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(Communicated by E. Neuman)

Abstract. We find the greatest value α1 and α2 , and the least values β1 and β2 , such that
the double inequalities α1C(a,b)+(1−α1)A(a,b) < T (a,b) < β1C(a,b)+(1−β1)A(a,b) and
α2/A(a,b)+(1−α2)/C(a,b) < 1/T (a,b) < β2/A(a,b)+(1−β2)/C(a,b) hold for all a,b > 0
with a �= b . As applications, we get new bounds for the complete elliptic integral of the second
kind. Here, C(a,b) = (a2 +b2)/(a+b) , A(a,b) = (a+b)/2 , and

T (a,b) =
2
π

π/2∫
0

√
a2cos2 θ +b2sin2 θdθ

denote the contraharmonic, arithmetic, and Toader means of two positive numbers a and b ,
respectively.

1. Introduction

For p ∈ R and a,b > 0, the contraharmonic mean C(a,b) , Toader mean T (a,b)
[1] and p th power mean Mp(a,b) are defined by

C(a,b) =
a2 +b2

a+b
,

T (a,b) =
2
π

∫ π/2

0

√
a2cos2 θ +b2sin2 θdθ

=

⎧⎪⎪⎨
⎪⎪⎩

2aE
(√

1− (b/a)2
)
/π , a > b,

2bE
(√

1− (a/b)2
)
/π , a < b,

a, a = b

and

Mp(a,b) =

{
( ap+bp

2 )1/p, p �= 0,
√

ab, p = 0,
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respectively. Here, E (r) =
π/2∫
0

(1− r2 sin2 t)1/2dt (r ∈ [0,1]) is the complete elliptic

integral of the second kind.
The Toader mean T (a,b) is well known in mathematical literature for many years,

it satisfies
T (a,b) = RE(a2,b2)

and

T (1,r) =
2
π

E (
√

1− r2)

for all a,b > 0 and 0 < r < 1, where

RE(a,b) =
1
π

∫ ∞

0

[a(t +b)+b(t +a)]t
(t +a)3/2(t +b)3/2

dt

stands for the symmetric complete elliptic integral of the second kind (see [2–4]), there-
fore it can’t be expressed in terms of the elementary transcendental functions.

It is well known that the power mean Mp(a,b) is continuous and strictly increasing
with respect to p ∈ R for fixed a,b > 0 with a �= b . Many means are special case of
Mp(a,b) , for example, M−1(a,b) = H(a,b) = 2ab/(a+b) , M0(a,b)= G(a,b)=

√
ab ,

M1(a,b) = A(a,b) = (a + b)/2 and M2(a,b) = Q(a,b) =
√

(a2 +b2)/2 are known
in the literature as harmonic, geometric, arithmetic and quadratic means, respectively.
Recently, the Toader mean has been the subject of intensive research. In particular,
many remarkable inequalities for T (a,b) can be found in the literature [5–9].

Vuorinen [10] conjectured that

M3/2(a,b) < T (a,b) (1.1)

for all a,b > 0 with a �= b . This conjecture was proved by Qiu and Shen [11], and
Barnard, Pearce and Richards [12], respectively.

In [13], Alzer and Qiu presented a best possible upper power mean bound for the
Toader mean as follows:

T (a,b) < Mlog2/log(π/2)(a,b) (1.2)

for all a,b > 0 with a �= b .
Neuman [2, Corollary 4.3] proved that the double inequality

(a+b)
√

ab−ab
AGM(a,b)

< T (a,b) <
4(a+b)

√
ab+(a−b)2

8AGM(a,b)

holds for all a,b > 0, where AGM(a,b) is the classical arithmetic-geometric mean of
a and b , which is defined as the common limit of sequences {an} and {bn} given by

a0 = a, b0 = b,

an+1 = (an +bn)/2 = A(an,bn), bn+1 =
√

anbn = G(an,bn).
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In [3, Theorem 4.3], Kazi and Neuman found that the inequality

