, we con-
sider a special case of [3, Theorem 2.1], that is for convex functions this result holds.

THEOREM 1.3. Let M,N ∈ N , and let non-negative real numbers um , vn , kmn ,
where m ∈ NM , n ∈ NN , be such that

Km =
N

∑
n=1

kmn > 0, m ∈ NM, (1.10)

and

vn =
M

∑
m=1

um
kmn

Km
, n ∈ NN . (1.11)

If Φ is a convex function on the interval I ⊆ R, then the inequality

N

∑
n=1

vnΦ(an)−
M

∑
m=1

umΦ(Am) � 0 (1.12)
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holds for all real numbers an ∈ I , for n ∈ NN , where

Am =
1

Km

N

∑
n=1

kmnan.

We define linear functional from (1.12) as:

Δ3(Φ) =
N

∑
n=1

vnΦ(an)−
M

∑
m=1

umΦ(Am) (1.13)

Now, we give result related to general Boas-type inequality.
Let λ be finite Borel measure on R+. By suppλ we mean its support, that is, the

set of all t ∈ R+ such that λ (Nt) holds for all open neighborhoods Nt of t. Hence,

L =
∫

suppλ

dλ (t) =
∞∫

0

dλ (t) = λ (R+) < ∞. (1.14)

Furthermore, let X be a topological space equipped with a continuous scaler mul-
tiplication (a,x) �→ ax ∈ X , for a ∈ R+ and x ∈ X , such that

1x = x, a(bx) = (ab)x, x ∈ X , a,b ∈ R+.

Let a Borel set Ω ⊆ X be λ -balanced, that is, let tΩ = {tx : x ∈ Ω} ⊆ Ω hold
for all t ∈ suppλ . For a Borel measurable function f : Ω → R, we define its Hardy-
Littlewood average, A f , as

A f (x) =
1
L

∞∫
0

f (tx)dλ t, x ∈ Ω. (1.15)

Finally, suppose that μ and ν are σ -finite Borel measure on X . For all t > 0 and Borel
set S ⊆ X , we define

μt(S) = μ
(

1
t
S

)
. (1.16)

Obviously, μt is a σ -finite Borel measure on X for all t ∈ R+. Throughout this
paper, we assume that μt are absolutely continuous with respect to measure ν, that
is μt � ν, for each t ∈ suppλ . As usual, by dμt

dν we denote related Radon-Nikodym
derivative.

The following theorem is given in [4].

THEOREM 1.4. Let λ be finite Borel measure on R+ and L be defined by (1.14) .
Let μ and ν be σ -finite Borel measures on a topological space X , μt be defined by
(1.16) and such that μt � ν for all t ∈ suppλ . Further, let Ω ⊆ X be a λ -balanced
Borel set and u be a non-negative function on X , such that

v(x) =
∞∫

0

u

(
1
t
x
)

dμt

dν
(x)dλ (t) < ∞, x ∈ Ω. (1.17)
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Suppose Φ : I →R is a non-negative convex function on an interval I ⊆R. If f : Ω→R

is a Borel measurable function such that f (x) ∈ I for all x ∈ Ω, and A f is defined by
(1.15), then A f (x) ∈ I for all x ∈ Ω and the inequality

∫
Ω

u(x)Φ(A f (x))dμ(x) � 1
L

∫
Ω

v(x)Φ( f (x))dν(x) (1.18)

holds. For a non-positive concave function Φ , the sign of inequality in (1.18) is re-
versed.

Notice that the condition on non-negativity of the convex function Φ in Theorem
1.4 can be omitted only in a particular setting with cones in X. More precisely, the
following corollary holds.

COROLLARY 1.1. If in Theorem 1.4 we have tΩ = Ω for λ − a.e. t ∈ suppλ ,
then (1.18) holds for all convex functions Φ on an interval I ⊆ R . In that case, for all
concave functions Φ relation (1.18) holds with the sign of inequality reversed.

