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THE APPLICATIONS ON SOME INEQUALITIES
OF THE COMPOSITION OF ENTIRE FUNCTIONS

HONG-YAN XU*, JIN TU AND CAI-FENG YI

(Communicated by V. Gol’dshtein)

Abstract. The purpose of our paper is to deal with some growth problem of two composite entire
functions of finite [p,q]-order and some properties of growth of fog, f and g. Some results
are obtained as follows: Let f,g be two entire functions and have index-pair [p1,q1]. [p2,92].
respectively. Let fog have index-pair [p3,q3]. Then we have the following conclusions:

@) if pp+1—g1 >0,then p3=p1+p2—q1+1 <= qg3=q2;

(i) if pp+1—g2=0,then p3=p1 <= @3 =q2;

(i) if pp+1—q1 <O0,then p3=q1 <= g3 =q1+q —p2—1.

These results are some improvement and generalization of the form theorems given by
Gross, Lahiri, Tu.

1. Introduction

This paper will use standard notation of value distribution theory [5, 18, 19]. Let
S be a transcendental entire function, we denote the order of f by p(f), the lower
order of f by A(f), the Nevanlinna characteristic of f by T(r, f) and the maximum
modulus of f by M(r, f) = max_.{|f(z)]}.

Let f, g be two entire functions and suppose that g is transcendental. Pdlya [13]
investigated the relations between p(fog) and p(f), A(f) and obtained: if p(fo
g) < oo, then p(f) = 0. Gross [4] pointed out the one can also prove the result: if
A(fog) <eo,then A(f) =0, by using the Pélya’s method.

Many authors have investigated the composition of two entire functions with finite
order and achieved many great results (see [1-2, 4, 9, 11, 3, 15]). It should be noted
that few paper is concerned with the composition of entire functions with infinite order.
Schonhage A. [14] and TuJ., Chen Z. X. and Zheng X. M. [17] investigated the compo-
sition of two entire functions with infinite order. To state their results, some definitions
and notions about iterated order are introduced as follows (see [8, 17]).

DEFINITION 1. The iterated i order p;(f) of an entire function f is defined by

. log, . M(r,f) . log; T(r, f) .
(f) =1 = ] A LLEA .
pi(f) Hrn sup logr 1rrn S.:,lp ogr (ieN)
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Similarly, we can define the iterated i lower order A;(f) of an entire function f by

log;,, M(r, .. log T(r, .
A(f) = liminf —2H1 70T ) i 22 L) (’f), (ieN),
r—eo logr r—eo logr

where log, r =logr, log;, , r =log(log;r) (i € N), for all sufficiently large r.

REMARK 1. We define exp, r =e¢", exp,; r =exp(exp;r) (i €N), expyr=r=
logyr and exp_;r =logr, forall r € [0,00).

REMARK 2. We can get that p;(f) = p(f) and A;(f) = A(f) from i =1 of
Definition 1.

DEFINITION 2. (see [8]). The growth index of the iterated order of a meromor-
phic function f(z) is defined by

0 if f rantional;
i(f) =< min{n € N: p,(f) <o} if f transendental and p,(f) < e forsomen € N ;
oo if £ with p,(f) = e forall n € N.

Schonhage [14] investigated the growth of composition of two entire functions
with finite iterated order and obtained the following results

THEOREM 1. (see [14]). Let f, g be two entire functions and suppose that g is
transcendental. If p,(fog) <eo, (p €N), then p,(f)=0.

REMARK 3. We can get that A,(fog) <o, (p € N), then A,(f) =0, by using
the similar method of Theorem 1.

In 1986, Zhou [20] investigated the growth of composition of entire functions of
finite order and obtained the following results:

THEOREM 2. (see [20]). let f, g be entire functions of finite order such that
¢(0) =0 and p(g) < A(f) < p(f), then

i 08T (1 f 08)

(Y R

In 2009, Tu, Chen and Zheng [17] investigated the growth of two composite entire
functions of finite iterated order and obtained a series results about the relationships
among T(r,fog), T(r,f) and T(r,g) as follows which improved Theorem 2.

