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Abstract. The purpose of our paper is to deal with some growth problem of two composite entire
functions of finite [p,q] -order and some properties of growth of f ◦g , f and g . Some results
are obtained as follows: Let f ,g be two entire functions and have index-pair [p1,q1] , [p2,q2] ,
respectively. Let f ◦g have index-pair [p3,q3] . Then we have the following conclusions:

(i) if p2 +1−q1 > 0 , then p3 = p1 + p2 −q1 +1 ⇐⇒ q3 = q2 ;
(ii) if p2 +1−q2 = 0 , then p3 = p1 ⇐⇒ q3 = q2 ;
(iii) if p2 +1−q1 < 0 , then p3 = q1 ⇐⇒ q3 = q1 +q2 − p2 −1 .
These results are some improvement and generalization of the form theorems given by

Gross, Lahiri, Tu.

1. Introduction

This paper will use standard notation of value distribution theory [5, 18, 19]. Let
f be a transcendental entire function, we denote the order of f by ρ( f ) , the lower
order of f by λ ( f ) , the Nevanlinna characteristic of f by T (r, f ) and the maximum
modulus of f by M(r, f ) = max|z|=r|{| f (z)|} .

Let f , g be two entire functions and suppose that g is transcendental. Pólya [13]
investigated the relations between ρ( f ◦ g) and ρ( f ) , λ ( f ) and obtained: if ρ( f ◦
g) < ∞ , then ρ( f ) = 0. Gross [4] pointed out the one can also prove the result: if
λ ( f ◦ g) < ∞ , then λ ( f ) = 0, by using the Pólya’s method.

Many authors have investigated the composition of two entire functions with finite
order and achieved many great results (see [1–2, 4, 9, 11, 3, 15]). It should be noted
that few paper is concerned with the composition of entire functions with infinite order.
Schönhage A. [14] and Tu J., Chen Z. X. and Zheng X. M. [17] investigated the compo-
sition of two entire functions with infinite order. To state their results, some definitions
and notions about iterated order are introduced as follows (see [8, 17]).

DEFINITION 1. The iterated i order ρi( f ) of an entire function f is defined by

ρi( f ) = limsup
r→∞

logi+1 M(r, f )
logr

= limsup
r→∞

logi T (r, f )
logr

, (i ∈ N).
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Similarly, we can define the iterated i lower order λi( f ) of an entire function f by

λi( f ) = liminf
r→∞

logi+1 M(r, f )
logr

= liminf
r→∞

logi T (r, f )
logr

, (i ∈ N),

where log1 r = logr , logi+1 r = log(logi r) (i ∈ N) , for all sufficiently large r .

REMARK 1. We define exp1 r = er , expi+1 r = exp(expi r) (i ∈ N) , exp0 r = r =
log0 r and exp−1 r = logr , for all r ∈ [0,∞) .

REMARK 2. We can get that ρ1( f ) = ρ( f ) and λ1( f ) = λ ( f ) from i = 1 of
Definition 1.

DEFINITION 2. (see [8]). The growth index of the iterated order of a meromor-
phic function f (z) is defined by

i( f ) =

⎧⎨
⎩

0 if f rantional;
min{n ∈ N : ρn( f ) < ∞} if f transendental and ρn( f ) < ∞ for some n ∈ N ;
∞ if f with ρn( f ) = ∞ for all n ∈ N.

Schönhage [14] investigated the growth of composition of two entire functions
with finite iterated order and obtained the following results

THEOREM 1. (see [14]). Let f , g be two entire functions and suppose that g is
transcendental. If ρp( f ◦ g) < ∞ , (p ∈ N) , then ρp( f ) = 0 .

REMARK 3. We can get that λp( f ◦ g) < ∞ , (p ∈ N) , then λp( f ) = 0, by using
the similar method of Theorem 1.

In 1986, Zhou [20] investigated the growth of composition of entire functions of
finite order and obtained the following results:

THEOREM 2. (see [20]). let f , g be entire functions of finite order such that
g(0) = 0 and ρ(g) < λ ( f ) � ρ( f ) , then

lim
r→∞

logT (r, f ◦ g)
T (r, f )

= 0.

