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HOW TO SOLVE THREE FUNDAMENTAL LINEAR MATRIX

INEQUALITIES IN THE LÖWNER PARTIAL ORDERING

YONGGE TIAN

(Communicated by M. Niezgoda)

Abstract. This paper shows how to derive analytical solutions of the three fundamental linear
matrix inequalities

AXB � C (�C, � C, ≺C),

AXA∗ � B(� B, � B,≺ B),

AX +(AX)∗ � B(� B, � B, ≺ B)

in the Löwner partial ordering by using ranks, inertias and generalized inverses of matrices.

1. Introduction

Throughout this paper,

• Cm×n , Cm
H and Cm

SH stand for the sets of all m×n complex matrices, all m×m
Hermitian complex matrices and all m×m skew-Hermitian complex matrices,
respectively.

• The symbols A∗ , r(A) and R(A) stand for the conjugate transpose, rank and
range (column space) of a matrix A ∈ Cm×n , respectively.

• [A, B ] denotes a row block matrix consisting of A and B .

• i+(A) and i−(A) , called the partial inertia of A ∈ C
m
H , are defined to be the num-

bers of the positive and negative eigenvalues of A counted with multiplicities,
respectively, where r(A) = i+(A)+ i−(A).

• A � 0 (A � 0) means that A is Hermitian positive semi-definite (positive defi-
nite).

• Two A, B ∈ Cm
H are said to satisfy the inequality A � B (A � B) in the Löwner

partial ordering if A−B is Hermitian positive semi-definite (positive definite).
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• A positive semi-definite matrix A of order m is said to be a contraction if all its
eigenvalues are less than or equal to 1, i.e., 0 � A � Im , to be a strict contraction
if all its eigenvalues are less than 1, i.e., 0 � A ≺ Im .

• The Moore–Penrose inverse of A ∈ Cm×n , denoted by A† , is defined to be the
unique solution X satisfying the four matrix equations AXA = A, XAX = X ,
(AX)∗ = AX and (XA)∗ = XA . The symbols EA and FA stand for EA = Im−AA†

and FA = In − A†A , their ranks are given by r(EA) = m− r(A) and r(FA) =
n−r(A) . A well-known property of the Moore–Penrose inverse is (A†)∗ =(A∗)† .
In particular AA† = A†A if A = A∗ . We shall repeatedly use them in the latter part
of this paper. One of the most important applications of generalized inverses is to
derive some closed-form formulas for calculating ranks and inertias of matrices,
as well as general solutions of matrix equations; see Lemmas 2.1–2.9 below.
Results on the Moore–Penrose inverse can be found, e.g., in [3, 4, 12].

• A matrix-valued function for complex matrices is a map between two complex
matrix spaces, which can generally be written as Y = φ(X) for Y ∈ Cm×n and
X ∈ Cp×q, or briefly, φ : Cm×n → Cp×q.

The Löwner partial ordering for matrices, as a natural extension of inequalities for
real numbers, is one of the most useful concepts in matrix theory for characterizing
relations between two complex Hermitian (real symmetric) matrices of the same size,
while a main object of study in core matrix theory is to compare Hermitian matrices in
the Löwner partial ordering and to establish various possible matrix inequalities. This
subject was extensively studied by many authors, and numerous matrix inequalities in
the Löwner partial ordering were established in the literature. In the investigation of the
Löwner partial ordering between two Hermitian matrices, a challenging task is to solve
matrix inequalities that involve unknown matrices. This topic can generally be stated
as follows:

PROBLEM. For a given matrix-valued function φ(X) that satisfies φ(X) = φ∗(X),
where X is a variable matrix, establish necessary and sufficient conditions for the ma-
trix inequalities

φ(X) � 0, φ(X) � 0, φ(X) � 0, φ(X) ≺ 0 (1.1)

to hold, respectively, and find solutions X of the matrix inequalities.
As usual, linear matrix-valued functions as common representatives of various

matrix-valued functions are extensively studied from theoretical and applied points of
view. When φ(X) in (1.1) is a linear matrix-valued function, it is usually called a
linear matrix inequality (LMI) in the literature. A systematic work on LMIs and their
applications in system and control theory can be found, e.g., in [5, 20]. LMIs in the
Löwner partial ordering are usually taken as convex constraints to unknown matrices
and vectors in mathematical programming and optimization theory. This paper aims at
solving the following three groups of LMIs:

AXB � C (�C, � C, ≺C), (1.2)

AXA∗ � B(� B, � B, ≺ B), (1.3)
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AX +(AX)∗ � B(� B, � B, ≺ B). (1.4)

They are the simplest cases of LMIs and are the starting point of many advanced studies
on various complicated LMIs.

Recall that any Hermitian positive semi-definite (positive definite) matrix M can
be written as M = UU∗ for certain (nonsingular) matrix U . Hence, the mechanism
of a matrix inequality in the Löwner partial ordering can be explained by certain ma-
trix equation that involves an unknown quadratic term. In fact, any matrix inequality
φ(X) � 0 (φ(X) � 0) can equivalently be relaxed to

φ(X)−UU∗ = 0 (1.5)

for certain (nonsingular) matrix U . Due to the non-commutativity of matrix algebra,
there are no general methods for finding analytical solutions of quadratic matrix equa-
tions, so that it is hard to solve for the unknown matrices X and U from the equation in
(1.5) for a general φ(X) . However, for the three fundamental LMIs in (1.2)–(1.4), we
are able to obtain their solutions in closed-form by using the relaxed matrix equation in
(1.5), and ordinary operations of the given matrices and their generalized inverses.

Matrix equations and matrix inequalities in the Löwner partial ordering have been
main objects of study in matrix theory and their applications. Many new theories and
methods were developed in the investigations of matrix equations and inequalities. In
particular, the concept of generalized inverses of matrices was introduced when Penrose
considered general solutions of the matrix equations AX = B and AXB = C , cf. [19].
The equalities of (1.2)–(1.4) correspond to the three matrix equations

AXB = C, AXA∗ = B, AX +(AX)∗ = B, (1.6)

respectively, which were extensively studied from theoretical and practical points of
view, while the three matrix-valued functions

φ1(X) = C−AXB, (1.7)

φ2(X) = B−AXA∗, (1.8)

φ3(X) = B−AX − (AX)∗ (1.9)

associated with (1.2)–(1.4) were recently considered in [15, 16, 22, 24, 25, 30, 31].
Because (1.2)–(1.4) and (1.6)–(1.9) are some simplest cases of matrix equations, matrix
inequalities and matrix-valued functions, they have been attractive objects of study in
matrix theory and applications. In fact, it is remarkable that simply knowing when the
LMIs in (1.2)–(1.4) are feasible gives some deep insights into the relations between
both sides of the LMIs.

This paper is organized as follows. In Section 2, we give a group of known results
on matrix equations, as well as some expansion formulas for calculating (extremal)
ranks and inertias of matrices. In Section 3, we solve for the inequality in (1.2), and
discuss various algebraic properties of the LMI and its solutions. In particular, we
give a group of closed-form formulas for calculating the extremal ranks and inertias
of D− AXB subject to AXB � C , and use the formulas to establish necessary and



4 YONGGE TIAN

sufficient conditions for the two-sided matrix inequality D � AXB � C to be solvable.
In Sections 4 and 5, we establish necessary and sufficient conditions for the LMIs in
(1.3) and (1.4) to be feasible, respectively, and derive general solutions in closed-forms
of these LMIs.

2. Preliminaries

In this section, we present some known or new results on solving matrix equations,
as well as formulas for calculating ranks and inertias of matrices, which will be used in
the latter part of this paper.

LEMMA 2.1. ([14]) Let A, B ∈ Cm×n be given. Then, the following hold.

(a) The matrix equation
AX = B (2.1)

has a Hermitian solution X ∈ Cn
H if and only if R(B) ⊆ R(A) and AB∗ = BA∗.

In this case, the general Hermitian solution X of (2.1) can be written in the
following parametric form

X = A†B+(A†B)∗ −A†BA†A+FAWFA, (2.2)

where W ∈ Cn
H is arbitrary.

(b) The matrix equation
AXX∗ = B (2.3)

has a solution XX∗ if and only if R(B) ⊆ R(A), AB∗ � 0 and r(AB∗) = r(B).
In this case, the general solution XX∗ of (2.3) can be written in the following
parametric form

XX∗ = B∗(AB∗)†B+FAWW ∗FA, (2.4)

where W ∈ Cn×n is arbitrary.

LEMMA 2.2. ([19]) Let A ∈ C
m×n, B ∈ C

p×q and C ∈ C
m×q be given. Then, the

matrix equation
AXB = C (2.5)

has a solution X ∈ Cn×q if and only if R(C) ⊆ R(A) and R(C∗) ⊆ R(B∗), or equiv-
alently, EAC = 0 and CFB = 0. In this case, the general solution X of (2.5) can be
written in the following parametric forms

X = A†CB† +W −A†AWBB†, (2.6)

X = A†CB† +FAU1 +U2EB, (2.7)

respectively, where W, U1, U2 ∈ Cn×p are arbitrary.

LEMMA 2.3. Let A ∈ C
m×n and B ∈ C

m
H be given. Then, the following hold.
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(a) [10] The matrix equation
AXA∗ = B (2.8)

has a solution X ∈ Cn
H if and only if R(B) ⊆ R(A), or equivalently, AA†B = B.

In this case, the general Hermitian solution X of (2.8) can be written in the
following parametric forms

X = A†B(A†)∗ +U −A†AUA†A, (2.9)

X = A†B(A†)∗ +FAV +V ∗FA, (2.10)

respectively, where U ∈ Cn
H and V ∈ Cn×n are arbitrary.

(b) [10, 14] There exists an X ∈ Cn×n such that

AXX∗A∗ = B (2.11)

if and only if B � 0 and R(B) ⊆ R(A). In this case, the general solution XX∗
of (2.11) can be written as

XX∗ = A†B(A†)∗ +FAVB(A†)∗ +A†BV ∗FA +FAWW ∗FA, (2.12)

where V ∈ Cn×m and W ∈ Cn×n are arbitrary.

(c) [1] Under A, B ∈ C
m×m, there exists an X ∈ C

m×m such that

AXX∗A∗ = B (2.13)

if and only if B � 0 and R(B) ⊆ R(A). In this case, the general solution XX∗
of (2.13) can be written as

XX∗ = (A†B
1
2 +FAV )(A†B

1
2 +FAV )∗, (2.14)

where V ∈ Cm×m is arbitrary.

LEMMA 2.4. ([31]) Let A ∈ Cm×n and B ∈ Cm
H be given. Then, the following

hold.

(a) There exists an X ∈ Cn×m such that

AX +(AX)∗ = B (2.15)

if and only if EABEA = 0. In this case, the general solution X of (2.15) can be
written in the following parametric form

X =
1
2
A†B(2Im−AA† )+VA∗+FAW, (2.16)

where both V ∈ C
n
SH and W ∈ C

n×m are arbitrary.
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(b) There exists an X ∈ Cn×m such that

AX +(AX)∗ = BB∗ (2.17)

if and only if R(B) ⊆ R(A). In this case, the general solution X of (2.17) can
be written as

X =
1
2
A†BB∗ +VA∗+FAW, (2.18)

where both V ∈ C
n
SH and W ∈ C

n×m are arbitrary.

LEMMA 2.5. Let A1 ∈ C
m×p, B1 ∈ C

q×n, A2 ∈ C
m×r, B2 ∈ C

s×n and C ∈ C
m×n

be given. Then, the following hold.

(a) [18] There exist X ∈ Cp×q and Y ∈ Cr×s such that

A1XB1 +A2YB2 = C (2.19)

if and only if the following four rank equalities

r[C, A1, A2 ] = r[A1, A2 ], r

⎡
⎣C
B1

B2

⎤
⎦ = r

[
B1

B2

]
, (2.20)

r

[
C A1

B2 0

]
= r(A1)+ r(B2), r

[
C A2

B1 0

]
= r(A2)+ r(B1) (2.21)

hold, or equivalently,

[A1, A2 ][A1, A2 ]†C = C, C

[
B1

B2

]† [
B1

B2

]
= C, EA1CFB2 = 0, EA2CFB1 = 0.

(2.22)

(b) [21] Under (2.20) and (2.21), the general solutions of (2.19) can be decomposed
as

X = X0 +X1X2 +X3 and Y = Y0−Y1Y2 +Y3, (2.23)

where X0 and Y0 are a pair of special solutions of (2.19), X1, X2, X3 and Y1, Y2, Y3

are the general solutions of the following four homogeneous matrix equations

A1X1 +A2Y1 = 0, X2B1 +Y2B2 = 0, A1X3B1 = 0, A2Y3B2 = 0. (2.24)

By using generalized inverses of matrices, (2.23) can be written in the following
parametric forms

X = X0 +[ Ip, 0 ]FGWEH

[
Iq
0

]
+FA1W1 +W2EB1 , (2.25)

Y = Y0− [0, Ir ]FGWEH

[
0
Is

]
+FA2W3 +W4EB2 , (2.26)

where G = [A1, A2 ], H =
[
B1

B2

]
, and the five matrices W, W1, W2, W3 and W4

are arbitrary.
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Lemmas 2.1–2.5 show that general solutions of some simple matrix equations can
be written as analytical forms composed by the given matrices and their generalized
inverses, as well as arbitrary matrices. These analytical formulas can be easily used to
establish various algebraic properties of the solutions of the equations, such as, their
ranks, ranges, uniqueness, definiteness, etc.

Ranks and inertias of matrices are both basic concepts and useful quantitative tools
in matrix theory. The following two lemmas are obvious from the definitions of rank
and inertia, which will be used in the latter part of this paper for solving the previous
problems.