Now, under the assumptions of the Corollary 1.1, we define the linear functional
from inequality (1.18) as:

Δ4(Φ) =
1
L

∫
Ω

v(x)Φ( f (x))dν(x)−
∫
Ω

u(x)Φ(A f (x))dμ(x). (1.19)

For reader’s convenience, we introduce some necessary notation and recall some
basic facts about convex functions, log-convex functions (see e.g. [8], [12], [14]) as
well as exponentially convex functions (see e.g. [1], [10], [11]).

In 1929, S. N. Bernstein introduced the notion of exponentially convex function in
[1]. Later on D. V. Widder in [15] introduced these functions as a sub-class of convex
function in a given interval (a,b) (for details see [15], [16]).

The main purpose of this article is to discuss the n -exponential convexity of four
Hardy-type and Boas-type linear functionals obtained by taking the positive difference
of Hardy-type inequalities and Boas-type inequality defined by (1.7), (1.9), (1.13) and
(1.19) respectively.

We continue this section by recalling some notions of our special interest about
n -exponential convexity given in [13].

DEFINITION 1.1. A function ψ : J → R is n -exponentially convex in the Jensen
sense on J if

n

∑
i, j=1

ξiξ jψ
(

pi+p j
2

)
� 0

holds for all choices of ξi ∈ R , pi ∈ J , i = 1, . . . ,n.
A function ψ : J → R is n -exponentially convex on J if it is n -exponentially

convex in the Jensen sense and continuous on J .

REMARK 1.2. It is clear from the definition that 1-exponentially convex func-
tions in the Jensen sense are in fact non-negative functions. Also, n -exponentially
convex functions in the Jensen sense are k -exponentially convex in the Jensen sense
for every k ∈ N , k � n.
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By definition of positive semi-definite matrices and some basic linear algebra we
have the following proposition.

PROPOSITION 1.1. Let J be an open interval in R . If ψ is n-exponentially con-

vex in the Jensen sense on J then the matrix
[
ψ

(
pi+p j

2

)]k

i, j=1
is positive semi-definite

matrix for all k ∈ N , k � n. Particularly

det

[
ψ

(
pi + p j

2

)]k

i, j=1
� 0, f or all k ∈ N, k � n.

DEFINITION 1.2. Let J be an open interval in R . A function ψ : J → R is expo-
nentially convex in the Jensen sense on J if it is n -exponentially convex in the Jensen
sense on J for n ∈ N.

A function ψ : J → R is exponentially convex if it is exponentially convex in the
Jensen sense and continuous.

REMARK 1.3. It is known that a function η : J →R is a log-convex in the Jensen
sense if and only if

m2η(p)+2mnη
(

p+q
2

)
+n2η(q) � 0, (1.20)

for all m,n ∈ R and p,q ∈ J. It follows that a function is log-convex in the Jensen
sense if and only if it is 2-exponentially convex in the Jensen sense.

Also, using basic convexity theory it follows that a function is log-convex if and
only if it is 2-exponentially convex.

We will also need the following result (see for example [14]).

PROPOSITION 1.2. If Ψ is a convex function on an interval I and if x1 � y1 ,
x2 � y2 , x1 �= x2 , y1 �= y2, then the following inequality is valid

Ψ(x2)−Ψ(x1)
x2 − x1

� Ψ(y2)−Ψ(y1)
y2− y1

. (1.21)

If the function Ψ is concave, the reverse inequality holds.

The paper is organized in the following way: After Introduction, in Section 2, we
discuss n -exponential convexity and log-convexity of the linear functionals defined by
(1.7), (1.9), (1.13) and (1.19). In Section 3, we give some related examples for the
family of convex functions.



n -EXPONENTIAL CONVEXITY OF HARDY-TYPE AND BOAS-TYPE FUNCTIONALS 745

2. The main results

First we give some necessary details about the divided differences. It is important
to see that for different degree of smoothness of a function divided differences are found
to be very interesting.