In 2009, Tu, Chen and Zheng [17] investigated the growth of two composite entire
functions of finite iterated order and obtained a series results about the relationships
among T (r, f ◦ g) , T (r, f ) and T (r,g) as follows which improved Theorem 2.

THEOREM 3. (see [17, Theorem 3.1]). Let f , g be entire functions of finite iter-
ated order with i( f ) = p, i(g) = q, if λp( f ) > 0 , then i( f ◦ g) = p+q and ρp+q( f ◦
g) = ρq(g) .
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THEOREM 4. (see [17, Theorem 4.1]). Let f , g be entire functions of iterated
order with i( f ) = p, i(g) = q, ρq(g) < λp( f ) � ρp( f ) , then

lim
r→∞

logq T (r, f ◦ g)
T (r, f )

= 0, lim
r→∞

logq+1 M(r, f ◦ g)
logM(r, f )

= 0.

In [6, 7], O. P. Juneja and his co-authors introduced the concept of entire functions
of [p,q]-order and lower [p,q]-order, and obtained some theorems about theirs prop-
erties. In this paper, we further investigated the growth of composition of two entire
functions with infinite order by using the concepts of entire functions of [p,q]-order
and lower [p,q]-order. To state our theorems, we first introduce the concepts of entire
functions of [p,q]-order and lower [p,q]-order (see [6–7, 10]).

DEFINITION 3. If f (z) is a transcendental entire function, the [p,q]-order of f (z)
is defined by

ρ[p,q]( f ) = limsup
r→∞

logp+1 M(r, f )
logq r

= limsup
r→∞

logp T (r, f )
logq r

.

Similarly, we can define lower [p,q]-order of f (z) by

λ[p,q]( f ) = liminf
r→∞

logp+1 M(r, f )
logq r

= liminf
r→∞

logp T (r, f )
logq r

,

where p,q are positive integers satisfying p � q � 1.

REMARK 4. It is easy to see that 0 � λ[p,q]( f ) � ρ[p,q]( f ) � ∞ . If f (z) is a
polynomial, then λ[p,q]( f ) = ρ[p,q]( f ) = 0 for any p � q � 1. By Definition 1, we
have that ρ[1,1]( f ) = ρ1( f ) = ρ( f ) , λ[1,1]( f ) = λ1( f ) = λ ( f ) , ρ[p+1,1]( f ) = ρp( f )
and λ[p+1,1]( f ) = λp( f ) .

REMARK 5. If f (z) is an entire function satisfying 0 < ρ[p,q]( f ) < ∞ , then
(i) ρ[p−n,q]( f ) = ∞ (n < p) , ρ[p,q−n]( f ) = 0 (n < q) , ρ[p+n,q+n]( f ) = 1 (n < p)

for n = 1,2, . . . ;
(ii) If [p′,q′] is any pair of integers satisfying q′ = p′ + q− p and p′ < p , then

ρ[p′,q′]( f ) = 0 if 0 < ρ[p,q]( f ) < 1 and ρ[p′,q′]( f ) = ∞ if 1 < ρ[p,q]( f ) < ∞ ;
(iii) ρ[p′,q′]( f ) = ∞ for q′ − p′ > q− p and ρ[p′,q′]( f ) = 0 for q′ − p′ < q− p .
Similarly, we have some analogous properties of λ[p,q]( f ) .

DEFINITION 4. A transcendental entire function f (z) is said to have index-pair
[p,q] , if 0 < ρ[p,q]( f ) < ∞ and ρ[p−1,q−1]( f ) is not a nonzero finite number.