LEMMA 2.6. Let A ∈ C
m×m, B ∈ C

m×n, and C ∈ C
m
H. Then, the following hold.

(a) A is nonsingular if and only if r(A) = m.

(b) B = 0 if and only if r(B) = 0.

(c) C � 0 (C ≺ 0) if and only if i+(C) = m (i−(C) = m) ,

(d) C � 0 (C � 0) if and only if i−(C) = 0 (i+(C) = 0) .

LEMMA 2.7. Let S be a set consisting of matrices over Cm×n, and let H be a
set consisting of Hermitian matrices over Cm

H. Then, the following hold.

(a) Under m = n, S has a nonsingular matrix if and only if maxX∈S r(X) = m.

(b) Under m = n, all X ∈ S are nonsingular if and only if minX∈S r(X) = m.

(c) 0 ∈ S if and only if minX∈S r(X) = 0.

(d) S = {0} if and only if maxX∈S r(X) = 0.

(e) H has a matrix X � 0 (X ≺ 0) if and only if

max
X∈H

i+(X) = m

(
max
X∈H

i−(X) = m

)
.

(f) All X ∈ H satisfy X � 0 (X ≺ 0) if and only if

min
X∈H

i+(X) = m

(
min
X∈H

i−(X) = m

)
.

(g) H has a matrix X � 0 (X � 0) if and only if

min
X∈H

i−(X) = 0

(
min
X∈H

i+(X) = 0

)
.

(h) All X ∈ H satisfy X � 0 (X � 0) if and only if

max
X∈H

i−(X) = 0

(
max
X∈H

i+(X) = 0

)
.



8 YONGGE TIAN

The question of whether a given matrix function is positive semi-definite or posi-
tive definite everywhere is ubiquitous in mathematics and applications. Lemma 2.7(e)–
(h) show that if certain explicit formulas for calculating the maximal and minimal iner-
tias of a given Hermitian matrix function are established, we can use them, as demon-
strated in Sections 2, 3 and 5 below, to derive necessary and sufficient conditions for
the Hermitian matrix function to be definite or semi-definite.

In order to simplify various matrix expressions involving generalized inverses of
matrices and arbitrary matrices, we need some useful expansion formulas for calculat-
ing ranks and inertias of matrices.

LEMMA 2.8. ([17]) Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n and D ∈ Cl×k. Then,
the following rank expansion formulas hold

r[A, B ] = r(A)+ r(EAB) = r(B)+ r(EBA), (2.27)

r

[
A
C

]
= r(A)+ r(CFA) = r(C)+ r(AFC), (2.28)

r

[
A B
C 0

]
= r(B)+ r(C)+ r(EBAFC), (2.29)

r

[
AA∗ B
B∗ 0

]
= r[A, B ]+ r(B), (2.30)

r

[
A B
C D

]
= r(A)+ r

[
0 EAB

CFA D−CA†B

]
. (2.31)

If R(B) ⊆ R(A) and R(C∗) ⊆ R(A∗), then

r

[
A B
C D

]
= r(A)+ r(D−CA†B). (2.32)

LEMMA 2.9. ([24]) Let A ∈ Cm
H, B ∈ Cm×n, D ∈ Cn

H, and define

M1 =
[

A B
B∗ 0

]
, M2 =

[
A B
B∗ D

]
.

Then, the partial inertias of M1 and M2 can be expanded as

i±(M1) = r(B)+ i±(EBAEB), (2.33)

i±(M2) = i±(A)+ i±
[

0 EAB
B∗EA D−B∗A†B

]
. (2.34)

In particular, the following hold.

(a) If A � 0, then

i+(M1) = r[A, B ], i−(M1) = r(B). (2.35)
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(b) If A � 0, then

i+(M1) = r(B), i−(M1) = r[A, B ]. (2.36)

(c) If R(B) ⊆ R(A), then

i±(M2) = i±(A)+ i±(D−B∗A†B). (2.37)

(d) i±(M1) = m ⇔ i∓(EBAEB) = 0 and r(EBAEB) = r(EB).

(e) M2 � 0 ⇔ A � 0, R(B) ⊆ R(A) and D−B∗A†B � 0 ⇔ D � 0, R(B∗) ⊆
R(D) and A−BC†B∗ � 0.

(f) M2 � 0 ⇔ A � 0 and D−B∗A−1B � 0 ⇔ D � 0 and A−BD−1B∗ � 0.

(g) Under A � 0 and A1 � 0, the inequality A � A1 holds if and only if R(A1) ⊆
R(A) and A1−A1A†A1 � 0.

LEMMA 2.10. Let A, B ∈ Cm
H and P ∈ Cm×n. Then the following hold.

(a) If A � B, then P∗AP � P∗BP.

(b) A � 0 if and only if A† � 0.

(c) If Im −A � 0, then Im−PP†APP† � 0.

(d) If Im −A � 0, then Im −PP†APP† � 0.

Proof. Result (a) is obvious from the definition of the positive semi-definiteness
of Hermitian matrix. Result (b) is obvious from similarity decomposition of A and the
definition of the Moore–Penrose inverse of a matrix. If A is Hermitian, then we can
find by Lemma 2.9(c), ∗ -congruence transformation and (2.32) that

i±( Im −PP†APP† ) = i±
[

A APP†

PP†A Im

]
− i±(A)

= i±
[
A−APP†A 0

0 Im

]
− i±(A)

= i±(Im)+ i±(A−APP†A)− i±(A)

= i±(Im)+ i±
[
P∗P P∗A
AP A

]
− i±(PP∗)− i±(A)

= i±(Im)+ i±
[
P∗P−P∗AP 0

0 A

]
− i±(PP∗)− i±(A)

= i±(Im)+ i±[P∗( Im −A)P ]− i±(PP∗),

namely

i+( Im −PP†APP† ) = m− r(P)+ i+[P∗( Im −A)P ], (2.38)
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i−( Im −PP†APP† ) = i−[P∗( Im −A)P ]. (2.39)

If A � Im, then (2.39) reduces to

i−( Im −PP†APP† ) = i−[P∗( Im −A)P ] = 0.

Hence, (c) follows by Lemma 2.6(d). If A≺ Im, then P∗( Im−A)P � 0 and i+[P∗( Im−
A)P ] = r[P∗( Im −A)P ] = r(P) . Thus, (2.38) reduces to

i+( Im −PP†APP† ) = m− r(P)+ r(P) = m.

Hence, (d) follows by Lemma 2.6(c). �
In two earlier papers [22] and [30], an expansion formula for the rank of A−BXC

was established as follows

r(A−BXC ) = r

[
A
C

]
+ r[A, B ]− r(M)+ r[ET1(X +TM†S )FS1 ], (2.40)

where

M =
[
A B
C 0

]
, T = [0, In ], S =

[
0
Ip

]
, T1 = TFM, S1 = EMS,

and the following result was established.

LEMMA 2.11. ([22, 30]) Let A ∈ Cm×n, B ∈ Cm×k and C ∈ Cl×n be given. Then
the global maximal and minimal ranks of A−BXC with respect to X ∈ Ck×l are given
by

max
X∈Ck×l

r(A−BXC ) = min

{
r[A, B ], r

[
A
C

]}
, (2.41)

min
X∈Ck×l

r(A−BXC ) = r[A, B ]+ r

[
A
C

]
− r

[
A B
C 0

]
. (2.42)

In particular,

max
X∈Ck×n

r(A−BX ) = min{r[A, B ], n}, min
X∈Ck×n

r(A−BX ) = r[A, B ]− r(B). (2.43)

The matrices X that satisfy (2.41)–(2.43), namely, the global maximizers and min-
imizers of the objective rank function, are not necessarily unique and their general ex-
pressions can also be derived from the term ET1(X +TM†S )FS1 in (2.40); see [22, 30].

LEMMA 2.12. ([16, 25]) Let A ∈ Cm
H , B ∈ Cm×n and C ∈ Cp×m be given. Then,

the global maximal and minimal ranks and partial inertias of A−BXC− (BXC)∗ are
given by

max
X∈Cn×p

r[A−BXC− (BXC)∗ ] = min

{
r[A, B, C∗ ], r

[
A B
B∗ 0

]
, r

[
A C∗
C 0

]}
, (2.44)
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min
X∈Cn×p

r[A−BXC− (BXC)∗ ] = 2r[A, B, C∗ ]

+max{s+ + s−, t+ + t−, s+ + t−, s− + t+},
(2.45)

max
X∈Cn×p

i±[A−BXC− (BXC)∗ ] = min

{
i±

[
A B
B∗ 0

]
, i±

[
A C∗
C 0

]}
, (2.46)

min
X∈Cn×p

i±[A−BXC− (BXC)∗ ] = r[A, B, C∗ ]+max{s±, t±}, (2.47)

where

s± = i±
[

A B
B∗ 0

]
− r

[
A B C∗
B∗ 0 0

]
, t± = i±

[
A C∗
C 0

]
− r

[
A B C∗
C 0 0

]
.

In particular,

max
X∈Cn×m

r[A−BX − (BX)∗ ] = min

{
m, r

[
A B
B∗ 0

]}
, (2.48)

min
X∈Cn×m

r[A−BX − (BX)∗ ] = r

[
A B
B∗ 0

]
−2r(B), (2.49)

max
X∈Cn×m

i±[A−BX − (BX)∗ ] = i±
[

A B
B∗ 0

]
, (2.50)

min
X∈Cn×m

i±[A−BX − (BX)∗ ] = i±
[

A B
B∗ 0

]
− r(B). (2.51)

Eqs. (2.44)–(2.51) were derived from some expansion formulas for the rank and
inertia of A− BXC− (BXC)∗ in [16, 25], while the matrices X that satisfy (2.44)–
(2.51) were also given in [16, 25] by using certain simultaneous decomposition of the
three given matrices and their generalized inverses.

We also need the following results on the ranks and inertias of the quadratic matrix-
valued functions

A± (BX +C )(BX +C )∗ = A± (BXX∗B∗ +BXC∗+CX∗B∗ +CC∗)

and their consequences.

LEMMA 2.13. ([27]) Let A ∈ Cm
H and B ∈ Cm×k and C ∈ Cm×n be given, and let

G1 =
[
A+CC∗ B

B∗ 0

]
, G2 =

[
A−CC∗ B

B∗ 0

]
, G3 =

[
A B C
B∗ 0 0

]
.

Then, the following hold.

(a) The maximal and minimal ranks and partial inertias of φ1(X) = A + (BX +
C )(BX +C )∗ are given by

max
X∈Ck×n

r[φ1(X) ] = min{r[A, B, C ], r(G1), r(A)+n} , (2.52)
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min
X∈Ck×n

r[φ1(X) ] = 2r[A, B, C ]+max{h1, h2, h3, h4}, (2.53)

max
X∈Ck×n

i+[φ1(X) ] = min{ i+(G1), i+(A)+n} , (2.54)

max
X∈Ck×n

i−[φ1(X) ] = min{ i−(G1), i−(A)} , (2.55)

min
X∈Ck×n

i+[φ1(X) ] = r[A, B, C ]+max{i+(G1)− r(G3), i+(A)− r[A, B ]} ,

(2.56)

min
X∈Ck×n

i−[φ1(X) ] = r[A, B, C ]+max{i−(G1)− r(G3), i−(A)− r[A, B ]−n},

(2.57)

where

h1 = r(G1)−2r(G3), h2 = r(A)−2r[A, B ]−n,

h3 = i−(G1)− r(G3)+ i+(A)− r[A, B ],
h4 = i+(G1)− r(G3)+ i−(A)− r[A, B ]−n.

(b) The maximal and minimal ranks and partial inertias of φ2(X) = A− (BX +
C )(BX +C )∗ are given by

max
X∈Ck×n

r[φ2(X) ] = min{r[A, B, C ], r(G2), r(A)+n} , (2.58)

min
X∈Ck×n

r[φ2(X) ] = 2r[A, B, C ]+max{h5, h6, h7, h8}, (2.59)

max
X∈Ck×n

i+[φ2(X) ] = min{ i+(G2), i+(A)} , (2.60)

max
X∈Ck×n

i−[φ2(X) ] = min{ i−(G2), i−(A)+n} , (2.61)

min
X∈Ck×n

i+[φ2(X) ] = r[A, B, C ]+max{i+(G2)− r(G3), i+(A)− r[A, B ]−n},

(2.62)

min
X∈Ck×n

i−[φ2(X) ] = r[A, B, C ]+max{i−(G2)− r(G3), i−(A)− r[A, B ]} ,

(2.63)

where

h5 = r(G2)−2r(G3), h6 = r(A)−2r[A, B ]−n,

h7 = i+(G2)− r(G3)+ i−(A)− r[A, B ],
h8 = i−(G2)− r(G3)+ i+(A)− r[A, B ]−n.

The matrices X that satisfy (2.52)–(2.63) can be derived from those satisfying (2.44)–
(2.47).

When C = 0, Lemma 2.13 reduces to the following result.
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COROLLARY 2.14. ([26]) Let A ∈ Cm
H and B ∈ Cm×n be given, and let M =[

A B
B∗ 0

]
. Then, the following hold.

