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HOW TO SOLVE THREE FUNDAMENTAL LINEAR MATRIX

INEQUALITIES IN THE LÖWNER PARTIAL ORDERING

YONGGE TIAN

Abstract. This paper shows how to derive analytical solutions of the three fundamental linear
matrix inequalities

AXB � C (�C, � C, ≺C),

AXA∗ � B(� B, � B,≺ B),

AX +(AX)∗ � B(� B, � B, ≺ B)

in the Löwner partial ordering by using ranks, inertias and generalized inverses of matrices.
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