DEFINITION 5. Let f1 , f2 be two entire functions such that ρ[p1,q1]( f1) = ρ1 ,
ρ[p2,q2]( f2) = ρ2 and p1 � p2 . Then the following results about their comparative
growth can be easily deduced:

(i) If p2− p1 > q2−q1 , then the growth of f1 is slower than the growth of f2 ;
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(ii) If p2 − p1 < q2−q1 , then f1 grows faster than f2 ;
(iii) If p2 − p1 = q2−q1 > 0, then the growth of f1 is slower than the growth of

f2 if ρ2 � 1 while the growth of f1 is faster than the growth of f2 if ρ2 < 1;
(iv) Let p2 − p1 = q2 −q1 = 0, then f1, f2 are of the same index-pair [p1,q1] . If

ρ1 > ρ2 , then f1 grows faster than f2 , and if ρ1 < ρ2 , then f1 grows slower than f2 .
If ρ1 = ρ2 , Definition 3 does not give any precise estimate about the relative growth of
f1 and f2 .

Now, some results of our paper about the growth of composition of two entire
functions of infinite order are stated as follows which generalize some previous results.

Let f , g be two entire functions, and f , g have index-pair [p1,q1] , [p2,q2] ,
respectively. Set

Al = λ[p1,q1]( f ), A = ρ[p1,q1]( f ), Bl = λ[p2,q2](g) and B = ρ[p2,q2](g).

THEOREM 5. Let f , g be two entire functions, and f , g have index-pair [p1,q1] ,
[p2,q2] , respectively. If 0 < Al � A � ∞ , then

(i) p2 +1−q1 > 0 , we have ρ[p1+p2−q1+1,q2]( f ◦ g) = ρ[p2,q2](g) = B;
(ii) p2 +1−q1 = 0 , we have AlB � ρ[p1+p2−q1+1,q2]( f ◦ g) � AB;
(iii) p2 +1−q1 < 0 and q1 +q2− p2−1 � 1 , we have Al � ρ[p1,q1+q2−p2−1]( f ◦

g) � A for B > 0 and ρ[p1,q1+q2−p2−1]( f ◦g) � A, ρ[p1,q1+q2−p2]( f ◦g) � Al for B = 0 .

THEOREM 6. Let f , g be entire functions, and f , g have index-pair [p1,q1] ,
[p2,q2] , respectively. If 0 < A < ∞ and 0 < Bl � B < ∞ . We have

(i) if p2 +1−q1 > 0 , then Bl � ρ[p1+p2−q1+1,q2]( f ◦ g) � B;
(ii) if p2 +1−q1 = 0 , then ABl � ρ[p1,q2]( f ◦ g) � AB;
(iii) if p2 +1−q1 < 0 and q1 +q2− p2−1 � 1 , then ρ[p1,q1+q2−p2−1]( f ◦g) = A.

REMARK 6. We can easily get Theorem 3 and Theorem 3.2 of [17] when q1 =
q2 = 1 in Theorems 5 and 6.

THEOREM 7. Let f , g be two entire functions, and f , g have index-pair [p1,q1] ,
[p2,q2] , respectively. We can get the following conclusions:

(1) p2 +1−q1 > 0 , then
(i) q1 > q2 and Bl > 0 , we have

lim
r→∞

logp1+p2+2−q1
M(r, f ◦ g)

logp1+1 M(r, f )
= ∞;

(ii) q1 = q2 and 0 < Al,A,Bl,B < ∞ , we have

Bl

A
� lim

r→∞

logp1+p2+2−q1
M(r, f ◦ g)

logp1+1 M(r, f )
� B

Al
;

(iii) q1 < q2 and Al > 0 , we have

lim
r→∞

logp1+p2+2−q1
M(r, f ◦ g)

logp1+1 M(r, f )
= 0;
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If p2 +1−q1 = 0 , then
(i) q1 > q2 and Al > 0 , Bl > 0 , we have

lim
r→∞

logp1+1 M(r, f ◦ g)
logp1+1 M(r, f )

= ∞;

(ii) q1 = q2 and 0 < Al,A,Bl,B < ∞ , we have

AlBl

A
� lim

r→∞

logp1+1 M(r, f ◦ g)
logp1+1 M(r, f )

� AB
Al

;

(iii) q1 < q2 and 0 < Al,A,B < ∞ , we have

lim
r→∞

logp1+1 M(r, f ◦ g)
logp1+1 M(r, f )

= 0;

If p2 +1−q1 < 0 and 0 < Al,A < ∞ , then we have

lim
r→∞

logp1+1 M(r, f ◦ g)
logp1+1 M(r, f )

= ∞.