(a) The maximal and minimal ranks and partial inertias of A±BXX∗B∗ are given
by

max
X∈Cn×n

r(A+BXX∗B∗ ) = r[A, B ], (2.64)

min
X∈Cn×n

r(A+BXX∗B∗ ) = i+(A)+ r[A, B ]− i+(M), (2.65)

max
X∈Cn×n

i+(A+BXX∗B∗ ) = i+(M), (2.66)

max
X∈Cn×n

i−(A+BXX∗B∗ ) = i−(A), (2.67)

min
X∈Cn×n

i+(A+BXX∗B∗ ) = i+(A), (2.68)

min
X∈Cn×n

i−(A+BXX∗B∗ ) = r[A, B ]− i+(M), (2.69)

and

max
X∈Cn×n

r(A−BXX∗B∗ ) = r[A, B ], (2.70)

min
X∈Cn×n

r(A−BXX∗B∗ ) = i−(A)+ r[A, B ]− i−(M), (2.71)

max
X∈Cn×n

i+(A−BXX∗B∗ ) = i+(A), (2.72)

max
X∈Cn×n

i−(A−BXX∗B∗ ) = i−(M), (2.73)

min
X∈Cn×n

i+(A−BXX∗B∗ ) = r[A, B ]− i−(M), (2.74)

min
X∈Cn×n

i−(A−BXX∗B∗ ) = i−(A). (2.75)

(b) If A � 0, then

max
X∈Cn×n

r(A+BXX∗B∗ ) = r[A, B ], (2.76)

min
X∈Cn×n

r(A+BXX∗B∗ ) = r(A), (2.77)

and

max
X∈Cn×n

r(A−BXX∗B∗ ) = r[A, B ], (2.78)

min
X∈Cn×n

r(A−BXX∗B∗ ) = r[A, B ]− r(B), (2.79)

max
X∈Cn×n

i+(A−BXX∗B∗ ) = r(A), (2.80)

max
X∈Cn×n

i−(A−BXX∗B∗ ) = r(B), (2.81)
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min
X∈Cn×n

i+(A−BXX∗B∗ ) = r[A, B ]− r(B), (2.82)

min
X∈Cn×n

i−(A−BXX∗B∗ ) = 0. (2.83)

The matrices XX∗ that satisfy (2.64)–(2.83) can be derived from those satisfying
(2.44)–(2.47).

3. General solution of AXB � C (�C, � C, ≺C) and its properties

A necessary condition for (1.2) to hold is AXB = (AXB)∗ . In such a case, the
matrix X satisfying AXB = (AXB)∗ is called a symmetrizer of AXB ; see [2]. In this
section, we derive an analytical presentation for the general solution of the LMI in
(1.2) by using the given matrices and their generalized inverses, and establish various
algebraic properties of the LMI.

THEOREM 3.1. Let A ∈ Cm×p, B ∈ Cq×m and C ∈ Cm
H be given, and define

M = [EA, FB ], N =

⎡
⎢⎢⎣

C C A 0
C C 0 B∗
A∗ 0 0 0
0 B 0 0

⎤
⎥⎥⎦. (3.1)

(a) Then, the following statements are equivalent.

(i) There exists an X ∈ Cp×q such that

AXB � C. (3.2)

(ii) M∗CM � 0 and R(M∗CM) = R(M∗C).

(iii) i−(M∗CM) = r(M∗C).

(iv) i−(N) = r

[
C A 0
C 0 B∗

]
.

In this case, the general solution X ∈ Cp×q of (3.2) and the corresponding AXB
can be written in the following parametric forms

X = A†CB†−A†CM(M∗CM)†M∗CB† +A†EMUU∗EMB† +W −A†AWBB†,
(3.3)

AXB = C−CM(M∗CM)†M∗C+EMUU∗EM, (3.4)

where U ∈ Cm×m and W ∈ Cp×q are arbitrary.

(b) There exists an X ∈ Cp×q such that

AXB �C (3.5)
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if and only if

M∗CM � 0 and r

[
A 0 C
0 B∗ C

]
= m+ r[A, B∗ ]. (3.6)

In this case, the general solution X of (3.5) can be written as (3.3) , in which U ∈
Cm×m is any matrix such that r[CM, EMU ] = m, and W ∈ Cp×q is arbitrary.

Proof. Inequality (1.2) is obviously equivalent to the following linear-quadratic
matrix equation

AXB = C+YY ∗. (3.7)

By Lemma 2.2, this equation is solvable for X if and only if

EA(C+YY ∗ ) = 0 and (C+YY ∗ )FB = 0, (3.8)

that is, [
EA

FB

]
YY ∗ = −

[
EAC
FBC

]
. (3.9)

By Lemma 2.1(b), this quadratic matrix equation is solvable for YY ∗ if and only if[
EA

FB

]
C[EA, FB ] � 0 and r

([
EA

FB

]
C[EA, FB ]

)
= r(C[EA, FB ]),

that is,
M∗CM � 0 and r(M∗CM) = r(M∗C). (3.10)

Note from i−(M∗CM) � r(M∗CM) � r(M∗C) that

M∗CM � 0 ⇔ i−(M∗CM) = r(M∗CM), (3.11)

r(M∗CM) = r(CM) ⇔ R(M∗CM) = R(M∗C). (3.12)

So that (3.10) is equivalent to (ii) and (iii) in (a), respectively. It is easy to see from
(2.33) that

i±(M∗CM) = i±
([

EA

FB

]
C[EA, FB ]

)
= i±(N)− r(A)− r(B), (3.13)

r(M∗CM) = r(N)−2r(A)−2r(B), (3.14)

r(CM) = r(C[EA, FB ]) = r

⎡
⎣C C
A∗ 0
0 B

⎤
⎦− r(A)− r(B)

= r

[
A 0 C
0 B∗ C

]
− r(A)− r(B), (3.15)

r(M) = r[EA, FB ] = r

[
A 0 Im
0 B∗ Im

]
− r(A)− r(B)

= m+ r[A, B∗ ]− r(A)− r(B). (3.16)
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So that (iii) and (iv) in (a) are equivalent. Under the conditions in (a), the general
solution YY ∗ of (3.9) can be written as

YY ∗ = −CM(M∗CM)†M∗C+EMUU∗EM, (3.17)

where U ∈ Cm×m is arbitrary. Substituting the YY ∗ into (3.7) gives

AXB =C−CM(M∗CM)†M∗C+EMUU∗EM. (3.18)

By Lemma 2.2, the general solution X of (3.18) is

X = A†CB† −A†CM(M∗CM)†M∗CB† +A†EMUU∗EMB† +W −A†AWBB†,

establishing (3.3) and (3.4).
It can be seen from (3.18) that (3.5) holds if and only if

−CM(M∗CM)†M∗C+EMUU∗EM � 0 (3.19)

for some U . Under the conditions in (a), we have

r[−CM(M∗CM)†M∗C+EMUU∗EM ] = r[−CM(M∗CM)†M∗C, EMUU∗EM ]
= r[CM, EMU ].

Hence,

max
U

r[−CM(M∗CM)†M∗C+EMUU∗EM ] = r[CM, EM ]

= r(MM†CM)+ r(EM) = r(CM)+m− r(M)

= r

[
A 0 C
0 B∗ C

]
− r[A, B∗ ]. (3.20)

Thus, (3.19) is equivalent to (3.6). �
The following result can be shown similarly.

COROLLARY 3.2. Let A ∈ Cm×p, B ∈ Cq×m and C ∈ Cm
H be given, M and N be

as given in (3.1).

(a) Then, the following statements are equivalent.

(i) There exists an X ∈ Cp×q such that

AXB � C. (3.21)

(ii) M∗CM � 0 and R(M∗CM) = R(M∗C).

(iii) i+(M∗CM) = r(M∗C).

(iv) i+(N) = r

[
C A 0
C 0 B∗

]
.
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In this case, the general solution X ∈Cp×q of (3.21) and the corresponding AXB
can be written in the following parametric forms

X = A†CB†−A†CM(M∗CM)†M∗CB†−A†EMUU∗EMB† +W −A†AWBB†,
(3.22)

AXB = C−CM(M∗CM)†M∗C−EMUU∗EM, (3.23)

where U ∈ Cm×m and W ∈ Cp×q are arbitrary.

(b) There exists an X ∈ Cp×q such that

AXB ≺C (3.24)

if and only if

M∗CM � 0 and r

[
A 0 C
0 B∗ C

]
= m+ r[A, B∗ ]. (3.25)

In this case, the general solution X of (3.24) can be written as (3.22), in which
U is any matrix such that r[CM, EMU ] = m, and W ∈ Cp×q is arbitrary.

We next establish some algebraic properties of the fixed parts in (3.3) and (3.22).

COROLLARY 3.3. Let A ∈ Cm×p, B ∈ Cq×m and C ∈ Cm
H be given, M and N be

as given in (3.1), and define

X̂ = A†CB† −A†CM(M∗CM)†M∗CB†. (3.26)

(a) Under the condition that (3.2) has a solution, the X̂ in (3.26) satisfies AX̂B �C,
and

i±(AX̂B) = r(A)+ r(B)+ i±(C)− i±(N), (3.27)

r(X̂) = r(AX̂B) = 2r(A)+2r(B)+ r(C)− r(N), (3.28)

i+(AX̂B−C ) = r(AX̂B−C ) = 2r

[
A 0 C
0 B∗ C

]
− r(N). (3.29)

(b) Under the condition that (3.21) has a solution, the X̂ in (3.26) satisfies AX̂B �C,
and

i±(AX̂B) = r(A)+ r(B)+ i±(C)− i±(N), (3.30)

r(X̂) = r(AX̂B) = 2r(A)+2r(B)+ r(C)− r(N), (3.31)

r(AX̂B−C ) = i+(AX̂B−C ) = 2r

[
A 0 C
0 B∗ C

]
− r(N). (3.32)

Proof. Under the condition that (3.2) has a solution, set U =W = 0 in (3.3). Then
we see that the X̂ in (3.26) is a solution of AXB � C. Also note from (3.18) that

AX̂B = (AX̂B)∗ = C−CM(M∗CM)†M∗C, (3.33)
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AX̂B−C = (AX̂B−C)∗ = −CM(M∗CM)†M∗C � 0. (3.34)

In this case, applying (2.37) and (2.32) to (3.33) and (3.34), we obtain

r(X̂) = r[A†CB†−A†CM(M∗CM)†M∗CB† ]

= r

[
M∗CM M∗CB†

A†CM A†CB†

]
− r(M∗CM), (3.35)

i±(AX̂B) = i±[C−CM(M∗CM)†M∗C ]

= i±
[
M∗CM M∗C
CM C

]
− i±(M∗CM), (3.36)

r(AX̂B−C ) = i−(AX̂B−C ) = r[CM(M∗CM)†M∗C ]

= r

[
M∗CM M∗C
CM 0

]
− r(M∗CM). (3.37)

Applying elementary matrix operations, congruence matrix operations and (2.29), we
obtain

r

[
M∗CM M∗CB†

A†CM A†CB†

]
= r

⎛
⎝

⎡
⎣EA

FB

A†

⎤
⎦C[EA, FB, B† ]

⎞
⎠

= r

⎛
⎝

⎡
⎣ Im

FB

A†

⎤
⎦C[EA, Im, B† ]

⎞
⎠ = r(C), (3.38)

i±
[
M∗CM M∗C
CM C

]
= i±

[
0 0
0 C

]
= i±(C), (3.39)

r

[
M∗CM M∗C
CM 0

]
= 2r(M∗C) = 2r

[
A 0 C
0 B∗ C

]
−2r(A)−2r(B). (3.40)

Substituting these formulas into (3.35)–(3.37) yields (3.27)–(3.29). Results (b) can be
shown similarly. �

COROLLARY 3.4. Let A ∈ Cm×p, B ∈ Cq×m and C ∈ Cm
H be given, and M and

N be as given in (3.1). Also assume that (3.2) is feasible, and define

S1 = {X ∈ C
p×q | AXB � C}. (3.41)

Then, the following hold.

(a) The minimal matrices of AXB and AXB−C subject to X ∈ S1 in the Löwner
partial ordering are given by

min
�

{AXB | X ∈ S1} = C−CM(M∗CM)†M∗C, (3.42)

min
�

{AXB−C | X ∈ S1} = −CM(M∗CM)†M∗C. (3.43)
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(b) The maximal and minimal ranks and partial inertias of AXB and AXB−C sub-
ject to X ∈ S1 are given by

max
X∈S1

r(AXB) = max
X∈S1

i+(AXB) = r(A)+ r(B)− r[A, B∗ ], (3.44)

min
X∈S1

r(AXB) = min
X∈S1

i+(AXB) = r(A)+ r(B)+ i+(C)− i+(N), (3.45)

max
X∈S1

i−(AXB) = r(A)+ r(B)+ i−(C)− i−(N), (3.46)

min
X∈S1

i−(AXB) = 0, (3.47)

max
X∈S1

r(AXB−C ) = r(N)− r(A)− r(B)− r[A, B∗ ], (3.48)

min
X∈S1

r(AXB−C ) = r

[
A 0 C
0 B∗ C

]
− r(A)− r(B). (3.49)

In consequence, the following hold.

(c) There exists an X ∈ C
p×q such that AXB � 0 and AXB � C if and only if

r[A, B∗ ] = r(A)+ r(B)−m.

(d) There exists an X ∈ Cp×q such that 0 � AXB � C if and only if C ≺ 0 and

r

[
A 0 C
0 B∗ C

]
= r(A)+ r(B).

(e) There exists an X ∈ Cp×q such that 0 � AXB � C if and only if C � 0.

(f) There always exists an X ∈ Cp×q such that AXB � 0 and AXB � C.

Proof. From (3.18), both AXB and AXB−C subject to X ∈S1 can be written as

AXB = (AXB)∗ = C−CM(M∗CM)†M∗C+EMUU∗EM

= AX̂B+EMUU∗EM, (3.50)

AXB−C = (AXB−C)∗ = −CM(M∗CM)†M∗C+EMUU∗EM

= AX̂B−C+EMUU∗EM. (3.51)

Hence,

AXB � C−CM(M∗CM)†M∗C, AXB−C � −CM(M∗CM)†M∗C (3.52)

hold for any U ∈ C
m×m , which implies (3.42) and (3.43).