Let I ⊆ R be an interval and f : I → R be a function. Then for distinct points
zi ∈ I, i = 0,1,2, the divided differences of first and second order are defined by:

[zi,zi+1; f ] =
f (zi+1)− f (zi)

zi+1− zi
(i = 0,1) , (2.1)

[z0,z1,z2; f ] =
[z1,z2; f ]− [z0,z1; f ]

z2 − z0
. (2.2)

The values of the divided differences are independent of the order of the points
z0,z1,z2 and may be extended to include the cases when some or all points are equal,
that is

[z0,z0; f ] = lim
z1→z0

[z0,z1; f ] = f ′(z0), (2.3)

provided that f ′ exists.
Now passing through the limit z1 → z0 and replacing z2 by z in (2.2) , we have

(see [14, p. 16])

[z0,z0,z; f ] = lim
z1→z0

[z0,z1,z; f ] =
f (z)− f (z0)− (z− z0) f ′(z0)

(z− z0)
2 , z �= z0, (2.4)

provided that f ′ exists. Also passing to the limit zi → z (i = 0,1,2) in (2.2) , we have

[z,z,z; f ] = lim
zi→z

[z0,z1,z2; f ] =
f ′′(z)

2
, (2.5)

provided that f ′′ exists.
One can observe that if for all z0,z1 ∈ I , [z0,z1, f ] � 0, then f is increasing on I

and if for all z0,z1,z2 ∈ I , [z0,z1,z2; f ] � 0, then f is convex on I .
Now we will produce n -exponentially convex and exponentially convex functions

by applying functionals Δi , i = 1,2,3,4 on a given family with the same property. In
the sequel J and I will be intervals in R . The proofs of our results are similar to the
proofs in [13] but for completeness of results and for the reader’s convenience we will
also give them.

THEOREM 2.1. Let Γ = {Φp : p ∈ J} be a family of functions defined on I , such
that the function p �→ [z0,z1,z2;Φp] is n-exponentially convex in the Jensen sense on
J for every three distinct points z0, z1, z2 ∈ I . Let Δi (i = 1,2,3,4) be linear func-
tionals defined by (1.7), (1.9), (1.13) and (1.19) . Then the function p �→ Δi(Φp)
(i = 1,2,3,4) is n-exponentially convex in the Jensen sense on J. If the function
p �→ Δi(Φp) is continuous on J , then it is n-exponentially convex on J .

Proof. For ai ∈ R , i = 1, ...,n and pi ∈ J , i = 1, ...,n, we define the function

ϒ(z) =
n

∑
i, j=1

aia jΦ pi+p j
2

(z).
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Using the assumption that the function p �→ [z0,z1,z2;Φp] is n -exponentially convex
in the Jensen sense, we have

[z0,z1,z2;ϒ] =
n

∑
i, j=1

aia j[z0,z1,z2;Φ pi+p j
2

] � 0,

which shows that ϒ is convex on I and therefore we have Δi(ϒ) � 0 for (i = 1,2,3,4).
Hence

n

∑
i, j=1

aia jΔi(Φ pi+p j
2

) � 0.

We conclude that the function p �→Δi(Φp) for (i = 1,2,3,4) is n -exponentially convex
in Jensen sense on J .

If the function p �→ Δi(Φp) for (i = 1,2,3,4) is also continuous on J , then p �→
Δi(Φp) is n -exponentially convex by definition. �

As a direct consequence of the above theorem, we can give the following corollary.

COROLLARY 2.1. Let Γ = {Φp : I → R, p ∈ J} be a family of functions, such
that the function p �→ [z0,z1,z2;Φp] is exponentially convex in the Jensen sense on J
for every three distinct points z0, z1, z2 ∈ I . Let Δi (i = 1,2,3,4) be linear functionals
defined by (1.7), (1.9), (1.13) and (1.19) . Then p �→ Δi(Φp) is exponentially convex
in the Jensen sense on J. If the function p �→ Δi(Φp) is continuous on J , then it is
exponentially convex on J .

Using analogous arguing as in the proof of [13, Corollary 3.2], we have the fol-
lowing corollary.