REMARK 7. From Theorem 7, we can get a series results of comparative growths
of M(r, f ◦ g) and M(r,g) .

THEOREM 8. Let f , g be entire functions, and g have index-pair [p2,q2] satis-
fying Bl > 0 . If f ◦ g have index-pair [p1,q1] and 0 < λ[p1,q1]( f ◦ g) = χ < ∞ , then
λ[p1,q1]( f ) = 0 .

THEOREM 9. Let f , g be entire functions, and g have index-pair [p2,q2] satis-
fying Bl > 0 . If f ◦ g have index-pair [p1,q1] and 0 < ρ[p1,q1]( f ◦ g) = ζ < ∞ , then
ρ[p1,q1]( f ) = 0 .

REMARK 8. It is easily to see that Theorems 8 and 9 generalize and improve some
results given by Gross [4].

THEOREM 10. Let f , g be two entire functions and p,q be two positive integers
satisfying p � q � 1 , if λ[p,q]( f ◦ g) = σ < λ[p,q](g) = τ < ∞ , then λ ( f ) = 0 .

From Theorems 8–10 and Theorem 5, we can easily get the following results.

THEOREM 11. Let f , g be two entire functions and have index-pair [p1,q1] ,
[p2,q2] , respectively. Let f ◦g have index-pair [p3,q3] . Then we can get the following
conclusions:

(i) if p2 +1−q1 > 0 , then p3 = p1 + p2−q1 +1 ⇐⇒ q3 = q2 ;
(ii) if p2 +1−q1 = 0 , then p3 = p1 ⇐⇒ q3 = q2 ;
(iii) if p2 +1−q1 < 0 , then p3 = q1 ⇐⇒ q3 = q1 +q2− p2−1 .



764 HONG-YAN XU, JIN TU AND CAI-FENG YI

For an entire function

f1(z) =
∞

∑
n=0

anz
n,

the maximum term μ(r, f1) of f1 on |z|= r being defined by μ(r, f1)= maxn�0{|an|rn} .
Since for 0 < r < R , we have

μ(r, f1) � M(r, f1) � R
R− r

μ(R, f1).

Thus, from the above inequality and Definition 3, we can get the definition of the [p,q]-
order and lower [p,q]-order of f1 as follows.

DEFINITION 6. The [p,q]-order and lower [p,q]-order of f1(z) are defined by

ρ[p,q]( f1) = limsup
r→∞

logp+1 μ(r, f1)
logq r

and

λ[p,q]( f1) = liminf
r→∞

logp+1 μ(r, f1)
logq r

,

where p,q are positive integers satisfying p � q � 1.

For Theorems 7, it is a natural question to ask: what will happen when entire
function f is replaced by entire function f1 in Theorems 7? We investigate the above
question and obtain some results as follows.

THEOREM 12. Let f1,g be two entire functions, and f1,g have index-pair [p1,q1] ,
[p2,q2] , respectively. Let Ll = λ[p1,q1]( f1) and L = ρ[p1,q1]( f1) . We can get the follow-
ing conclusions:

(1) p2 +1−q1 > 0 .
(i) q1 > q2 and Bl > 0 , then

lim
r→∞

logp1+p2+2−q1
μ(r, f1 ◦ g)

logp1+1 μ(r, f1)
= ∞;

(ii) q1 = q2 and 0 < L,Bl < ∞ , then

lim
r→∞

logp1+p2+2−q1
μ(r, f1 ◦ g)

logp1+1 μ(r, f1)
� Bl

L
;