THEOREM 3. (see [17, Theorem 3.1]). Let f, g be entire functions of finite iter-
ated order with i(f) = p, i(g) =q, if A,(f) >0, then i(fog)=p+q and ppiq(fo
8) = Py(8)-
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THEOREM 4. (see [17, Theorem 4.1]). Let f, g be entire functions of iterated
order with i(f) = p, i(g) = 4, pg(g) < Ap(f) < pp(f), then

loqu(r7ng) . 10gq+1M(r7ng)
im ——— =0, Iim —— =
e T(nf) ree logM(r, f)

In [6, 7], O. P. Juneja and his co-authors introduced the concept of entire functions
of [p,q]-order and lower [p,g]-order, and obtained some theorems about theirs prop-
erties. In this paper, we further investigated the growth of composition of two entire
functions with infinite order by using the concepts of entire functions of [p,q|-order
and lower [p,q]-order. To state our theorems, we first introduce the concepts of entire
functions of [p, g]-order and lower [p,q]-order (see [6-7, 10]).

DEFINITION 3. If f(z) is a transcendental entire function, the [p,g]-order of f(z)
is defined by

. log, . M(r,f) . log, T'(r.f)
Pip.g (f) = limsup II)T = limsup lpogir'
F—s00 q F—so0 q

Similarly, we can define lower [p,g]-order of f(z) b

lo M(r, lo 7,
Apa(f) — timing B M) g 08 TS
’ r—veo log, r r—veo log, r

where p,q are positive integers satisfying p > g > 1.

REMARK 4. It is easy to see that 0 < A, 4(f) < pppg(f) <oeo. If f(2) is a
polynomial, then A, ;/(f) = pjpq(f) =0 for any p > g > 1. By Definition 1, we
have that py 11(f) = p1(f) = p(f), Apy(f) = M(f) = A(f). Ppw1y(f) = Pp(f)
and Ap,111(f) = A(f)-

REMARK 5. If f(z) is an entire function satisfying 0 < pj,, ,(f) < e, then

) Plp- n,q](f) =o (n<p), p[p,qfn](f) =0 (n<q), p[p+n,q+n](f) =1 (n<p)
forn=1,2,.

(ii) If [p ,q] is any pair of integers satisfying ¢’ = p’ + g — p and p’ < p, then
p[p/ﬂ/].(.f) =0if0< p[l’v’i] (f) <1 and p[p’,q’] (f) = if 1 < p[p,q] (f) < oo,

(iii) ppp g1 (f) = o for ¢’ —p' > g —p and pyy 4 (f) =0 for ¢' —p’ <q—p.

Similarly, we have some analogous properties of Ay, ;1 (f)-

DEFINITION 4. A transcendental entire function f(z) is said to have index-pair
[P,q],if 0 < py, 4 (f) <o and py,_; ,_1(f) is not a nonzero finite number.

DEFINITION 5. Let fi, f> be two entire functions such that p[mm](fl) = p1,
Pips.gr)(f2) = p2 and py < pa. Then the following results about their comparative
growth can be easily deduced:

(1) If po — p1 > q2 — g1, then the growth of f| is slower than the growth of f>;
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(1) If p» — p1 < g2 —q1, then f; grows faster than f>;

@iii) If po — p1 = g2 — g1 > 0, then the growth of f; is slower than the growth of
f> if po > 1 while the growth of f; is faster than the growth of f, if pr < 1;

(iv) Let po — p1 = g2 — q1 = 0, then f1, f> are of the same index-pair [p;,q;]. If
p1 > pa, then f grows faster than f>, and if p; < p,, then f; grows slower than f;.
If p; = p2, Definition 3 does not give any precise estimate about the relative growth of

Jirand f>.

Now, some results of our paper about the growth of composition of two entire
functions of infinite order are stated as follows which generalize some previous results.

Let f, g be two entire functions, and f, g have index-pair [p1,qi1], [p2,q2],
respectively. Set

A= A[171~,111](f)’ A= p[!’l:ql](f)’ B = )L[Pzﬂz] (g) and B= Pip2.ao) (8)-

THEOREM 5. Let f, g be two entire functions, and f, g have index-pair [py,q1],
[P2,q2], respectively. If 0 < A; < A < oo, then

(i) p2+1—=q1 >0, we have Py s p,—g,114,)(f ©8) = Ppy.,) (8) = B

(ii) po+1—q1 =0, we have A;B < P[p1+p2—q1+1,q2](fog) <AB;

(iii) po+1—q1 <0and g1 +q2—p2—12>21, we have A; < p[mﬂﬁqupzfl](fo
8) <A for B>0 and pip, g,4q,-py-1](/ ©8) S A, Plp g1+g,-po) (f 08) = As for B=0.