COROLLARY 2.2. Let Γ = {Φp : I →R, p∈ J} be a family, such that the function
p → [z0,z1,z2;Φp] is 2-exponentially convex in the Jensen sense on J for every three
distinct points z0, z1, z2 ∈ I . Let Δi (i = 1,2,3,4) be a linear functionals defined by
(1.7) , (1.9), (1.13) and (1.19) . Then the following statements hold:

(i) If the function p �→ Δi(Φp) is continuous on J , then it is 2-exponentially convex
function on J , thus log-convex on J and for p,q,r ∈ I such that p < q < r, we
have

Δi(Φq)r−p � Δi(Φp)r−qΔi(Φr)q−p, i = 1,2,3,4. (2.6)

(ii) If the function p �→ Δi(Φp) is strictly positive and differentiable on J , then for
every p,q,m,n ∈ J such that p � m, q � n, we have

Bp,q( f ,Δi;Γ) � Bm,n( f ,Δi;Γ), i = 1,2,3,4 (2.7)

where

Bp,q( f ,Δi;Γ) =

⎧⎪⎪⎨
⎪⎪⎩

(
Δi(Φp)
Δi(Φq)

) 1
p−q

, p �= q,

exp

(
d
dp(Δi(Φp))

Δi(Φp)

)
, p = q,

(2.8)

for Φp,Φq ∈ Γ.
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Proof. (i) This can be obtained as a direct consequence of Theorem 2.1 and Re-
mark 1.3.

(ii) Since by (i) the function p �→ Δi(Φp) for (i = 1,2,3,4) is log-convex on
J, that is the function p �→ logΔi(Φp) for (i = 1,2,3,4) is convex on J. Applying
Proposition 1.2, we obtain

logΔi(Φp)− logΔi(Φq)
p−q

� logΔi(Φm)− logΔi(Φn)
m−n

(2.9)

for p � m , q � n , p �= q , m �= n, and we conclude that

Bp,q( f ,Δi;Γ) � Bm,n( f ,Δi;Γ), (i = 1,2,3,4).

Cases p = q , m = n follows from (2.9) as limiting case. �

REMARK 2.1. Note that the results of Theorem 2.1, Corollary 2.1 and Corollary
2.2 still hold when two of the points z0, z1, z2 ∈ I coincide for a family of differentiable
functions Φp such that p �→ [z0,z1,z2;Φp] is n -exponentially convex in the Jensen
sense (exponentially convex in the Jensen sense), further, they still hold when all three
point coincide for a family of twice differentiable functions with the same property.
The proofs are obtained using (2.3), (2.4) and (2.5) respectively and some facts about
the exponential convexity.

3. Examples

EXAMPLE 3.1. Consider a family of functions

Γ1 = {gp : (0,∞) → (0,∞) : p ∈ (0,∞)},

defined by

gp(t) =
e−t

√
p

p
.

Since p �→ d2gp(t)
dt2

= e−t
√

p is the Laplace transform of a non-negative function, it is
exponentially convex (see [15]). Clearly gp are convex functions for every p > 0. It
is obvious that Δi(gp) for (i = 1,2,3,4) are continuous. It is easy to prove that the
function p �→ [z0,z1,z2;gp] is also exponentially convex for arbitrary points z0,z1,z2 ∈
I . For this family of functions, Bp,q( f ,Δi;Γ1) becomes

Bp,q( f ,Δi(gp);Γ1) =

⎧⎪⎨
⎪⎩

(
Δi(gp)
Δi(gq)

) 1
p−q

, p �= q;

exp
(
− Δi(id·gp)

2
√

pΔi(gp)
− 1

p

)
, p = q,

(3.1)

and from (2.7) it follows that the function Bp,q( f ,Δi;Γ1) is monotonous in parameters
p and q .
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EXAMPLE 3.2. Let Γ2 = {hp : (0,∞) → (0,∞) : p ∈ (0,∞)}, be a family of func-
tions defined by

hp(t) =

⎧⎨
⎩

p−t

(ln p)2 , p ∈ R+ \ {1},
t2
2 , p = 1.