(2) p2 +1−q1 = 0 .
(i) q1 > q2 and Ll > 0,Bl > 0 , then

lim
r→∞

logp1+1 μ(r, f1 ◦ g)
logp1+1 μ(r, f1)

= ∞;
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(ii) q1 = q2 and 0 < Ll ,L,Bl < ∞ , then

lim
r→∞

logp1+1 μ(r, f1 ◦ g)
logp1+1 μ(r, f1)

� LlBl

L
;

(3) p2 +1−q1 < 0 . If 0 < Ll,L < ∞ , then

lim
r→∞

logp1+1 μ(r, f1 ◦ g)
logp1+1 μ(r, f1)

= ∞.

2. Some Lemmas

For the proof of our results we need the following lemmas.

LEMMA 1. (see [11]). Let f , g be entire functions. If M(r,g) > 2+ε
ε |g(0)| for

any ε > 0 , then

T (r, f ◦ g) < (1+ ε)T (M(r,g), f ). (1)

In particular if g(0) = 0 , then

T (r, f ◦ g) � T (M(r,g), f ) (2)

for all r > 0 .

LEMMA 2. (see [3]). Let f , g be entire functions with g(0) = 0 . Let α satisfy

0 < α < 1 and let c(α) = (1−α)2
4α . Then for r > 0 ,

M(M(r,g), f ) � M (r, f ◦ g) � M (c(α)M(αr,g), f ) . (3)

Furthermore if α = 1
2 , for sufficiently large r ,

M(r, f ◦ g) � M

(
1
8
M

(
1
2
r,g

)
, f

)
. (4)

LEMMA 3. (see [16]). Let f and g be entire functions with g(0) = 0 . Let α
satisfy 0 < α < 1 and let c(α) = (1−α)2

4α . Also let 0 < δ < 1 . Then

μ (r, f ◦ g) � (1− δ )μ (c(α)μ(αδ r,g), f ) .

And if g is any entire function with α = δ = 1
2 , for sufficiently large r ,

μ(r, f ◦ g) � 1
2

μ
(

1
8

μ
(

1
4
r,g

)
, f

)
.
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3. Proofs of Theorems 5 and 6

Proof of Theorem 5. From the assumptions of Theorem 5, we have

A = limsup
r→∞

logp1
T (r, f )

logq1
r

, B = limsup
r→∞

logp2+1 M(r,g)
logq2

r
. (5)

Then for any ε > 0 and sufficiently large r , we have

T (r, f ) � expp1

{
(A+ ε) logq1

r
}

, M(r,g) � expp2+1

{
(B+ ε) logq2

r
}

. (6)

From (6) and Lemma 1, we have

T (r, f ◦ g) � 2T (M(r,g), f ) � 2expp1

{
(A+ ε) logq1

M(r,g)
}

(7)

� 2expp1

{
(A+ ε) logq1

(
expp2+1

{
(B+ ε) logq2

r
})}

� 2expp1

{
(A+ ε)expp2+1−q1

{
(B+ ε) logq2

r
}}

.

Then
(i) p2 +1−q1 > 0. From (7), we have

limsup
r→∞

logp1+p2−q1+1 T (r, f ◦ g)
logq2

r
� B. (8)

i.e. , ρ[p1+p2−q1+1,q2]( f ◦ g) � B ;
(ii) p2 +1−q1 = 0. From (7), we have ρ[p1,q2]( f ◦ g) � AB ;
(iii) p2 +1−q1 < 0. From (7) and q1 +q2− p2−1 � 1, we have ρ[p1,q1+q2−p2−1]

( f ◦ g) � A .
Now, we consider two cases as follows.
Case 1. B > 0. Then there exists a sequence {rn} → ∞ such that for any ε

(0 < ε < B) and sufficiently large rn , we have

M(rn,g) � expp2+1

{
(B− ε) logq2

rn
}

. (9)

Since Al > 0 and by the same reasoning as K. Niino and C. C. Yang (see [12]), for
sufficiently larger rn , from (9), we have

T (rn, f ◦ g) � 1
3

logM

(
1
8
M

(rn

4
,g

)
+o(1), f

)
� 1

3
logM

(
1
9
M

( rn

4
,g

)
, f

)
(10)

� 1
3

expp1

{
(Al − ε) logq1

(
1
9
M

( rn

4
,g

))}

� 1
3

expp1

{
(Al − ε) logq1

(
expp2+1

{
(B− ε)(logq2

rn +O(1))
})}

� 1
3

expp1

{
(Al − ε)expp2+1−q1

{
(B− ε)(logq2

rn +O(1))
}}

.