Applying elementary matrix operations, congruence matrix operations, (2.29) and
(3.16), we obtain

r(EM) = m− r(M) = r(A)+ r(B)− r[A, B∗ ], (3.53)

r[EM, AX̂B ] = r(EM)+ r(AX̂BM) = r(EM)+ r[ (AX̂B)∗EA, AX̂BFB ]
= r(EM) = r(A)+ r(B)− r[A, B∗ ], (3.54)

i±
[
AX̂B EM

EM 0

]
= i±

[
0 EM

EM 0

]
= r(EM) = r(A)+ r(B)− r[A, B∗ ]. (3.55)
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Applying (2.64)–(2.69) to (3.50) and (3.51) and simplifying by (3.53)–(3.55), we obtain

max
X∈S1

r(AXB) = max
U∈Cm×m

r(AX̂B+EMUU∗EM )

= r[EM, AX̂B ] = r(A)+ r(B)− r[A, B∗ ],

min
X∈S1

r(AXB) = min
U∈Cm×m

r(AX̂B+EMUU∗EM )

= i+(AX̂B)+ r[EM, AX̂B ]− i+

[
AX̂B EM

EM 0

]
= r(A)+ r(B)+ i+(C)− i+(N),

max
X∈S1

i+(AXB) = max
U∈Cm×m

i+(AX̂B+EMUU∗EM )

= i+

[
AX̂B EM

EM 0

]
= r(A)+ r(B)− r[A, B∗ ],

min
X∈S1

i+(AXB) = min
U∈Cm×m

i+(AX̂B+EMUU∗EM )

= i+(AX̂B) = r(A)+ r(B)+ i+(C)− i+(N),

max
X∈S1

i−(AXB) = max
U∈Cm×m

i−(AX̂B+EMUU∗EM )

= i−(AX̂B) = r(A)+ r(B)+ i−(C)− i−(N),

min
X∈S1

i−(AXB) = min
U∈Cm×m

i−(AX̂B+EMUU∗EM )

= r[EM, AX̂B ]− i+

[
AX̂B EM

EM 0

]
= 0,

establishing (3.44)–(3.49). Note from (3.18), that

r(AXB−C ) = r[−CM(M∗CM)†M∗C+EMUU∗EM ]

= r[−CM(M∗CM)†M∗C, EMUU∗EM ] = r[CM, EMU ].

Hence, we can find from (2.27), (2.28), (3.40) and (3.14) that

max
X∈S1

r(AXB−C ) = max
U∈Cm×m

r[CM, EMU ]

= r[CM, EM ] = r(M∗CM)+ r(EM)
= r(N)− r(A)− r(B)− r[A, B∗ ],

min
X∈S1

r(AXB−C ) = min
U∈Cm×m

r[CM, EMU ]

= r(CM) = r

[
A 0 C
0 B∗ C

]
− r(A)− r(B),

establishing (3.48) and (3.49). Result (b) can be shown similarly. �
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COROLLARY 3.5. Let A ∈ Cm×p, B ∈ Cq×m and C ∈ Cm
H be given, and M and

N be as given in (3.1). Also assume that (3.21) is feasible, and define

S2 = {X ∈ C
p×q | AXB � C}. (3.56)

Then, the following hold.

(a) The maximal matrices of AXB and AXB−C subject to X ∈ S2 in the Löwner
partial ordering are given by

max
�

{AXB | X ∈ S2} = C−CM(M∗CM)†M∗C, (3.57)

max
�

{AXB−C | X ∈ S2} = −CM(M∗CM)†M∗C. (3.58)

(b) The maximal and minimal ranks and partial inertias of AXB and AXB−C sub-
ject to X ∈ S2 are given by

max
X∈S2

r(AXB) = max
X∈S2

i−(AXB) = r(A)+ r(B)− r[A, B∗ ], (3.59)

min
X∈S2

r(AXB) = min
X∈S2

i−(AXB) = r(A)+ r(B)+ i−(C)− i−(N), (3.60)

max
X∈S2

i+(AXB) = r(A)+ r(B)+ i+(C)− i+(N), (3.61)

min
X∈S2

i+(AXB) = 0, (3.62)

max
X∈S2

r(AXB−C ) = r(N)− r(A)− r(B)− r[A, B∗ ], (3.63)

min
X∈S2

r(AXB−C ) = r

[
A 0 C
0 B∗ C

]
− r(A)− r(B). (3.64)

In consequence, the following hold.

(c) There exists an X ∈ Cp×q such that AXB ≺ 0 and AXB � C if and only if
r[A, B∗ ] = r(A)+ r(B)−m.

(d) There exists an X ∈ Cp×q such that 0 ≺ AXB � C if and only if C � 0 and

r

[
A 0 C
0 B∗ C

]
= r(A)+ r(B).

(e) There exists an X ∈ Cp×q such that 0 � AXB � C if and only if C � 0.

(f) There always exists an X ∈ Cp×q such that AXB � 0 and AXB � C.

In what follows, we give some consequences of Theorem 3.1 for different choice
of C in (1.2).

THEOREM 3.6. Let A ∈ Cm×p, B ∈ Cq×m and C ∈ Cm
H be given, and M be as

given in (3.1), and assume that AXB = C is consistent. Then, the following hold.
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(a) The general solution of AXB � C and the corresponding AXB can be written as

X = A†CB† +A†EMUU∗EMB† +W −A†AWBB†, (3.65)

AXB =C+EMUU∗EM, (3.66)

where U ∈ Cm×m and W ∈ Cp×q are arbitrary.

(b) There exists an X ∈ Cp×q such that AXB �C if and only if r(A) = r(B) = m. In
this case, the general solution X of AXB �C and the corresponding AXB can
be written as

X = A†CB† +A†UB† +W −A†AWBB†, (3.67)

AXB = C+U, (3.68)

where 0 ≺U and W ∈ Cp×q are arbitrary.

(c) The general solution X of AXB �C and the corresponding AXB can be written
as

X = A†CB†−A†EMUU∗EMB† +W −A†AWBB†, (3.69)

AXB =C−EMUU∗EM, (3.70)

where U ∈ Cm×m and W ∈ Cp×q are arbitrary.

(d) There exists an X ∈ Cp×q such that AXB ≺C if and only if r(A) = r(B) = m. In
this case, the general solution X of AXB ≺C and the corresponding AXB can
be written in the following parametric forms

X = A†CB†−A†UB† +W −A†AWBB†, (3.71)

AXB = C−U, (3.72)

where 0 ≺U and W ∈ C
p×q are arbitrary.

COROLLARY 3.7. Let A ∈ C
m×p, B ∈ C

q×m and C ∈ C
m×m be given, and let M

be as given in (3.1). Then, the following hold.

(a) The inequality
AXB � −CC∗ (3.73)

is always feasible ; the general solution X of (3.73) and the corresponding AXB
can be written as

X = −A†CC∗B† +A†C(M∗C)†(M∗C)C∗B† +A†EMUU∗EMB† +W −A†AWBB†,
(3.74)

AXB = −CC∗ +C(M∗C)†(M∗C)C∗ +EMUU∗EM, (3.75)

where U ∈ C
m×m and W ∈ C

p×q are arbitrary.
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(b) There exists an X ∈ Cp×q such that

AXB �−CC∗ (3.76)

if and only if r

[
A 0 C
0 B∗ C

]
= m + r[A, B∗ ]. In this case, the general solution X

of (3.76) can be written as (3.74), in which U ∈ Cm×m is any matrix such that
r[CC∗M, EMU ] = m, and W ∈ Cp×q is arbitrary.

(c) The inequality
AXB � CC∗ (3.77)

is always feasible ; the general solution X of (3.77) and the corresponding AXB
can be written in the following parametric forms

X = A†CC∗B†−A†C(M∗C)†(M∗C)C∗B†−A†EMUU∗EMB† +W −A†AWBB†,
(3.78)

AXB = CC∗ −C(M∗C)†(M∗C)C∗ +EMUU∗EM, (3.79)

where U ∈ Cm×m and W ∈ Cp×q are arbitrary.

(d) There exists an X ∈ Cp×q such that

AXB ≺CC∗ (3.80)

if and only if r

[
A 0 C
0 B∗ C

]
= m+ r[A, B∗ ]. In this case, the general solution X of

(3.80) can be written as (3.78), in which U is any matrix such that r[CC∗M, EMU ]
= m, and W ∈ Cp×q is arbitrary.

COROLLARY 3.8. Let A ∈ Cm×p, B ∈ Cq×m and C ∈ Cm×m be given, and let M
be as given in (3.1). Then, the following hold.

(a) There exists an X ∈ Cp×q such that

AXB � CC∗ (3.81)

if and only if
R(C) ⊆ R(A) and R(C) ⊆ R(B∗). (3.82)

In this case, the general solution X of (3.81) and the corresponding AXB can
be written as

X = A†CC∗B† +A†EMUU∗EMB† +W −A†AWBB†, (3.83)

AXB = CC∗ +EMUU∗EM, (3.84)

where U ∈ C
m×m and W ∈ C

p×q are arbitrary.
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(b) There exists an X ∈ Cp×q such that

AXB �CC∗ (3.85)

if and only if r(A) = r(B) = m. In this case, the general solution X of (3.85) can
be written as (3.83), in which U ∈ C

m×m is any matrix with r(EMU) = m, and
W ∈ Cp×q is arbitrary.

(c) There exists an X ∈ Cp×q such that

AXB � −CC∗ (3.86)

if and only if (3.82) holds. In this case, the general solution X of (3.86) can be
written as

X = −A†CC∗B†−A†EMUU∗EMB† +W −A†AWBB†, (3.87)

AXB = −CC∗ −EMUU∗EM, (3.88)

where U ∈ Cm×m and W ∈ Cp×q are arbitrary.

(d) There exists an X ∈ Cp×q such that

AXB ≺−CC∗ (3.89)

if and only if r(A) = r(B) = m. In this case, the general solution X of (3.89) can
be written as (3.87), in which U ∈ Cm×m is any matrix with r(EMU) = m, and
W ∈ Cp×q is arbitrary.

COROLLARY 3.9. Let A ∈ Cm×p, B ∈ Cq×m be given, and let M be as given in
(3.1). Then, the following hold.

(a) The general solution X ∈ Cp×q of

AXB � 0 (3.90)

and the corresponding AXB can be written as

X = A†EMUU∗EMB† +W −A†AWBB†, (3.91)

AXB = EMUU∗EM, (3.92)

where U ∈ Cm×m and W ∈ Cp×q are arbitrary.

(b) There exists an X ∈ Cp×q such that

AXB � 0 (3.93)

if and only if r(A) = r(B) = m. In this case, the general solution X of (3.93) can
be written as (3.91), in which U ∈ Cm×m is any matrix such that r(EMU) = m,
and W ∈ Cp×q is arbitrary.
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We next establish a group of formulas for calculating the ranks and inertias of
AXB−D subject to (3.2), and use the results obtained to derive necessary and sufficient
conditions for the following two-sided inequality

D � AXB � C (3.94)

and their variations to hold.

COROLLARY 3.10. Let A ∈ Cm×p, B ∈ Cq×m and C, D ∈ Cm
H be given, and let

S1 be of the forms in (3.41), and define

K1 =

⎡
⎢⎢⎢⎢⎣

C C C A 0
C C C 0 B∗
C C C−D 0 0
A∗ 0 0 0 0
0 B 0 0 0

⎤
⎥⎥⎥⎥⎦, K2 =

⎡
⎢⎢⎣

D D A 0
D D 0 B∗
A∗ 0 0 0
0 B 0 0

⎤
⎥⎥⎦, K3 =

[
A 0 D
0 B∗ D

]
. (3.95)

Then, the maximal and minimal ranks and partial inertias of AXB−D subject to X ∈
S1 are given by

max
X∈S1

r(AXB−D) = r(K3)− r[A, B∗ ], (3.96)

min
X∈S1

r(AXB−D) = i+(K1)+ r(K3)− r(K2), (3.97)

max
X∈S1

i+(AXB−D) = i−(K2)− r[A, B∗ ], (3.98)

max
X∈S1

i−(AXB−D) = i−(K1)− i−(K2), (3.99)

min
X∈S1

i+(AXB−D) = i+(K1)− i+(K2), (3.100)

min
X∈S1

i−(AXB−D) = r(K3)− i−(K2). (3.101)

In consequence, the following hold.

(a) There exists an X ∈ Cp×q such that AXB � D and AXB � C if and only if
i−(K2) = r[A, B∗ ]+m.

(b) There exists an X ∈ Cp×q such that D � AXB � C if and only if D � C and
i−(K1) = i−(K2)+m.

(c) There exists an X ∈ Cp×q such that D � AXB � C if and only if D � C and
i+(K1) = i+(K2).

(d) There exists an X ∈Cp×q such that AXB�C and AXB �D f and only if r(K3) =
i−(K2).