Since p �→ d2

dt2
hp(t) = p−t is the Laplace transform of a non-negative function (see

[15]), it is exponentially convex. Obviously hp are convex functions for every p > 0.
It is easy to prove that the function p �→ [z0,z1,z2;hp] is also exponentially convex
for arbitrary points z0,z1,z2 ∈ I . Using Corollary 2.1, it follows that p �→ Δi(hp) for
(i = 1,2,3,4) are exponentially convex (it is easy to verify that these are continuous)
and thus log-convex. From (2.8), we can write

Bp,q( f ,Δi(hp);Γ2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
Δi(hp)
Δi(hq)

) 1
p−q

, p �= q,

exp
(
−Δi(id·hp)

pΔi(hp)
− 2

p ln p

)
, p = q �= 1,

exp
(
−Δi(id·h1)

3Δi(h1)

)
, p = q = 1,

(3.2)

and from (2.7) it follows monotonicity of the functions Bp,q( f ,Δi(hp);Γ2) in param-
eters p and q for hp,hq ∈ Γ2.

EXAMPLE 3.3. Consider a family of functions

Γ3 = {ψp : R → [0,∞) : p ∈ R},
defined with

ψp(t) =

⎧⎨
⎩

1
p2 et p, p ∈ R\ {0},
1
2 t2, p = 0,

We have d2

dt2
(ψp(t)) = et p > 0, which shows that ψp is convex on R for every p ∈ R

and p �→ d2

dt2
(ψp(t)) is exponentially convex function by definition. Using the analo-

gous arguments as in Theorem 2.1, we also have that p �→ [z0,z1,z2;ψp] is exponen-
tially convex (also exponentially convex in J-sense). For the family of the function
Bp,q( f ,Δi;Γ3) for (i = 1,2,3,4), (2.8) becomes

Bp,q( f ,Δi(ψp);Γ3) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
Δi(ψp)
Δi(ψq)

) 1
p−q

, p �= q,

exp
(

Δi(id·ψp)
Δi(ψp)

− 2
p

)
, p = q �= 0,

exp
(

Δi(id·ψ0)
3Δi(ψ0)

)
, p = q = 0,

(3.3)

and using (2.7) we can see that these are monotonous functions in parameter p and q
for ψp,ψq ∈ Γ3.
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EXAMPLE 3.4. Consider a family of functions

Γ4 = {φp : (0,∞) → R : p ∈ R},
defined by

φp(t) =

⎧⎨
⎩

t p

p(p−1) p �= 1,0,

− lnt p = 0,
t ln t p = 1.

Since p �→ d2

dt2
(φp(t)) = t p−2 = e(p−2) lnt > 0 is the Laplace transform of a non-negative

function (see [15]), it is exponentially convex. Obviously φp are convex functions for
every t > 0. It is easy to prove that the function p �→ [z0,z1,z2;φp] is also exponentially
convex for arbitrary points z0,z1,z2 ∈ I . Using Corollary 2.1 it follows that p �→ Δi(φp)
for (i = 1,2,3,4) are exponentially convex (it is easy to verify that these are continu-
ous), and thus log-convex. From (2.8), we see that

Bp,q( f ,Δi(φp);Γ4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Δi(φp)
Δi(φq)

) 1
p−q

, p �= q,

exp
(

1−2p
p(p−1) −

Δi(φpφ0)
Δi(φp)

)
, p = q �= 0,1,

exp
(
1− Δi(φ2

0 )
2Δi(φ0)

)
, p = q = 0,

exp
(
−1− Δi(φ0φ1)

2Δi(φ1)

)
, p = q = 1,

(3.4)

for φp,φq ∈ Γ4.

REMARK 3.1. For the case i = 1, the means given in (3.4) were already pre-
sented in [5] in explicit form.
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[9] K. KRULIĆ, J. PEČARIĆ, L. E. PERSSON, Some new Hardy-type inequalities with general kernels,
Math. Inequal. Appl., 12 (2009), 473–485.
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Faculty of Textile Technology, University of Zagreb
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