Then
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(i) p2 +1−q1 > 0. From (10), we have

lim
rn→∞

logp1+p2−q1+1 T (rn, f ◦ g)
logq2

rn
� B. (11)

By (8) and (11), we have

lim
rn→∞

logp1+p2−q1+1 T (rn, f ◦ g)
logq2

rn
= B;

(ii) p2 +1−q1 = 0. From (10), we have ρ[p1,q2]( f ◦ g) � AlB ;
(iii) p2 +1−q1 < 0. From (10) and q1 +q2− p2−1 � 1, we have ρ[p1,q1+q2−p2−1]

( f ◦ g) � Al .
Case 2. B = 0. Then we have

limsup
r→∞

logp2
M(r,g)

logq2
r

= ∞.

Hence, there exists a sequence {rn}→ ∞ such that for any η > 0, we have

lim
rn→∞

logp2
M(rn,g)

logq2
rn

� η , i.e., M(rn,g) � expp2

(
η logq2

rn
)
. (12)

Then
(i) p2 +1−q1 > 0. From (12) and (10), we have

lim
rn→∞

logp1+p2−q1
T (rn, f ◦ g)

logq2
rn

� η .

Since η is arbitrarily large, we have

lim
r→∞

logp1+p2−q1
T (r, f ◦ g)

logq2
r

= ∞. (13)

By (8) and (13), we get ρ[p1+p2−q1,q2]( f ◦ g) = ρ[p2,q2](g) = B ;
(ii) p2 +1−q1 = 0. From (12) and (10), we have ρ[p1−1,q2]( f ◦ g) = ∞ . Then we

have ρ[p1,q2]( f ◦ g) = 0 = B ;
(iii) p2 +1−q1 < 0. From (12) and (10), we have ρ[p1,q1+q2−p2]( f ◦ g) � Al .
Thus, the proof of Theorem 5 is completed. �

Proof of Theorem 6. Since A > 0, then there exists a sequence {Rn} → ∞ such
that for any ε (0 < ε < A) and sufficiently large Rn , we have

M(Rn, f ) � expp1+1

{
(A− ε) logq1

Rn
}

. (14)
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Since M(r,g) is an increasing continuous function, then there exists a sequence
{rn}→ ∞ satisfying Rn = 1

9M
( rn

2 ,g
)
� 1

3 expp2+1

{
(Bl − ε) logq2

rn
2

}
such that for suf-

ficiently large rn and from Lemma 2, we have

M(rn, f ◦ g) � M

(
1
9
M

( rn

2
,g

)
, f

)
= M(Rn, f ) (15)

� expp1+1

{
(A− ε)expp2+1−q1

{
(Bl − ε)(logq2

rn +O(1))
}}

.

Then
(i) p2 + 1− q1 > 0. From (15), we have ρ[p1+p2−q1+1,q2]( f ◦ g) � Bl . And from

Lemma 2, we have

M(r, f ◦ g) � M(M(r,g), f ) � expp1+1

{
(A+ ε) logq1

M(r,g)
}

(16)

� expp1+1

{
(A+ ε) logq1

(
expp2+1

{
(B+ ε) logq2

r
})}

� expp1+1

{
(A+ ε)expp2+1−q1

{
(B+ ε) logq2

r
}}

.