Proof. From (3.17), AXB−D subject to X ∈ S1 can be written as

AXB−D = C−D−CM(M∗CM)†M∗C+EMUU∗EM

= AX̂B−D+EMUU∗EM. (3.102)
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where X̂ and AX̂B are defined in (3.26) and (3.33). Applying (2.29), (3.13), (3.14),
(3.53)–(3.55) and elementary matrix operations, we obtain

r[EM, AX̂B−D ] = r[EM, D ] = r(EM)+ r(DM) = r(EM)+ r[DEA, DFB ]

= r

[
A 0 D
0 B∗ D

]
− r[A, B∗ ] = r(K3)− r[A, B∗ ], (3.103)

i±
[
AX̂B−D EM

EM 0

]
= i±

[−D EM

EM 0

]
= i∓(M∗DM)+ r(EM)

= i∓(K2)− r[A, B∗ ], (3.104)

i±(AX̂B−D) = i±[C−D−CM(M∗CM)†M∗C ]

= i±
[
M∗CM M∗C
CM C−D

]
− i±(M∗CM)

= i±

⎡
⎢⎢⎢⎢⎣

C C C A 0
C C C 0 B∗
C C C−D 0 0
A∗ 0 0 0 0
0 B 0 0 0

⎤
⎥⎥⎥⎥⎦− i±

⎡
⎢⎢⎣

C C A 0
C C 0 B∗
A∗ 0 0 0
0 B 0 0

⎤
⎥⎥⎦

= i±(K1)− i±(K2). (3.105)

Applying (2.64)–(2.69) to (3.102) and simplifying by (3.103)–(3.105), we obtain

max
X∈S1

r(AXB−D) = max
U∈Cm×m

r(AX̂B−D+EMUU∗EM ) = r[EM, AX̂B−D ]

= r(K3)− r[A, B∗ ],

min
X∈S1

r(AXB−D) = min
U∈Cm×m

r(AX̂B−D+EMUU∗EM )

= i+(AX̂B−D)+ r[EM, AX̂B−D ]− i+

[
AX̂B−D EM

EM 0

]
= i+(K1)+ r(K3)− r(K2),

max
X∈S1

i+(AXB−D) = max
U∈Cm×m

i+(AX̂B−D+EMUU∗EM ) = i+

[
AX̂B−D EM

EM 0

]
= i−(K2)− r[A, B∗ ],

max
X∈S1

i−(AXB−D) = max
U∈Cm×m

i−(AX̂B−D+EMUU∗EM ) = i−(AX̂B−D)

= i−(K1)− i−(K2),

min
X∈S1

i+(AXB−D) = min
U∈Cm×m

i+(AX̂B−D+EMUU∗EM ) = i+(AX̂B−D)

= i+(K1)− i+(K2),
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min
X∈S1

i−(AXB−D) = min
U∈Cm×m

i−(AX̂B−D+EMUU∗EM )

= r[EM, AX̂B−D ]− i+

[
AX̂B−D EM

EM 0

]
= r(K3)− i−(K2),

as required for (3.96)–(3.101). �

4. General Hermitian solution of AXA∗ � B(� B, � B, ≺ B) and its properties

The LMIs in (1.3) are the simplest case of all LMIs with symmetric pattern. Due
to the importance of matrix inequalities in the Löwner partial ordering, any contribu-
tion on this type of LMIs is valuable from both theoretical and practical points of view.
Some previous work on solvability and general solutions of (1.3) and their applica-
tions in system and control theory were given in [20] by using SVDs of matrices. In
a recent paper [24], necessary and sufficient conditions for the LMIs in (1.3) to hold
were obtained by using some expansion formulas for the inertia of the matrix function
B−AXA∗ , while general Hermitian solution of AXA∗ � B was established in [28]. In
this section, we reconsider (1.3) and give a group of complete conclusions on Hermitian
solutions of the LMIs and their algebraic properties.

THEOREM 4.1. Let A ∈ Cm×n and B ∈ Cm
H be given, and let N =

[
B A
A∗ 0

]
.

(a) Then, the following statements are equivalent :

(i) There exists an X ∈ Cn
H such that

AXA∗ � B. (4.1)

(ii) EABEA � 0 and R(EABEA) = R(EAB).

(iii) i−(EABEA) = r(EAB).

(iv) i+(N) = r(A) and i−(N) = r[A, B ].

In this case, the general Hermitian solution X of (4.1) and the corresponding
AXA∗ can be written in the following parametric forms

X = A†B(A†)∗ −A†BEA(EABEA)†EAB(A†)∗ +UU∗+W −A†AWA†A, (4.2)

AXA∗ = B−BEA(EABEA)†EAB+AUU∗A∗, (4.3)

where U ∈ Cn×n and W ∈ Cn
H are arbitrary.

(b) There exists an X ∈ Cn
H such that

AXA∗ � B (4.4)
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if and only if
EABEA � 0 and r(EABEA) = r(EA). (4.5)

In this case, the general Hermitian solution X of (4.1) can be written as (4.2), in
which U is any matrix such that r[BEA, AU ] = m, say, U = In, and W ∈ Cn

H is
arbitrary.

(c) [28] The following statements are equivalent :

(i) There exists an X ∈ Cn
H such that

AXA∗ � B. (4.6)

(ii) EABEA � 0 and R(EABEA) = R(EAB).

(iii) i+(EABEA) = r(EAB).

(iv) i+(N) = r[A, B ] and i−(N) = r(A).

In this case, the general Hermitian solution X of (4.6) and the corresponding
AXA∗ can be written in the following parametric forms

X = A†B(A†)∗ −A†BEA(EABEA)†EAB(A†)∗ −UU∗+W −A†AWA†A, (4.7)

AXA∗ = B−BEA(EABEA)†EAB−AUU∗A∗, (4.8)

where U ∈ Cn×n and W ∈ Cn
H are arbitrary.

(d) There exists an X ∈ Cn
H such that

AXA∗ ≺ B (4.9)

if and only if EABEA � 0 and r(EABEA) = r(EA) . In this case, the general
Hermitian solution X of (4.9) can be written as (4.7), in which U is any matrix
such that r[BEA, AU ] = m, say, U = In, and W ∈ Cn

H is arbitrary.

Proof. Inequality (4.1) can be relaxed to the following quadratic matrix equation

AXA∗ = B+YY ∗. (4.10)

By Lemma 2.3(a), (4.10) is solvable for X if and only if EA(B+YY ∗) = 0, that is,

EAYY ∗ = −EAB. (4.11)

By Lemma 2.1(b), (4.11) is solvable for YY ∗ if and only if EABEA � 0 and r(EABEA) =
r(EAB) , establishing the equivalence of (i) and (ii) in (a). The equivalence of (ii) and
(iii) in (a) follows from (2.33) and i−(EABEA) � r(EABEA) � r(EAB) . The equivalence
of (iii) and (iv) in (a) follows from (2.33). In this case, the general solution YY ∗ of
(4.11) can be written as

YY ∗ = −BEA(EABEA)†EAB+AA†VV ∗AA†,
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where V is an arbitrary matrix. Substituting the YY ∗ into (4.10) gives

AXA∗ = B−BEA(EABEA)†EAB+AA†VV ∗AA†. (4.12)

By Lemma 2.3(a), the general Hermitian solution X of (4.12) can be written as

X = A†B(A†)∗ −A†BEA(EABEA)†EAB(A†)∗ +A†VV ∗(A†)∗ +W −A†AWA†A, (4.13)

where V ∈ Cm×m and W ∈ Cn
H are arbitrary. Replacing A†VV ∗(A†)∗ with UU∗ gives

(4.2), which is also the general solution X of (4.1).
It can be seen from (4.3) that (4.4) holds if and only if

−BEA(EABEA)†EAB+AUU∗A∗ � 0 (4.14)

for some U . Under (ii) in (a), we have

r[−BEA(EABEA)†EAB+AUU∗A∗ ] = r[−BEA(EABEA)†EAB, AUU∗A∗ ]
= r[BEA, AU ].

Hence,

max
U

r[−BEA(EABEA)†EAB+AUU∗A∗ ] = max
U

r[BEA, AU ]

= r[BEA, A ] = r(EABEA)+ r(A),

so that (4.4) holds if and only if r(EABEA)+ r(A) = m. Thus (b) follows. Results (c)
and (d) can be shown similarly. �

Concerning the constant term in (4.2), we have the consequence.

COROLLARY 4.2. Let A ∈ Cm×n and B ∈ Cm
H be given, and let

X̂ = A†B(A†)∗ −A†BEA(EABEA)†EAB(A†)∗. (4.15)

Then, the following hold.

(a) Under the condition that (4.1) is feasible, X̂ is a Hermitian solution of (4.1), and

i+(X̂) = i+(AX̂A∗) = i+(B), (4.16)

i−(X̂) = i−(AX̂A∗) = r(A)+ i−(B)− r[A, B ], (4.17)

r(X̂) = r(AX̂A∗) = r(A)+ r(B)− r[A, B ], (4.18)

i−(B−AX̂A∗ ) = r(B−AX̂A∗ ) = r(B)− r(AX̂A∗ ) = r[A, B ]− r(A). (4.19)

(b) Under the condition that (4.6) is feasible, X̂ is a Hermitian solution of (4.6), and

i+(X̂) = i+(AX̂A∗) = r(A)+ i+(B)− r[A, B ], (4.20)

i−(X̂) = i−(AX̂A∗) = i−(B), (4.21)

r(X̂) = r(AX̂A∗) = r(A)+ r(B)− r[A, B ], (4.22)

i+(B−AX̂A∗ ) = r(B−AX̂A∗ ) = r(B)− r(AX̂A∗ ) = r[A, B ]− r(A). (4.23)
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Proof. Under the condition that (4.1) has a solution, set U = W = 0 in (4.2), we
see that X̂ in (4.15) is a Hermitian solution of AXA∗ � B. In this case, applying (2.37)
to (4.15) and simplifying by congruence matrix operations, we obtain

i±(X̂) = i±[A†B(A†)∗ −A†BEA(EABEA)†EAB(A†)∗ ]

= i±
[
EABEA EAB(A†)∗
A†BEA A†B(A†)∗

]
− i±(EABEA)

= i±
[

B B(A†)∗
A†B A†B(A†)∗

]
− i±(EABEA)

= i±
[
B 0
0 0

]
− i±(EABEA) = i±(B)− i±(EABEA), (4.24)

i±(AX̂A∗) = i±[B−BEA(EABEA)†EAB ]

= i±
[
EABEA EAB
BEA B

]
− i±(EABEA)

= i±
[
0 0
0 B

]
− i±(EABEA)

= i±(B)− i±(EABEA). (4.25)

In consequence,

i+(X̂) = i+(AX̂A∗) = i+(B),

i−(X̂) = i−(AX̂A∗) = i−(B)− i−(EABEA)
= i−(B)− r(EAB) = i−(B)+ r(A)− r[A, B ],

establishing (4.16), (4.17) and (4.18). Applying (2.37) and simplifying by congruence
matrix operations, we obtain

i±(B−AX̂A∗ ) = i±[BEA(EABEA)†EAB ]

= i±
[−EABEA EAB

BEA 0

]
− i∓(EABEA)

= i±
[

0 EAB
BEA 0

]
− i∓(EABEA)

= r(EAB)− i∓(EABEA). (4.26)

In consequence,

i+(B−AX̂A∗ ) = r(EAB)− i−(EABEA) = r(EAB)− r(EABEA) = 0,

i−(B−AX̂A∗ ) = r(EAB)− i+(EABEA) = r[A, B ]− r(A),

establishing (4.19). Result (b) can be shown similarly. �

The following two corollaries are derived from Corollaries 3.3 and 3.4.
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COROLLARY 4.3. Let A ∈Cm×n and B∈ Cm
H be given. Then, the following hold.

(a) Under the condition that (4.1) is feasible, define

S1 = {X ∈ C
n
H | AXA∗ � B}. (4.27)

Then, the minimal matrices of AXA∗ and AXA∗ −B subject to X ∈ S1 in the
Löwner partial ordering are given by

min
�

{AXA∗ | X ∈ S1} = B−BEA(EABEA)†EAB, (4.28)

min
�

{AXA∗−B | X ∈ S1} = −BEA(EABEA)†EAB, (4.29)

while the maximal and minimal ranks and partial inertias of AXA∗ and AXA∗−
B subject to X ∈ S1 are given by

max
X∈S1

r(AXA∗) = max
X∈S1

i+(AXA∗) = r(A), (4.30)

min
X∈S1

r(AXA∗) = min
X∈S1

i+(AXA∗) = i+(B), (4.31)

max
X∈S1

i−(AXA∗) = r(A)+ i−(B)− r[A, B ], (4.32)

min
X∈S1

i−(AXA∗) = 0, (4.33)

max
X∈S1

r(AXA∗ −B) = r[A, B ], (4.34)

min
X∈S1

r(AXA∗ −B) = r[A, B ]− r(A). (4.35)

(b) Under the condition that (4.6) is feasible, and define

S2 = {X ∈ C
n
H | AXA∗ � B}. (4.36)

Then, the maximal matrices of AXA∗ and AXA∗ −B subject to X ∈ S2 in the
Löwner partial ordering are given by

max
�

{AXA∗ | X ∈ S2} = B−BEA(EABEA)†EAB, (4.37)

max
�

{AXA∗−B | X ∈ S2} = −BEA(EABEA)†EAB, (4.38)

while the maximal and minimal ranks and partial inertias of AXA∗ and AXA∗−
B subject to X ∈ S2 are given by

max
X∈S2

r(AXA∗) = max
X∈S2

i−(AXA∗) = r(A), (4.39)

min
X∈S2

r(AXA∗) = min
X∈S2

i−(AXA∗) = i−(B), (4.40)

max
X∈S2

i+(AXA∗) = r(A)+ i+(B)− r[A, B ], (4.41)



32 YONGGE TIAN

min
X∈S2

i+(AXA∗) = 0, (4.42)

max
X∈S2

r(AXA∗ −B) = r[A, B ], (4.43)

min
X∈S2

r(AXA∗ −B) = r[A, B ]− r(A). (4.44)

COROLLARY 4.4. Let A∈C
m×n and B∈C

m
H be given, and assume that AXA∗ =

B is consistent. Then, the following hold.

(a) The general Hermitian solution X of AXA∗ � B and the corresponding AXA∗
can be written as

X = A†B(A†)∗ +UU∗+W −A†AWA†A, (4.45)

AXA∗ = B+AUU∗A∗, (4.46)

where U ∈ Cn×n and W ∈ Cn
H are arbitrary.

(b) There exists an X ∈ Cn
H such that AXA∗ � B if and only if r(A) = m. In this

case, the general Hermitian solution X of AXA∗ � B and the corresponding
AXA∗ can be written as

X = A†B(A†)∗ +UU∗+W −A†AWA†A, (4.47)

AXA∗ = B+AUU∗A∗, (4.48)

where U ∈ Cn×n is any matrix such that r(AU) = m and W ∈ Cn
H is arbitrary.