THEOREM 6. Let f, g be entire functions, and f, g have index-pair [pi,qi],
[p2,q2], respectively. If 0 <A < e and 0 < B; < B < oo. We have

(i) if p2+1 41> 0, then By < Pip, s py—gy 11,45 (f08) < B:

(ii)if pp+1—q1 =0, then AB; < p[mm](fog) < AB;

(ii))if pp+1—q1<0and g1 +qg2—p2—1 > 1, then p[phqlJrqz_pz_l](fog) =A.

REMARK 6. We can easily get Theorem 3 and Theorem 3.2 of [17] when g; =
g> = 1 in Theorems 5 and 6.

THEOREM 7. Let f, g be two entire functions, and f, g have index-pair [py,q1],
[p2,q2], respectively. We can get the following conclusions:

(1) po+1—q1 >0, then

(i) g1 > g» and B; > 0, we have

lim 10gp1+172+2—111 M(r,fog) _

s log,, 1 M(r, f) ’
(ii) g1 = g2 and 0 < A;,A,B;,B < oo, we have

B i 198 ipmi2q M(nfog) B

~

e Ing1+1M(r7f) SAC

(iii) q1 < g2 and A; > 0, we have

lim 10gp1+172+2—111 M(r,fog) —0:
r—ee logp1+lM(raf)
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If po+1—¢q1 =0, then
(i) g1 > g2 and A; > 0, B; > 0, we have

gy M(nfog)
r—e log, 1 M(r,f) ’

(ii) q1 = g2 and 0 < A;,A,B;,B < oo, we have

AB; . log, M(rfog) AB
< lim <
A r—ee logpl+lM(r7f) Al

(iii) q1 < g2 and 0 < A;,A,B < oo, we have

logmHM(r,fog) -
ree logp1+lM(raf)

If po+1—q1 <0 and 0 <Aj,A < oo, then we have

b}

L log, M(nfog)
e logp1+l M(I’,f)

REMARK 7. From Theorem 7, we can get a series results of comparative growths
of M(r,fog) and M(r,g).

THEOREM 8. Let f, g be entire functions, and g have index-pair [pa,q»)| satis-
fying By > 0. If fog have index-pair [p1,q1] and 0 < Ay, ,1(fog) = x < o, then

x[mm] (f) =0.

THEOREM 9. Let f, g be entire functions, and g have index-pair [pa,q2| satis-
fying By > 0. If fog have index-pair [p1,q1] and 0 < pj,, ,1(fog) = { < oo, then
p[mm](f) =0.

REMARK 8. Itis easily to see that Theorems 8 and 9 generalize and improve some
results given by Gross [4].

THEOREM 10. Let f, g be two entire functions and p,q be two positive integers
satisfying p > q 2 1, if A g(fog) = 0 < Ay q(8) = T <o, then A(f) =0.

From Theorems 8—10 and Theorem 5, we can easily get the following results.

THEOREM 11. Let f, g be two entire functions and have index-pair [pi,qi],
[P2,q2], respectively. Let f og have index-pair [p3,q3). Then we can get the following
conclusions:

(i)if pp+1—q1>0,then p3=p1+pr—qi+1 <= g =q;

(i) if p2+1—¢q1 =0, then p3 = p1 <= q3 = q2;

(iii) if p2+1—q1 <0, then p3=q1 <= @3 =q1+q2—p2— L.
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For an entire function
fi() =Y an",
n=0
the maximum term u(r, f1) of fi on |z| = r being defined by u(r, f1) = max,>o{|a.|r"} .
Since for 0 < r < R, we have

R
R—r

H(r7f1)<M(V,f1)< .u(val)
Thus, from the above inequality and Definition 3, we can get the definition of the [p, q]-
order and lower [p,g]-order of f; as follows.

DEFINITION 6. The [p,q]-order and lower [p,g]-order of fi(z) are defined by

. log,, . u(r,f1)
— 1im P
Plpa)(f1) lrﬂsol:p log, 7

and
lng+1,ll(V,f1)

Hpa (1) = liminf =20

)

where p,q are positive integers satisfying p > g > 1.

For Theorems 7, it is a natural question to ask: what will happen when entire
function f is replaced by entire function f] in Theorems 7? We investigate the above
question and obtain some results as follows.

THEOREM 12. Let fi,g be two entire functions, and f1,g have index-pair [p1,q1],
[P2,q2], respectively. Let Ly = Ay, o1 (f1) and L= py, 4,)(f1). We can get the follow-
ing conclusions:

(1) p2+1—¢q1>0.