From (16) and the definition of [p,q]-order, we have ρ[p1+p2−q1+1,q2]( f ◦ g) � B ;
(ii) p2 +1−q1 = 0. From (15), we have ρ[p1,q2]( f ◦g) � ABl . And from (16). we

have ρ[p1,q2]( f ◦ g) � AB , then we have ABl � ρ[p1,q2]( f ◦ g) � AB ;
(iii) p2 +1−q1 < 0. From (15), we have ρ[p1,q1+q2−p2−1]( f ◦g) � A . From (16),

we have ρ[p1,q1+q2−p2−1]( f ◦ g) � A . Then we have ρ[p1,q1+q2−p2−1]( f ◦ g) = A .
Thus, we can get the conclusions of Theorem 6. �

4. Proofs of Theorems 7 and 12

Proof of Theorem 7. From the assumptions of Theorem 1 and by Lemma 2, for
any ε > 0, then there exists a positive number r0 and for all r � r0 , we have

M(r, f ◦ g) � M

(
1
8
M

( r
2
,g

)
, f

)
� expp1+1

{
(Al − ε) logq1

(
1
8
M

( r
2
,g

))}
(17)

� expp1+1

{
(Al − ε)expp2+1−q1

{
(Bl − ε) logq2

r
}

+O(1)
}

,

M(r, f ◦ g) � M(M(r,g), f ) � expp1+1

{
(A+ ε) logq1

M(r,g)
}

(18)

� expp1+1

{
(A+ ε)expp2+1−q1

{
(B+ ε) logq2

r
}}

,

and
expp1+1

{
(Al − ε) logq1

r
}

� M(r, f ) � expp1+1

{
(A+ ε) logq1

r
}

. (19)

The three cases will be considered as follows.
Case 1. p2 +1−q1 > 0. From (17)–(29), we have

(B+ ε) logq2
r

(Al − ε) logq1
r

�
logp1+p2+2−q1

M(r, f ◦ g)
logp1+1 M(r, f )

�
(Bl − ε) logq2

r+O(1)
(A+ ε) logq1

r
. (20)
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(i) q1 > q2 . Since Bl > 0 and (20), we have

lim
r→∞

logp1+p2+2−q1
M(r, f ◦ g)

logp1+1 M(r, f )
= ∞;

(ii) q1 = q2 . Since 0 < Al,A,Bl,B < ∞ , from (20), we have

Bl

A
� lim

r→∞

logp1+p2+2−q1
M(r, f ◦ g)

logp1+1 M(r, f )
� B

Al
;

(iii) q1 < q2 . From (20) and Al > 0, we have

lim
r→∞

logp1+p2+2−q1
M(r, f ◦ g)

logp1+1 M(r, f )
= 0.

Case 2. p2 +1−q1 = 0. From (17)–(19), we have

(A+ ε)(B+ ε) logq2
r

(Al − ε) logq1
r

�
logp1+1 M(r, f ◦ g)
logp1+1 M(r, f )

�
(Al − ε)(Bl − ε) logq2

r+O(1)
(A+ ε) logq1

r
. (21)

(i) q1 > q2 . Since Al > 0 and Bl > 0, from (21), we have

lim
r→∞

logp1+1 M(r, f ◦ g)
logp1+1 M(r, f )

= ∞;

(ii) q1 = q2 . Since 0 < Al,A,Bl,B < ∞ , from (21), we have

AlBl

A
� lim

r→∞

logp1+1 M(r, f ◦ g)
logp1+1 M(r, f )

� AB
Al

;

(iii) q1 < q2 . Since 0 < Al,A,B < ∞ , from (21), we have

lim
r→∞

logp1+1 M(r, f ◦ g)
logp1+1 M(r, f )

= 0.