(c) The general Hermitian solution X of AXA∗ � B and the corresponding AXA∗
can be written as

X = A†B(A†)∗ −UU∗+W −A†AWA†A, (4.49)

AXA∗ = B−AUU∗A∗, (4.50)

where U ∈ Cn×n and W ∈ Cn
H are arbitrary.

(d) There exists an X ∈ Cn
H such that AXA∗ ≺ B if and only if r(A) = m. In this

case, the general Hermitian solution X of AXA∗ ≺ B and the corresponding
AXA∗ can be written as

X = A†B(A†)∗ −UU∗+W −A†AWA†A, (4.51)

AXA∗ = B−AUU∗A∗, (4.52)

where U ∈ Cn×n is any matrix such that r(AU) = m and and W ∈ Cn
H is arbi-

trary.



LINEAR MATRIX INEQUALITIES IN THE LÖWNER PARTIAL ORDERING 33

THEOREM 4.5. Let A∈Cm×n and B∈Cm×m be given. Then, the following hold.

(a) The inequality
AXA∗ � −BB∗ (4.53)

is always feasible ; the general Hermitian solution X of (4.53) and the corre-
sponding AXA∗ can be written in the following parametric forms

X = A†B(EAB)†(EAB)B∗(A†)∗ −A†BB∗(A†)∗ +UU∗+W −A†AWA†A, (4.54)

AXA∗ = B(EAB)†(EAB)B∗ −BB∗+AUU∗A∗, (4.55)

where U ∈ Cn×n and W ∈ Cn
H are arbitrary.

(b) There exists an X ∈ Cn×n such that

AXA∗ � −BB∗ (4.56)

if and only if r[A, B ] = m. In this case, the general Hermitian solution X of
(4.56) can be written as (4.54), in which U is any matrix such that r(AU) = r(A),
say, U = In, and W ∈ Cn

H is arbitrary.

(c) The inequality
AXA∗ � BB∗ (4.57)

is always feasible ; the general Hermitian solution X of (4.57) and the corre-
sponding AXA∗ can be written in the following parametric forms

X = A†BB∗(A†)∗ −A†B(EAB)†(EAB)B∗(A†)∗ −UU∗+W −A†AWA†A, (4.58)

AXA∗ = BB∗ −B(EAB)†(EAB)B∗ −AUU∗A∗, (4.59)

where U ∈ Cn×n and W ∈ Cn
H are arbitrary.

(d) There exists an X ∈ Cn×n such that

AXA∗ ≺ BB∗ (4.60)

if and only if r[A, B ] = m. In this case, the general Hermitian solution X of
(4.60) can be written as (4.58), in which U is any matrix such that r(AU) = r(A),
say, U = In, and W ∈ Cn

H is arbitrary.

COROLLARY 4.6. Let A ∈ Cm×n and B ∈ Cm×m be given. Then, the following
hold.

(a) There exists an X ∈ Cn×n such that

AXA∗ � BB∗ (4.61)

if and only if R(B) ⊆ R(A). In this case, the general Hermitian solution X of
(4.61) and the corresponding AXA∗ can be written in the following parametric
forms

X = A†BB∗(A†)∗ +UU∗+W −A†AWA†A, (4.62)
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AXA∗ = BB∗ +AUU∗A∗, (4.63)

where U ∈ Cn×n and W ∈ Cn
H are arbitrary.

(b) There exists an X ∈ Cn×n such that

AXA∗ � BB∗ (4.64)

if and only if r(A) = m. In this case, the general Hermitian solution X of (4.64)
can be written as (4.62), in which U ∈ Cn×n is any matrix such that r(AU) = m,
and W ∈ Cn

H is arbitrary.

(c) There exists an X ∈ Cn
H such that

AXA∗ � −BB∗ (4.65)

if and only if R(B) ⊆ R(A). In this case, the general Hermitian solution X of
(4.65) and the corresponding AXA∗ can be written in the following parametric
forms

X = −A†BB∗(A†)∗ −UU∗+W −A†AWA†A, (4.66)

AXA∗ = −BB∗ −AUU∗A∗, (4.67)

where U ∈ Cn×n and W ∈ Cn
H are arbitrary.

(d) There exists an X ∈ Cn
H such that

AXA∗ ≺ −BB∗ (4.68)

if and only if r(A) = m. In this case, the general Hermitian solution X of (4.68)
can be written as (4.66), in which U ∈ Cn×n is any matrix such that r(AU) = m,
and W ∈ Cn

H is arbitrary.

COROLLARY 4.7. ([24]) Let A ∈ Cm×n be given. Then, the following hold.

(a) The general solution X of AXA∗ � 0 and the corresponding AXA∗ can be written
in the following parametric forms

X = UU∗+W −A†AWA†A, (4.69)

AXA∗ = AUU∗A∗, (4.70)

where U ∈ Cn×n and W ∈ Cn
H are arbitrary.

(b) There exists an X ∈ Cn
H such that AXA∗ � 0 if and only if r(A) = m. In this

case, the general Hermitian solution X of AXA∗ � 0 can be written as (4.69), in
which U ∈ C

n×n with r(AU) = m and W ∈ C
n
H are arbitrary.
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(c) The general Hermitian solution X of AXA∗ � 0 and the corresponding AXA∗
can be written in the following parametric forms

X = −UU∗+W −A†AWA†A, (4.71)

AXA∗ = −AUU∗A∗, (4.72)

where U ∈ Cn×n and W ∈ Cn
H are arbitrary.

(d) There exists an X ∈ Cn
H such that AXA∗ ≺ 0 if and only if r(A) = m. In this

case, the general Hermitian solution X of AXA∗ ≺ 0 can be written as (4.71), in
which U ∈ Cn×n is any matrix such that r(AU) = m, and W ∈ Cn

H is arbitrary.

THEOREM 4.8. Let A∈Cm×m and B∈Cm×m be given. Then, the following hold.

(a) There exists an X ∈ Cm×m such that

AXX∗A∗ � BB∗ (4.73)

if and only if R(B)⊆R(A). In this case, the general solution XX∗ of (4.73) and
the corresponding AXX∗A∗ can be written in the following parametric forms

XX∗ = [A†(BB∗ +AUU∗A∗ )1/2 +FAW ][A†(BB∗ +AUU∗A∗ )1/2 +FAW ]∗,
(4.74)

AXX∗A∗ = BB∗ +AUU∗A∗, (4.75)

where U ∈ Cm×m and W ∈ Cm×m are arbitrary.

(b) There exists an X ∈ Cm×m such that

AXX∗A∗ � BB∗ (4.76)

if and only if r(A) = m. In this case, the general solution XX∗ of (4.76) can be
written as

XX∗ = A−1(BB∗ +UU∗ )A−1, (4.77)

AXX∗A∗ = BB∗+UU∗, (4.78)

where U ∈ C
m×m is any matrix with r(U) = m.

Proof. The solvability condition of (4.73) follows from Corollary 4.6(a). In this
case, (4.73) is equivalent to

AXX∗A∗ = BB∗ +AUU∗A∗

by (4.63), and its general solution is (4.74) by Lemma 2.3(c). �

An application to partitioned matrices is given below.
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COROLLARY 4.9. Let

φ(X) =
[
AXA∗ B

B∗ CC∗

]
, (4.79)

where A ∈ Cm×n , B ∈ Cm×p and C ∈ Cp×p are given. Then, the following hold.

(a) There exists an X ∈ Cn
H such that φ(X) � 0 if and only if

R(B) ⊆ R(A) and R(B∗) ⊆ R(C). (4.80)

In this case, the general solution X of φ(X) � 0 can be written in the following
parametric form

X = A†B(CC∗)†B∗(A†)∗ +UU∗+W −A†AWA†A, (4.81)

where U ∈ C
n×n and W ∈ C

n
H are arbitrary.

(b) There exists an X ∈ Cn×n such that φ(X) � 0 in (4.79) if and only if

r(A) = m and r(C) = p. (4.82)

In this case, the general solution X of φ(X) � 0 can be written in the following
parametric form

X = A†B(CC∗)−1B∗(A†)∗ +UU∗+W −A†AWA†A, (4.83)

where U ∈ Cn×n is any matrix such r(AU) = m and W ∈ Cn
H is arbitrary.

Proof. It is easily seen from Lemma 2.9(e) and (f) that

φ(X) � 0 ⇔ R(B) ⊆ R(A), R(B∗) ⊆ R(C) and AXA∗ � B(CC∗)+B∗, (4.84)

φ(X) � 0 ⇔ r(A) = m, r(C) = p and AXA∗ � B(CC∗)+B∗. (4.85)

Solving the two inequalities in (4.84) and (4.85) by Theorem 4.1 leads to (a) and
(b). �

We next solve AXX∗A∗ � BB∗ . It is obvious that the inequality has a trivial solu-
tion X = 0. However, the inequality may only have zero solution in some cases. For
example, the inequality [

x2 0
0 0

]
�

[
1 1
1 1

]

only has a solution x = 0.
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THEOREM 4.10. Let A ∈ Cm×n and B ∈ Cm×m be given. Then, the following
hold.

(a) There exists an X ∈ Cn×n such that both AX 
= 0 and

AXX∗A∗ � BB∗ (4.86)

if and only if
R(A)∩R(B) 
= {0}. (4.87)

In this case, a solution XX∗ of (4.86) and the corresponding AXX∗A∗ can be
written in the following parametric forms

XX∗ = [A†(BFB1VFB1B
∗)1/2 +FAW ][A†(BFB1VFB1B

∗)1/2 +FAW ]∗, (4.88)

AXX∗A∗ = BFB1VFB1B
∗, (4.89)

where B1 = EAB, V is any matrix satisfying 0 ≺ V � Im, and W ∈ Cn×m is
arbitrary. The rank of (4.89) is

max
AXX∗A∗�BB∗ r(AXX∗A∗) = r(A)+ r(B)− r[A, B ]. (4.90)

(b) There exists an X ∈ Cn×n such that AX 
= 0 and

AXX∗A∗ ≺ BB∗ (4.91)

if and only if
A 
= 0 and r(B) = m. (4.92)

In this case, a solution XX∗ of (4.91) can be written as (4.88), in which V is any
matrix satisfying 0 ≺V ≺ Im, and W ∈ Cn×m is arbitrary.

(c) Under the condition R(B) ⊆ R(A), there always exists an X ∈ Cn×n such that
both AX 
= 0 and

AXX∗A∗ � BB∗, (4.93)

and a solution XX∗ of (4.93) and the corresponding AXX∗A∗ can be written in
the following parametric forms

XX∗ = [A†(BVB∗)1/2 +FAW ][A†(BVB∗)1/2 +FAW ]∗, (4.94)

AXX∗A∗ = BVB∗, (4.95)

where V is any matrix satisfying 0 ≺V � Im, and W ∈ Cn×m is arbitrary.

(d) Under the condition R(B) ⊆ R(A), there exists an X ∈ Cn×n such that AX 
= 0
and

AXX∗A∗ ≺ BB∗ (4.96)

if and only if r(B) = m. In this case, a solution XX∗ of (4.96) can be written
as (4.94), in which V is any matrix satisfying 0 ≺ V ≺ Im, and W ∈ Cn×m is
arbitrary.
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Proof. It can be seen from Lemma 2.9(g) that if there exists an X such that AX 
= 0
and (4.86) hold, then R(AX) ⊆ R(B) , which obviously implies that (4.87) holds. On
the other hand, it can be derived from EABFEAB = 0 that

AA†BFEAB = BFEAB, (4.97)

and from (2.27) and (2.28) that

r(BFEAB) = r

[
B

EAB

]
− r(EAB) = r(A)+ r(B)− r[A, B ] = dim[R(A)∩R(B)]. (4.98)

Hence if (4.87) holds, then BFEAB 
= 0 and R(BFEAB) = R(A)∩R(B) by (4.97) and
(4.98). In this case,

AA†BFEABVFEABB∗(A†)∗A = BFEABVFEABB∗.

Thus we can derive from (4.88) and Lemma 2.10(c) that

BB∗ −AXX∗A∗ = BB∗ −BFEABVFEABB∗ = B( Im −FEABVFEAB )B∗ � 0,

that is, (4.88) is a solution of (4.86). The two conditions in (4.92) are obvious under the
condition that both AX 
= 0 and (4.91) hold. Conversely, if (4.92) holds, we can derive
from (4.91) and Lemma 2.10(d) that Im−FEABVFEAB � 0 and

BB∗ −AXX∗A∗ = BB∗ −BFEABVFEABB∗ = B( Im −FEABVFEAB )B∗ � 0.

Results (c) and (d) are direct consequences of (a) and (b). �
A direct consequence of Corollary 3.10 is given below.

COROLLARY 4.11. Let A ∈ C
m×n and B, C ∈ C

m
H be given, and let S1 be of the

form in (4.27), and define

K1 =

⎡
⎣ B B A

B B−C 0
A∗ 0 0

⎤
⎦, K2 =

[
C A
A∗ 0

]
. (4.99)

Then, the maximal and minimal ranks and partial inertias of AXA∗ −C subject to
X ∈ S1 are given by

max
X∈S1

r(AXA∗ −C ) = r[A, C ], (4.100)

min
X∈S1

r(AXA∗ −C ) = i+(K1)− r(K2)+ r[A,C ], (4.101)

max
X∈S1

i+(AXA∗ −C ) = i−(K2), (4.102)

max
X∈S1

i−(AXA∗ −C ) = i−(K1)− i−(K2), (4.103)

min
X∈S1

i+(AXA∗ −C ) = i+(K1)− i+(K2), (4.104)

min
X∈S1

i−(AXA∗ −C ) = r[A, C ]− i−(K2). (4.105)

In consequence, the following hold.
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(a) There exists an X ∈ Cn
H such that AXA∗ � B and AXA∗ � C if and only if

i−(K2) = m.