(i) g1 > g2 and B; > 0, then

lim logp1+p2+2—ql .u(rafl Og) — oo
e 10gp1+1l~1(r7f1)

(ii) g1 = q2 and 0 < L,B; < oo, then

lim 10g171+172+27q1 ”(nfl Og) > &
r—ee logpl-&-l.u(rafl) L

(2) p2+1-=q1=0.
(i) g1 > g2 and L; > 0,B; > 0, then

im loglerl.u(rvfl Og) — oo
r—ee logpl-&-l.u(rafl) '
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(ii) g1 =g and 0 < L;,L,B; < oo, then

r—ee 10gP1+1[.1(7‘7f1) - L

mIng1+1l1("7f1°g) LlBl.

k)

(3) pp+1—q1<0.If0< L;,L < oo, then

i loglerl.u(rvflog) e
r—ee logpl-&-l.u(rafl)

2. Some Lemmas

For the proof of our results we need the following lemmas.

LEMMA 1. (see [11]). Let f, g be entire functions. If M(r,g) > 28i|g(0)| for
any € >0, then

T(rfog) <(1+&)T(M(rg),f)- (D
In particular if g(0) =0, then
T(rfog) <T(M(rg).f) 2)

forall r > 0.

LEMMA 2. (see [3]). Let f, g be entire functions with g(0) = 0. Let o satisfy
2
O0<a<1andlet c(a) = %. Then for r > 0,

MM(r,g),f) =M(r,fog) =M (c(a)M(ar,g),[). 3)

Furthermore if o0 = %,for sufficiently large r,
1 1
M(r,fog)>M<§M <§r,g>,f). 4)

LEMMA 3. (see [16]). Let f and g be entire functions with g(0) =0. Let o

satisfy 0 < a0 < 1 and let c(a) = (113)2 .Alsolet 0 < 0 < 1. Then

p(rfog)=(1—=08)u(c(a)u(adrg),f).

And if g is any entire function with o0 = 6 = %, for sufficiently large r,

p(r,fog) = %u (%u Gng) 7f> :
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3. Proofs of Theorems 5 and 6

Proof of Theorem 5. From the assumptions of Theorem 5, we have

log T(r, Io M(r,
A:IimsupM, B:IimsupM. ®)
F—s00 log, r F—so00 log,, r
Then for any € > 0 and sufficiently large r, we have
T(r,f) <exp, {(A+e)log, r}, M(rg)<exp, {(B+e)log,r}. (6)
From (6) and Lemma 1, we have
T(r,fog) <2T(M(rg),f) <2exp,, {(A+¢€)log, M(rg)} )
<2exp,, {(A+¢)log, (exp,, i {(B+¢)log,r})}
<2exp,, {(A+€)exp,, 4 {(B+€)log, r}}.
Then
(i) po+1—¢g1 > 0. From (7), we have
lo _ T(r,fo
lim sup —P1tp2 a1 ] (rfo8) g ®)
oo logq2 r

ie., p[P1+P2—41+17112](f0g) <B;

(ii) po+1—¢g; =0. From (7), we have p[phqz](fog) < AB;

(iii) po+1—¢1 <0. From (7) and g1 + g2 —p2— 1 =2 1, we have P, 4,44, pr—1]
(fog) <A.

Now, we consider two cases as follows.

Case 1. B > 0. Then there exists a sequence {r,} — o such that for any &
(0 < &€ < B) and sufficiently large r,, we have

M(ry,8) = exp,, 1 {(B—¢€)log,, ra} - 9)

Since A; > 0 and by the same reasoning as K. Niino and C. C. Yang (see [12]), for
sufficiently larger r,, from (9), we have

1 1 " 1 1 n
T(rm.fog) > 3 logM (gM(%,g) +o<1>,f) > 7 loght (gM(%,g) ,f) (10)
1 1 I'n
P §expp1 {(Al —S)Iqul <§M(Z’g>>}
1
> 3 oxp, {(A1—e)log,, (exp,,; {(B—€)(log, rn+0(1))})}
1
> 1 exp,, {(Al —s)expmﬂwl {(B 8)(logq2 rm+O(1 }}

3
Then
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(1) p2+1—¢g; > 0. From (10), we have

10gﬁ1+172*f11+1 T(rasfog)

lim > B. (11)
o0 log,, n

By (8) and (11), we have
lim 102, 1 py g1 T (1 f08) _B:

I'p—>o° long 'n

(ii) p2+1—¢g1=0. From (10), we have pj, 4. (fog)>AB;
(iii) p2+1—¢1 <0. From (10) and g1 +g2—p2—1 = 1, we have P, 4,44, pr—1]
(fog)=A;.
Case 2. B=0. Then we have
logpzM(r7g)

limsup ————— =oo.
F—sco log,, r

Hence, there exists a sequence {r,} — oo such that for any 11 > 0, we have

lim log,, M(rn,g)

zn, ie, M(r,g)= 1 . 12
i e 2 e Mlg) > expy, (mlogy ). (12

Then
(i) po+1—¢g; > 0. From (12) and (10), we have

logp1+p2—q1 T(rnafog> > n

=

lim
Ip—ro° logq2 I'n

Since 7 is arbitrarily large, we have

m 10gp1+1’2—¢11 T(r,fog)

= oo, (13)
r—veo log,, r

By (8) and (13), we get pj,, 1, —g,.45] (fog)= Pip2.q2) (g) = B:
(ii) p2 +1—¢1 = 0. From (12) and (10), we have p,, _; 4,(f ©g) = . Then we
have py, g, (fog) =0=B;
(iii) p2+1—¢1 <0. From (12) and (10), we have py,, 4144, p»] (fog)=A.
Thus, the proof of Theorem 5 is completed. U

Proof of Theorem 6. Since A > 0, then there exists a sequence {R,} — e such
that for any € (0 < € < A) and sufficiently large R, , we have

M(R,,f) > exp, . {(A—g)log, R.}. (14)
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Since M(r,g) is an increasing continuous function, then there exists a sequence
{ru} — oo satisfying R, = §M (%,g) = 5exp,,,, { (B, —€)log,, %} such that for suf-
ficiently large r, and from Lemma 2, we have

1 T,
M(rn»fog)>M<§M(3n7g>7f> =M(Ry, [) (15)
> epr1+l {(A - 6) eprerlfql {(Bl - 8)(10gq2 I'n + 0(1))}} .
Then
() p2+1—g1 > 0. From (15), we have p, 1y, ¢, +1.45] (fog) = B;. And from
Lemma 2, we have
M(r,fog) <M(M(r,g),f) <exp,  {(A+e)log, M(rg)} (16)
<exp,, 1 {(A+¢€)log,, (exp,, . {(B+€)log,,r})}
<exp,, 1 {(A+e)exp,, 1, {(B+e)log,r}}.
From (16) and the definition of [p, g]-order, we have p(, 4, g +1,4,](f08) < B;
@ii) po +1—¢g; =0. From (15), we have p[mm](fog) > AB;. And from (16). we
have py,, ,.1(f°g) < AB, then we have AB; < p|,, 4,](f08) < AB;

@iii) pp +1—¢q; <0. From (15), we have p[Pl:ql‘HIz—Pz—l](ng) > A. From (16),

we have ppy, g, +g,-p,~1](f ©8) < A. Then we have pyy, g, 49, p,-1](f08) =A.
Thus, we can get the conclusions of Theorem 6. [

4. Proofs of Theorems 7 and 12

Proof of Theorem 7. From the assumptions of Theorem 1 and by Lemma 2, for
any € > 0, then there exists a positive number ry and for all » > ry, we have

1 1
M(r.fog) > M (gM (5:¢) 7f> > expy, 1 {(Al ~e)log,, (gM (gg)) } a7)
> €XPp,+1 {(Al - 8) CXPpy+1—q {(Bl - 8) long 7‘} + 0(1)}7

M(r,fog) <M(M(r,g).f) < exp, 1 {(A+¢€)log, M(rg)} (18)
<exp,, 1 {(A+€)exp,, 1, {(B+e)log,r}},
and
expy,+1 { (A1 —¢€)log, r} <M(r,f) <exp, i {(A+¢€)log, r}. (19)
The three cases will be considered as follows.

Case 1. py+1—¢q; > 0. From (17)—(29), we have

(B+ S)Iquz r > logp1+p2+2—q1 M(r,fog) > (Bl - S)Iquz r+ 0(1)
(Aj—¢€)log, r log, 1 M(r,f) (A+e)log, r

(20)



COMPOSITION OF ENTIRE FUNCTIONS 769

(1) g1 > q> . Since B; > 0 and (20), we have

lim 10gm+l’2+2*f11 M(r.fog) — oo
r—ee loglerlM(r?f)

(ii) g1 = q» . Since 0 < A;,A,B;,B < oo, from (20), we have

ﬂ m 10gP1+P2+2—111 M(r,ng) B.