Case 3. p2 +1−q1 < 0. Since p2 � q2 � 1, we have q1 +q2− p2−1 � q1 . From
(17)–(19) and 0 < Al,A < ∞ , we have

lim
r→∞

logp1+1 M(r, f ◦ g)
logp1+1 M(r, f )

�
(Al − ε) logq1+q2−p2−1 r

(A+ ε) logq1
r

−→ ∞. (22)

Thus, the proof of Theorem 7 is completed. �

Proof of Theorem 12. From Lemma 3, for sufficiently large r , we have

μ(r, f1 ◦ g) � 1
2

μ
(

1
16

μ
( r

4
,g)

)
, f1

)
.
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Then from the assumptions of Theorem 7, for any ε > 0, there exists a positive number
r0 and for all r � r0 , we have

μ(r, f1 ◦ g) � 1
2

μ
(

1
16

μ
( r

4
,g

)
, f1

)
� expp1+1

{
(Ll − ε) logq1

(
1
16

μ
( r

4
,g

))}

(23)

� expp1+1

{
(Ll − ε)expp2+1−q1

{
(Bl − ε) logq2

r
}

+O(1)
}

,

and
expp1+1

{
(Ll − ε) logq1

r
}

� μ(r, f1) � expp1+1

{
(L+ ε) logq1

r
}

. (24)

Using the same argument as in Theorem 7, we can get the conclusions of Theorem
12. �

5. Proofs of Theorems 8, 9 and 10

Proof of Theorem 8. By definition and by the same reasoning as K. Niino and C.
C. Yang [12], there exists a sequence {rn} tending to infinity such that for sufficiently
large rn , we have

1
3

logM

(
1
9
M

(rn

4
,g

)
, f

)
� T (rn, f ◦ g) � expp1

{
(χ + ε) logq1

rn
}

. (25)

Set λ[p2,q2](g) = Bl > 0, for any given ε (0 < ε < Bl) and for sufficiently rn , we have

1
9
M

(rn

4
,g

)
� expp2+1

{(
Bl − ε

2

)
logq2

rn

4

}
� expp2+1

{
(Bl − ε) logq2

rn
}

. (26)

Set Rn = 1
9M

( rn
4 ,g

)
,then rn � exp

{
1

Bl−ε logp2+1 Rn

}
, from (25) and (26), we have

logM(Rn, f ) � 3expp1

{
(χ + ε)expq2−q1

{
1

Bl − ε
logp2+1 Rn

}}
. (27)

Since 0 < ε < τ , then for sufficiently large Rn and p2 + 1− q2 > 0, we have q1 <
q1 + p2 +1−q2 and

logp1+1 M(Rn, f )
logq1

Rn
�

(χ + ε)expq2−q1

{
1

Bl−ε logp2+1 Rn

}
logq1

Rn
−→ 0. (28)

From (27) and (28), we have

lim
Rn→∞

logp−1+1 M(Rn, f )
logq1

Rn
= 0. (29)

Thus, we get that λ[p1,q1]( f ) = 0. �
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Proof of Theorem 9. We can get the conclusion of Theorem 9 by using the same
argument as in Theorem 8. �

Proof of Theorem 10. By definition and the same reasoning as K. Niino and C.
C. Yang [12], there exists a sequence {rn} tending to infinity such that for sufficiently
large rn , we have

1
3

logM

(
1
9
M

(rn

4
,g

)
, f

)
� T (rn, f ◦ g) � expp

{
(σ + ε) logq rn

}
(30)

Since τ > 0, for any given ε (0 < ε < τ −σ) and for sufficiently rn , we have

1
9
M

( rn

4
,g

)
� expp

{
c1

(
r− ε

2

)
logq

rn

4

}
� expp+1

{
(τ − ε) logq rn

}
. (31)

Set Rn = 1
9M

( rn
4 ,g

)
, then logq rn � 1

τ−ε logp+1 Rn , from (30) and (31), we have

logM(Rn, f ) � 2expp

{
σ + ε
τ − ε

logp+1 Rn

}
. (32)

Since 0 < ε < τ −σ , then σ+ε
τ−ε < 1, for sufficiently large Rn , we have

expp−1

{σ+ε
τ−ε logp+1 Rn

}
logRn

→ 0. (33)

From (32) and (33), we have

lim
Rn→∞

loglogM(Rn, f )
logRn

= 0. (34)

Thus, we get that λ ( f ) = 0. �
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