(b) There exists an X ∈ C
n
H such that C � AXA∗ � B if and only if C � B and

i−(K1) = i−(K2)+m.

(c) There exists an X ∈ Cn
H such that C � AXA∗ � B if and only if C � B and

i+(K1) = i+(K2).

(d) There exists an X ∈ Cn
H such that AXA∗ � B and AXA∗ � C f and only if

i−(K2) = r[A, C ].

5. General solution of AX +(AX)∗ � B(� B, � B, ≺ B) and its properties

The inequality in (1.4) was approached in [25] by using a relaxation method and
their general solutions were given analytically. In this section, we reconsider this in-
equality and give some new conclusions on algebraic properties of its solutions.

THEOREM 5.1. Let A ∈ Cm×n and B ∈ Cm
H be given, and let M =

[
B A
A∗ 0

]
. Then,

the following hold.

(a) [25] The following statements are equivalent :

(i) There exists an X ∈ Cn×m such that

AX +(AX)∗ � B. (5.1)

(ii) EABEA � 0.

(iii) i+(M) = r(A).

In this case, the general solution X of (5.1) and the corresponding AX +(AX)∗
can be written in the following parametric forms

X =
1
2
A†BÂ+

1
2
A†(AU + J

1
2 )(AU + J

1
2 )∗Â+VA∗+FAW, (5.2)

AX +(AX)∗ = B+(AU + J
1
2 )(AU + J

1
2 )∗, (5.3)

where J = −EABEA, Â = 2Im − AA†, and U, W ∈ Cn×m and V ∈ Cn
SH are

arbitrary.

(b) [25] There exists an X ∈ Cn×m such that

AX +(AX)∗ � B (5.4)

if and only if
EABEA � 0 and R(EABEA) = R(EA), (5.5)

or equivalently, i−(M) = m. In this case, the general solution X of (5.4) can

be written as (5.2), in which U is any matrix such that r(AU + J
1
2 ) = m, say,

U = A∗, V ∈ C
n
SH and W ∈ C

n×m are arbitrary.
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(c) Under (a), let
S1 = {X ∈ C

n×m | AX +(AX)∗ � B}. (5.6)

Then, the maximal and minimal ranks and partial inertias of AX + (AX)∗ and
AX +(AX)∗−B subject to X ∈ S1 are given by

max
X∈S1

r[AX +(AX)∗ ] = min{2r(A), r[A, B ]}, (5.7)

min
X∈S1

r[AX +(AX)∗ ] = max{2r(A)+2r[A, B ]−2r(M), r(B)−m,

i+(B)+ r(A)+ r[A, B ]− r(M),
i−(B)+ r(A)+ r[A, B ]− r(M)−m}, (5.8)

max
X∈S1

i+[AX +(AX)∗ ] = r(A), (5.9)

max
X∈S1

i−[AX +(AX)∗ ] = min{r(A), i−(B)} , (5.10)

min
X∈S1

i+[AX +(AX)∗ ] = max{r[A, B ]+ r(A)− r(M), i+(B)} , (5.11)

min
X∈S1

i−[AX +(AX)∗ ] = r[A, B ]+ r(A)− r(M), (5.12)

max
X∈S1

r[AX +(AX)∗−B ] = r(M)− r(A), (5.13)

min
X∈S1

r[AX +(AX)∗−B ] = r(M)−2r(A). (5.14)

In consequence, the following hold.

(d) There exists an X ∈ Cn×m such that AX + (AX)∗ � 0 and AX + (AX)∗ � B if
and only if r(A) = m.

(e) There exists an X ∈Cn×m such that 0� AX +(AX)∗ � B if and only if r(A) = m
and B ≺ 0.

(f) There exists an X ∈ Cn×m such that AX + (AX)∗ � 0 and AX + (AX)∗ � B if
and only if r(N) = r[A, B ]+ r(A).

(g) There exists an X ∈ Cn×m such that 0 � AX +(AX)∗ � B if and only if B � 0.

Proof. Inequality (5.1) can be relaxed to the following quadratic matrix equation

AX +(AX)∗ = B+YY ∗, (5.15)

where Y ∈ Cm×m . From Lemma 2.4(a), there exists an X that satisfies (5.15) if and
only if YY ∗ satisfies EA(B+YY ∗ )EA = 0, that is,

EAYY ∗EA = −EABEA = J. (5.16)

Further by Lemma 2.3(c), there exists a YY ∗ that satisfies (5.16) if and only if (ii) of
(a) holds, in which case, the general solution of (5.16) can be written as

YY ∗ = (AU + J
1
2 )(AU + J

1
2 )∗, (5.17)
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where U ∈ Cn×m is arbitrary. Substituting this YY ∗ into (5.15) gives

AX +(AX)∗ = B+(AU + J
1
2 )(AU + J

1
2 )∗. (5.18)

Applying Lemma 2.4(a) to this equation, we obtain (5.2).
Setting (5.13) equal to m gives r(M)− r(A) = m , i.e., r(EABEA) = r(EA) by

(2.33), which is further equivalent to (5.5). The equivalence of i−(M) = m and (5.5)
follows from (2.33) and i−(EABEA) � r(EABEA) � r(EA) .

Applying Lemma 2.13(a) to (5.18), we obtain

max
U∈Cn×m

r[B+(AU + J
1
2 )(AU + J

1
2 )∗ ] = min

{
r[A, B, J

1
2 ], r

[
B+ J A
A∗ 0

]
, r(B)+m

}
,

(5.19)

min
U∈Cn×m

r[B+(AU + J
1
2 )(AU + J

1
2 )∗ ] = 2r[A, B, J

1
2 ]+max{h1, h2, h3, h4 },

(5.20)

max
U∈Cn×m

i+[B+(AU + J
1
2 )(AU + J

1
2 )∗ ] = min

{
i+

[
B+ J A
A∗ 0

]
, i+(B)+m

}
, (5.21)

max
U∈Cn×m

i−[B+(AU + J
1
2 )(AU + J

1
2 )∗ ] = min

{
i−

[
B+ J A
A∗ 0

]
, i−(B)

}
, (5.22)

min
U∈Cn×m

i+[B+(AU + J
1
2 )(AU + J

1
2 )∗ ]

= r[A, B, J
1
2 ]+max

{
i+

[
B+ J A
A∗ 0

]
− r

[
B A J

1
2

A∗ 0 0

]
, i+(B)− r[A, B ]

}
, (5.23)

min
U∈Cn×m

i−[B+(AU + J
1
2 )(AU + J

1
2 )∗ ]

= r[A, B, J
1
2 ]+max

{
i−

[
B+ J A
A∗ 0

]
− r

[
B A J

1
2

A∗ 0 0

]
, i−(B)− r[A, B ]−m

}
, (5.24)

where

h1 = r

[
B+ J A
A∗ 0

]
−2r

[
B A J

1
2

A∗ 0 0

]
,

h2 = r(B)−2r[A, B ]−m,

h3 = i−
[
B+ J A
A∗ 0

]
− r

[
B A J

1
2

A∗ 0 0

]
+ i+(B)− r[A, B ],

h4 = i+

[
B+ J A
A∗ 0

]
− r

[
B A J

1
2

A∗ 0 0

]
+ i−(B)− r[A, B ]−m.

Simplifying the ranks and partial inertias of the block matrices in (5.19)–(5.24) gives

r[A, B, J
1
2 ] = r[A, B, J ] = r[A, B, EABEA ] = r[A, B ], (5.25)

i±
[
B+ J A
A∗ 0

]
= i±

[
B−EABEA A

A∗ 0

]
= i±

[
0 A
A∗ 0

]
= r(A), (5.26)
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r

[
B A J

1
2

A∗ 0 0

]
= r

[
B A J
A∗ 0 0

]
= r

[
B A EABEA

A∗ 0 0

]

= r

[
B A BEA

A∗ 0 0

]
= r

⎡
⎣B A B
A∗ 0 0
0 0 A∗

⎤
⎦− r(A)

= r

⎡
⎣B A 0
A∗ 0 0
0 0 A∗

⎤
⎦− r(A) = r

[
B A
A∗ 0

]
. (5.27)

Substituting (5.25)–(5.27) into (5.19)–(5.24) gives (5.7)–(5.12). It can be seen from
(5.18) that

r[AX +(AX)∗−B ] = r(AU + J
1
2 ). (5.28)

Hence, we derive from (2.43) that

maxr[AX +(AX)∗−B ] = max
U

r(AU + J
1
2 ) = r[A, J

1
2 ]

= r[A, EABEA ] = r(A)+ r(EABEA) (by (2.27))

minr[AX +(AX)∗−B ] = min
U

r(AU + J
1
2 ) = r[A, J

1
2 ]− r(A)

= r[A, EABEA ]− r(A) = r(EABEA) (by (2.27)),

establishing (5.13) and (5.14). �
The following results can be shown similarly.

THEOREM 5.2. Let A ∈ Cm×n and B, C ∈ Cm
H be given, and let M =

[
B A
A∗ 0

]
.

Then, the following hold.

(a) [25] The following statements are equivalent :

(i) There exists an X ∈ C
n×m such that

AX +(AX)∗ � B. (5.29)

(ii) EABEA � 0.

(iii) i−(M) = r(A).

In this case, the general solution X of (5.29) and the corresponding AX +(AX)∗
can be written in the following parametric forms

X =
1
2
A†BÂ− 1

2
A†(AU +K

1
2 )(AU +K

1
2 )∗Â+VA∗+FAW, (5.30)

AX +(AX)∗ = B− (AU +K
1
2 )(AU +K

1
2 )∗, (5.31)

where K = EABEA, Â = 2Im−AA†, U, W ∈ C
n×m and V ∈ C

n
SH are arbitrary.
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(b) [25] There exists an X ∈ Cn×m such that

AX +(AX)∗ ≺ B (5.32)

if and only if

EABEA � 0 and R(EABEA) = R(EA), (5.33)

or equivalently, i+(M) = m. In this case, the general solution X of (5.32) can

be written as (5.30), in which U is any matrix such that r(AU +K
1
2 ) = m, say,

U = A∗, V ∈ C
n
SH and W ∈ C

n×m are arbitrary.

(c) Under (a), let

S2 = {X ∈ C
n×m | AX +(AX)∗ � B}. (5.34)

Then,

max
X∈S2

r[AX +(AX)∗ ] = min{2r(A), r[A, B ]}, (5.35)

min
X∈S2

r[AX +(AX)∗ ] = max{2r(A)+2r[A, B ]−2r(N), r(B)−m,

i+(B)+ r(A)+ r[A, B ]− r(N)−m,

i−(B)+ r(A)+ r[A, B ]− r(N)}, (5.36)

max
X∈S2

i+[AX +(AX)∗ ] = min{r(A), i+(B)} , (5.37)

max
X∈S2

i−[AX +(AX)∗ ] = r(A), (5.38)

min
X∈S2

i+[AX +(AX)∗ ] = r[A, B ]+ r(A)− r(N), (5.39)

min
X∈S2

i−[AX +(AX)∗ ] = max{r[A, B ]+ r(A)− r(N), i−(B)} , (5.40)

max
X∈S2

r[AX +(AX)∗−B ] = r(N)− r(A), (5.41)

min
X∈S2

r[AX +(AX)∗−B ] = r(N)−2r(A). (5.42)

In consequence, the following hold.

(d) There exists an X ∈C
n×m such that 0≺ AX +(AX)∗ � B if and only if r(A) = m

and B � 0.

(e) There exists an X ∈ Cn×m such that AX + (AX)∗ ≺ 0 and AX + (AX)∗ � B if
and only if r(A) = m.

(f) There exists an X ∈ Cn×m such that AX + (AX)∗ � 0 and AX + (AX)∗ � B if
and only if r(N) = r[A, B ]+ r(A).

(g) There exists an X ∈ Cn×m such that 0 � AX +(AX)∗ � B if and only if B � 0.
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Theorem 5.1 established identifying conditions for the LMI in (1.4) to be solvable,
and gave general expression of the matrix X satisfying (1.4). In particular, the general
solutions in (5.2) and (5.30) are represented in closed-form by using generalized in-
verses of the given matrices and arbitrary matrices. Hence, they can be directly used
to deal with various problems on the inequality in (1.4) and its properties. In what fol-
lows, we present some consequences of Theorem 5.1 when A and B satisfy some more
conditions.

COROLLARY 5.3. Let A ∈ Cm×n and B ∈ Cm
H be given, and assume that there

exists an X ∈ C
n×m such that AX +(AX)∗ = B. Then, the following hold.

(a) The general solution X ∈ Cn×m of

AX +(AX)∗ � B (5.43)

and the corresponding AX +(AX)∗ can be written in the following parametric
forms

X =
1
2
A†B(2Im −AA† )+UU∗A∗ +VA∗+FAW, (5.44)

AX +(AX)∗ = B+2AUU∗A∗, (5.45)

where U ∈ Cn×n, W ∈ Cn×m and V ∈ Cn
SH are arbitrary.

(b) There exists an X ∈ Cn×m such that

AX +(AX)∗ � B (5.46)

if and only if r(A) = m. In this case, the general solution X of (5.46) can be
written as (5.44), in which U is any matrix such that r(AU) = m, and W ∈Cn×m

and V ∈ Cn
SH are arbitrary.

(c) The general solution X ∈ Cn×m of

AX +(AX)∗ � B (5.47)

and the corresponding AX +(AX)∗ can be written in the following parametric
forms

X =
1
2
A†B(2Im −AA† )−UU∗A∗ +VA∗+FAW, (5.48)

AX +(AX)∗ = B−2AUU∗A∗, (5.49)

where U ∈ Cn×n, W ∈ Cn×m and V ∈ Cn
SH are arbitrary.