\Al7

<1

r—ee logp1+lM(r7f)

(iii) g1 < g2 . From (20) and A; > 0, we have

lim 10gP1+P2+2_ql M(V,fog) =0
r—ee logpl+lM(r7f)

Case 2. p»+1—¢q;=0. From (17)—(19), we have

(A+e)(B+e)log, r - log, 1 M(r,fog) (A;—€)(B; —€)log,, r+O(1)
(A —e)log, r = log, M(rf) = (A+e)log, r

. @D

(1) g1 > q>. Since A; > 0 and B; > 0, from (21), we have

o 02y M(rfog)
r—e log, 1 M(r,f) ’

(i) g1 = q». Since 0 < A;,A,B;,B < oo, from (21), we have

lo M(r,
AiB, < lim gp, 1 M(r,fog) < fE;
A T log,  M(rf) Al

(>iil) g1 < g2 . Since 0 < A;,A,B < o, from (21), we have

1 logmHM(r,fog) -
ree logp1+lM(raf)

Case 3. po+1—¢q; <0. Since pr > g, > 1, wehave g1 +q2—p>— 1 < gq;. From
(I7)—(19) and 0 < A;,A < oo, we have

lim log, . M(r,fog) . (A1 —€)1og, 14 pr—1T e 22)
r—e log, .1 M(r, f) (A+e)log,, r

Thus, the proof of Theorem 7 is completed. [

Proof of Theorem 12. From Lemma 3, for sufficiently large r, we have

1 1
u(r,fiog) = FH (E“ (2,@) ,f1> .
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Then from the assumptions of Theorem 7, for any € > 0, there exists a positive number
ro and for all r > ry, we have

“(r,flog)>%“<l (3 >f1> e"ppl“{(”_g)logql<11_6“(£’g>>}

(23)
> eXPpi+1 {(Ll - 8) CXPpy+1—q, {(Bl - 8) Iqu2 7‘} + 0(1)} ’

and
eXPp, 41 {(Ll €)log,, r} u(r fi) < eXPp1+1{ (L+¢€)log, r} (24)

Using the same argument as in Theorem 7, we can get the conclusions of Theorem
12. O

5. Proofs of Theorems 8, 9 and 10

Proof of Theorem 8. By definition and by the same reasoning as K. Niino and C.
C. Yang [12], there exists a sequence {r,} tending to infinity such that for sufficiently
large r,,, we have

1 1. /r
glogM<§M(%,g),f> T(ra, fog) <exp, {(x+e€)log, m}. (25

Set A(,.4,(8) = B1 > 0, for any given & (0 < & < B;) and for sufficiently r,, we have
1 n € n
§M ( y) ,g) €XPp, 41 {(Bl — 5) log,, Z} > exp,, 1 {(B; — s)logq2 rn} . (26)
Set Ry = §M (Z,g) .then r, < exp { ﬁ 10g,, 11 R,,}, from (25) and (26), we have

1
IOgM(Rmf) < 3expm {(% + 8) equzfql {m logszrl Rn} } . (27)

Since 0 < € < 7, then for sufficiently large R, and p, +1—¢q> > 0, we have g; <
g1+p2+1—¢g> and

logpl_HM(R,,,f) (x +€)exp,, { zlog,, 1 Ry }

< — 0. (28)
log, R, log, R
From (27) and (28), we have
log, .1 M(Ry,
lim 08t MRS) 29)
Ry—oo log, R

Thus, we get that A[pl:ql](f) =0. 0O



COMPOSITION OF ENTIRE FUNCTIONS 771

Proof of Theorem 9. We can get the conclusion of Theorem 9 by using the same
argument as in Theorem 8. [

Proof of Theorem 10. By definition and the same reasoning as K. Niino and C.
C. Yang [12], there exists a sequence {r,} tending to infinity such that for sufficiently
large r,,, we have

1 1 n
3 logM <§M (%,g> ,f) <T(ra,fog) <exp,{(c+e)log,r,}  (30)
Since T > 0, for any given € (0 < € < T— o) and for sufficiently r,, we have

T

5 (%

€ r,,
g) > exp, {q (r— 5) log, Z} >exp, 1 {(T—€)log,ra}. (31
Set R, = éM(%,g) , then logq < % longRn, from (30) and (31), we have

O+E€&
logM(Ry, f) < 2exp, { :longRn} : (32)

Since 0 < € < T— 0, then %”88 < 1, for sufficiently large R,,, we have

expy_ 1 { ££ 108,11 Rn .
logR,

0. (33)

From (32) and (33), we have

loglogM (R
lim loglogM(Ry, f) _ 0. (34)
Ry—oo logR,

Thus, we getthat A(f) =0. O
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