T (a,b) <

√√
2−1

8
√

2
a2 +

√
2+1

8
√

2
b2 +

√√
2+1

8
√

2
a2 +

√
2−1

8
√

2
b2

holds for all a,b > 0 with a �= b .
In [7], the authors proved that the double inequalities

α1Q(a,b)+ (1−α1)A(a,b) < T (a,b) < β1Q(a,b)+ (1−β1)A(a,b),

Qα2(a,b)A1−α2(a,b) < T (a,b) < Qβ2(a,b)A1−β2(a,b)

hold for all a,b > 0 with a �= b if and only if α1 � 1/2, β1 � (4−π)/[(
√

2−1)π ] =
0.659 . . . , α2 � 1/2 and β2 � 4−2logπ/ log2 = 0.697 . . . .

It is not difficult to verify that

C(a,b) > M2(a,b) =

√
a2 +b2

2
(1.3)

for all a,b > 0 with a �= b .
From (1.1)–(1.3) we clearly see that

A(a,b) < T (a,b) < C(a,b)

for all a,b > 0 with a �= b .
The main purpose of the paper is to find the greatest value α1 and α2 , and the

least values β1 and β2 , such that the double inequalities α1C(a,b)+(1−α1)A(a,b) <
T (a,b) < β1C(a,b)+(1−β1)A(a,b) and α2/A(a,b)+(1−α2)/C(a,b) < 1/T (a,b) <
β2/A(a,b)+ (1− β2)/C(a,b) hold for all a,b > 0 with a �= b . As applications, we
present new bounds for the complete elliptic integral of the second kind.

2. Basic knowledge and Lemmas

In order to establish our main results we need some basic knowledge and lemmas,
which we present in this section.

For r ∈ (0,1) and r′ =
√

1− r2 , the well-known complete elliptic integrals of the
first and second kinds are defined by⎧⎪⎪⎨

⎪⎪⎩
K = K (r) =

∫ π/2
0 (1− r2 sin2 θ )−1/2dθ ,

K ′ = K ′(r) = K (r′),

K (0) = π/2, K (1) = +∞

and ⎧⎪⎪⎨
⎪⎪⎩

E = E (r) =
∫ π/2
0 (1− r2 sin2 θ )1/2dθ ,

E ′ = E ′(r) = E (r′),

E (0) = π/2, E (1) = 1,
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respectively, and the following formulas were presented in [14, Appendix E. pp. 474–
475]:

dK

dr
=

E − r′2K
rr′2

,
dE

dr
=

E −K

r
,

d(E − r′2K )
dr

= rK ,
d(K −E )

dr
=

rE

r′2
, E

(
2
√

r
1+ r

)
=

2E − r′2K
1+ r

.

LEMMA 2.1. (see [14, Theorem 3.21(1)]) (E (r)− r′2K (r))/r2 is strictly in-
creasing from (0,1) onto (π/4,1) .

LEMMA 2.2. 5E (r)−3r′2K (r) is positive and strictly increasing on (0,1).

Proof. Let f (r) = 5E (r)− 3r′2K (r) and g(r) = 2E (r)− 2K (r) + 3r2K (r) .
Then simple computations lead to

f (0) = π , (2.1)

g(0) = 0, (2.2)

f ′(r) =
g(r)
r

, (2.3)

g′(r) =
r(E (r)+3r′2K (r))

r′2
> 0 (2.4)

for all r ∈ (0,1) .
Therefore, Lemma 2.2 follows easily from (2.1)–(2.4). �

LEMMA 2.3. (see [14, Theorem 1.25]) For −∞ < a < b < ∞ , let f ,g : [a,b] →
R be continuous on [a,b] and differentiable on (a,b) , and g′(x) �= 0 on (a,b) . If
f ′(x)/g′(x) is increasing (decreasing) on (a,b) , then so are

f (x)− f (a)
g(x)−g(a)

and
f (x)− f (b)
g(x)−g(b)

.

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

3. Main results

THEOREM 3.1. The double inequality

α1C(a,b)+ (1−α1)A(a,b) < T (a,b) < β1C(a,b)+ (1−β1)A(a,b) (3.1)

holds for all a,b > 0 with a �= b if and only if α1 � 1/4 and β1 � 4/π−1 = 0.2732 · · ·.
Proof. Since A(a,b) , T (a,b) and C(a,b) are symmetric and homogenous of de-

gree one. Without loss of generality, we assume that a > b . Let t = b/a ∈ (0,1) and
r = (1− t)/(1+ t)∈ (0,1) . Then simple computations leads to

T (a,b)−A(a,b)
C(a,b)−A(a,b)

=
2
π E ′(t)− 1+t

2
1+t2
1+t − 1+t

2

=
2
π E ( 2

√
r

1+r )− 1
1+r

r2
1+r

=
2
π (2E (r)− r′2K (r))−1

r2 .

(3.2)
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Let f1(r) = 2
π (2E (r)− r′2K (r))−1, f2(r) = r2 and

f (r) =
f1(r)
f2(r)

=
2
π (2E (r)− r′2K (r))−1

r2 . (3.3)

Then simple computations lead to

f1(0) = f2(0) = 0, (3.4)

f ′1(r) =
2
π

E (r)− r′2K (r)
r

,

f ′2(r) = 2r,

f ′1(r)
f ′2(r)

=
1
π

E (r)− r′2K (r)
r2 . (3.5)

It follows from Lemmas 2.1 and 2.3 together with (3.3)–(3.5) that f (r) is strictly
increasing on (0,1) . Moreover,

lim
r→0+

f (r) =
1
4

(3.6)

and

lim
r→1−

f (r) =
4
π
−1. (3.7)

Therefore, inequality (3.1) follows from (3.2), (3.3), (3.6) and (3.7) together with
the monotonicity of f (r) . �

THEOREM 3.2. The double inequality

α2

A(a,b)
+

1−α2

C(a,b)
<

1
T (a,b)

<
β2

A(a,b)
+

1−β2

C(a,b)
(3.8)

holds for all a,b > 0 with a �= b if and only if α2 � π/2−1= 0.5707 · · · and β2 � 3/4 .

Proof. Without loss of generality, we assume that a > b . Let r = (a−b)/(a+b)∈
(0,1) . Then

1
T (a,b) − 1

C(a,b)
1

A(a,b) − 1
C(a,b)

=
1+ r2− 2

π (2E (r)− r′2K (r))
2
π r2(2E (r)− r′2K (r))

. (3.9)

Let g1(r) = 1+ r2− 2
π (2E (r)− r′2K (r)) , g2(r) = 2

π r2(2E (r)− r′2K (r)) and

g(r) =
g1(r)
g2(r)

=
1+ r2− 2

π (2E (r)− r′2K (r))
2
π r2(2E (r)− r′2K (r))

. (3.10)

Then simple computations lead to

g1(0) = g2(0) = 0, (3.11)
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g′1(r) = 2r− 2
π

E (r)− r′2K (r)
r

,

g′2(r) =
2r
π

(5E (r)−3r′2K (r)),

g′1(r)
g′2(r)

=
1− 1

π
(E (r)−r′2K (r))

r2
1
π (5E (r)−3r′2K (r))

. (3.12)

It follows from Lemmas 2.1 and 2.2 together with (3.12) that g′1(r)/g′2(r) is
strictly decreasing on (0,1) . Then (3.10) and (3.11) lead to the conclusion that g(r) is
is strictly decreasing on (0,1) . Moreover,

lim
r→0+

g(r) =
3
4

(3.13)

and
lim

r→1−
g(r) =

π
2
−1. (3.14)

Therefore, inequality (3.8) follows from (3.9), (3.10), (3.13) and (3.14) together
with the monotonicity of g(r) . �
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