(d) There exists an X ∈ Cn×m such that

AX +(AX)∗ ≺ B (5.50)

if and only if r(A) = m. In this case, the general solution X of (5.50) can be
written as (5.48), in which U is any matrix such that r(AU) = m, and W ∈Cn×m

and V ∈ C
n
SH are arbitrary.
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COROLLARY 5.4. Let A ∈ Cm×n and B ∈ Cm×k be given. Then, the following
hold.

(a) There exists an X ∈ Cn×m such that

AX +(AX)∗ � BB∗ (5.51)

if and only if R(B) ⊆ R(A). In this case, the general solution X of (5.51) and
the corresponding AX +(AX)∗ can be written as

X =
1
2
A†BB∗ +UU∗A∗ +VA∗+FAW, (5.52)

AX +(AX)∗ = BB∗ +2AUU∗A∗, (5.53)

where U ∈ Cn×n, V ∈ Cn
SH and W ∈ Cn×m are arbitrary.

(b) There exists an X ∈ Cn×m such that

AX +(AX)∗ � BB∗ (5.54)

if and only if both R(B)⊆R(A) and r(A) = m. In this case, the general solution
X of (5.54) can be written as (5.52), in which U is any matrix with r(AU) = m,
and V ∈ C

n
SH and W ∈ C

n×m are arbitrary.

(c) There exists an X ∈ Cn×m such that

AX +(AX)∗ � −BB∗ (5.55)

if and only if R(B) ⊆ R(A). In this case, the general solution X of (5.55) and
the corresponding AX +(AX)∗ can be written as

X = −1
2
A†BB∗ −UU∗A∗ +VA∗+FAW, (5.56)

AX +(AX)∗ = −BB∗ −2AUU∗A∗, (5.57)

where U ∈ Cn×n, V ∈ Cn
SH and W ∈ Cn×m are arbitrary.

(d) There exists an X ∈ Cn×m such that

AX +(AX)∗ ≺ −BB∗ (5.58)

if and only if both R(B)⊆R(A) and r(A) = m. In this case, the general solution
X of (5.58) can be written as (5.56), in which U is any matrix with r(AU) = m,
and V ∈ Cn

SH and W ∈ Cn×m are arbitrary.
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COROLLARY 5.5. Let B ∈ Cn×n be given. Then, the following hold.

(a) The general solution X ∈ Cn×n of

X +X∗ � BB∗ (5.59)

and the corresponding X +X∗ can be written as

X =
1
2
BB∗ +UU∗+V −V ∗, (5.60)

X +X∗ = BB∗ +2UU∗, (5.61)

where U, V ∈ Cn×n are arbitrary.

(b) The general solution X ∈ Cn×n of

X +X∗ � BB∗ (5.62)

can be written as (5.60), in which U, V ∈ Cn×n are arbitrary with r(U) = n.

(c) The general solution X ∈ Cn×n of

X +X∗ � BB∗ (5.63)

and the corresponding X +X∗ can be written as

X =
1
2
BB∗ −UU∗+V −V ∗, (5.64)

X +X∗ = BB∗ −2UU∗, (5.65)

where U, V ∈ Cn×n are arbitrary.

(d) The general solution X ∈ Cn×n of the inequality

X +X∗ ≺ BB∗ (5.66)

can be written as (5.64), in which U, V ∈ Cn×n are arbitrary with r(U) = n.

COROLLARY 5.6. Let A ∈ C
m×n be given. Then, the following hold.

(a) The general solution X ∈ Cn×m of

AX +(AX)∗ � 0 (5.67)

and the corresponding AX +(AX)∗ can be written as

X = UU∗A∗ +VA∗+FAW, (5.68)

AX +(AX)∗ = 2AUU∗A∗, (5.69)

where U ∈ C
n×n, V ∈ C

n
SH and W ∈ C

n×m are arbitrary.
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(b) There exists an X ∈ Cn×m such that

AX +(AX)∗ � 0 (5.70)

if and only if r(A) = m. In this case, the general solution X can be written as
in (5.68), in which U ∈ Cn×n is any matrix with r(AU) = m, V ∈ Cn

SH and
W ∈ Cn×m are arbitrary.

(c) The general solution X ∈ Cn×m of

AX +(AX)∗ � 0 (5.71)

and the corresponding AX +(AX)∗ can be written as

X = −UU∗A∗ +VA∗+FAW, (5.72)

AX +(AX)∗ = −2AUU∗A∗, (5.73)

where U ∈ Cn×n, V ∈ Cn
SH and W ∈ Cn×m are arbitrary.

(d) There exists an X ∈ Cn×m such that

AX +(AX)∗ ≺ 0 (5.74)

if and only if r(A) = m. In this case, the general solution X can be written as
(5.72), in which U ∈ C

n×n is any matrix with r(AU) = m, and V ∈ C
n
SH and

W ∈ Cn×m are arbitrary. In particular, if A is square and nonsingular, then the
general solution X of (5.74) can be written as

X = −UU∗A∗ +VA∗, (5.75)

where U ∈ Cn×n is any matrix with r(AU) = m, and V ∈ Cn
SH is arbitrary.

As an application of Theorems 5.1 and 5.2, we next give solutions of the inequality
(A+B)X +X∗(A+B)∗ � AB+BA , which was considered for A � 0 and B � 0 in Chan
and Kwong [6].

COROLLARY 5.7. Let A, B ∈ Cm×n be given. Then, there always exists an X ∈
Cn×m that satisfies

(A+B)X +X∗(A+B)∗ � AB∗ +BA∗. (5.76)

The general solution X of (5.76) and the corresponding (A+B)X +X∗(A+B)∗ can
be written as

X =
1
2
(A+B)∗+

1
2

( UU∗ +V −V ∗)(A+B)∗+F(A+B)W, (5.77)

(A+B)X +X∗(A+B)∗ = (A+B)(A+B)∗+(A+B)UU∗(A+B)∗, (5.78)

where U,V, W ∈ C
n×n are arbitrary. In particular, there exists an X ∈ C

m×m such that

(A+B)X +X∗(A+B)∗ � AB+BA (5.79)

if and only if r(A+B) = m.
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We next establish a group of formulas for calculating the ranks and inertias of
AX +(AX)∗ −C subject to (5.1), and use the results obtained to derive necessary and
sufficient conditions for the following two-sided LMI

C � AX +(AX)∗ � B (5.80)

and their variations to hold.

THEOREM 5.8. Let A ∈ Cm×n and B, C ∈ Cm
H be given, and assume that (5.1) is

solvable for X . Also let S1 be as given in (5.6), and let

N =
[
C A
A∗ 0

]
, K1 =

⎡
⎣B C A
A∗ 0 0
0 A∗ 0

⎤
⎦, K2 =

[
B C A
A∗ A∗ 0

]
. (5.81)

Then, the maximal and minimal ranks and partial inertias of AX +(AX)∗ −C subject
to X ∈ S1 are given by

max
X∈S1

r[AX +(AX)∗−C ] = min{r(K2)− r(A), r(N)} , (5.82)

min
X∈S1

r[AX +(AX)∗−C ] = max{ t1, t2, t4, t4 }, (5.83)

max
X∈S1

i+[AX +(AX)∗−C ] = i−(N), (5.84)

max
X∈S1

i−[AX +(AX)∗−C ] = min{ i−(B−C ), i+(N)} , (5.85)

min
X∈S1

i+[AX +(AX)∗−C ] = max{r(K2)+ i−(N)− r(K1),

r(K2)+ i+(B−C )− r[A, B−C ]− r(A)}, (5.86)

min
X∈S1

i−[AX +(AX)∗−C ] = max{r(K2)+ i+(N)− r(K1),

r(K2)+ i−(B−C )− r[A, B−C ]− r(A)−m},
(5.87)

where

t1 = 2r(K2)+ r(N)−2r(K1),
t2 = 2r(K2)+ r(B−C )−2r[A, B−C ]−2r(A)−m,

t3 = 2r(K2)+ i+(N)+ i+(B−C )− r(A)− r[A, B−C ]− r(K1),
t4 = 2r(K2)+ i−(N)+ i−(B−C )− r(A)− r[A, B−C ]− r(K1)−m.

In consequence, the following hold.

(a) There exists an X ∈ Cn×m such that C � AX +(AX)∗ � B if and only if i+(N) �
m and C � B.

(b) There exists an X ∈ Cn×m such that AX +(AX)∗ � B and AX +(AX)∗ � C if
and only if i−(N) � m.
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(c) There exists an X ∈ Cn×m such that AX +(AX)∗ � B and AX +(AX)∗ � C if
and only if

r(K2)+ i+(N)− r(K1) = 0 and r(K2)+ i−(B−C ) = r[A, B−C ]+ r(A)+m.

(d) There exists an X ∈ Cn×m such that C � AX +(AX)∗ � B if and only if

C � B, i−(N) = r(A) and r(K2) = r[A, B−C ]+ r(A).

Proof. Note from (5.3) that

AX +(AX)∗−C = B−C+(AU + J
1
2 )(AU + J

1
2 )∗. (5.88)

Applying Lemma 2.13(a) to (5.88), we obtain

max
U∈Cn×m

r[B−C+(AU + J
1
2 )(AU + J

1
2 )∗ ]

= min

{
r[A, B−C, J

1
2 ], r

[
B−C+ J A

A∗ 0

]
, r(B−C )+m

}
, (5.89)

min
U∈Cn×m

r[B−C+(AU + J
1
2 )(AU + J

1
2 )∗ ]

= 2r[A, B−C, J
1
2 ]+max{h1, h2, h3, h4}, (5.90)

max
U∈Cn×m

i+[B−C+(AU + J
1
2 )(AU + J

1
2 )∗ ]

= min

{
i+

[
B−C+ J A

A∗ 0

]
, i+(B−C )+m

}
, (5.91)

max
U∈Cn×m

i−[B−C+(AU + J
1
2 )(AU + J

1
2 )∗ ]

= min

{
i−

[
B−C+ J A

A∗ 0

]
, i−(B−C )

}
, (5.92)

min
U∈Cn×m

i+[B−C+(AU + J
1
2 )(AU + J

1
2 )∗ ]

= r[A, B−C, J
1
2 ]

+max

{
i+

[
B−C+ J A

A∗ 0

]
− r

[
B−C A J

1
2

A∗ 0 0

]
, i+(B−C )− r[A, B−C ]

}
, (5.93)

min
U∈Cn×m

i−[B−C+(AU + J
1
2 )(AU + J

1
2 )∗ ]

= r[A, B−C, J
1
2 ]

+max

{
i−

[
B−C+ J A

A∗ 0

]
− r

[
B−C A J

1
2

A∗ 0 0

]
, i−(B−C )− r[A, B−C ]−m

}
, (5.94)

where

h1 = r

[
B−C+ J A

A∗ 0

]
−2r

[
B−C A J

1
2

A∗ 0 0

]
,
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h2 = r(B−C )−2r[A, B−C ]−m,

h3 = i−
[
B−C+ J A

A∗ 0

]
− r

[
B−C A J

1
2

A∗ 0 0

]
+ i+(B−C )− r[A, B−C ],

h4 = i+

[
B−C+ J A

A∗ 0

]
− r

[
B−C A J

1
2

A∗ 0 0

]
+ i−(B−C )− r[A, B−C ]−m.

Simplifying the ranks and partial inertias of the block matrices in (5.89)–(5.94) gives

r[A, B−C, J
1
2 ] = r[A, B−C, J ] = r[A, B−C, EABEA ] = r[A, B−C, BEA ]

= r

[
A B−C B
0 0 A∗

]
− r(A) = r

[
B C A
A∗ A∗ 0

]
− r(A), (5.95)

i±
[
B−C+ J A

A∗ 0

]
= i±

[
B−C−EABEA A

A∗ 0

]
= i∓

[
C A
A∗ 0

]
, (5.96)

r

[
B−C A J

1
2

A∗ 0 0

]
= r

[
B−C A J
A∗ 0 0

]
= r

[
B−C A EABEA

A∗ 0 0

]

= r

[
B−C A BEA

A∗ 0 0

]
= r

⎡
⎣B−C A B

A∗ 0 0
0 0 A∗

⎤
⎦− r(A)

= r(K1)− r(A). (5.97)

Substituting (5.95)–(5.97) into (5.89)–(5.94) gives (5.82)–(5.87). �
The following result can be shown similarly.

THEOREM 5.9. Let A ∈ Cm×n and B, C ∈ Cm
H be given, and assume that (5.29)

is solvable for X . Also let S2 be as given in (5.34), and let

N =
[
C A
A∗ 0

]
, K1 =

⎡
⎣B C A
A∗ 0 0
0 A∗ 0

⎤
⎦, K2 =

[
B C A
A∗ A∗ 0

]
.

Then, the maximal and minimal ranks and partial inertias of AX +(AX)∗ −C subject
to X ∈ S2 are given by

max
X∈S2

r[AX +(AX)∗−C ] = min{r(K2)− r(A), r(N)} ,

min
X∈S2

r[AX +(AX)∗−C ] = max{ t1, t2, t4, t4 },
max
X∈S2

i+[AX +(AX)∗−C ] = min{ i+(B−C ), i−(N)} ,

max
X∈S2

i−[AX +(AX)∗−C ] = i+(N),

min
X∈S2

i+[AX +(AX)∗−C ] = max{r(K2)+ i−(N)− r(K1),

r(K2)+ i+(B−C )− r[A, B−C ]− r(A)−m},
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min
X∈S2

i−[AX +(AX)∗−C ] = max{r(K2)+ i+(N)− r(K1),

r(K2)+ i−(B−C )− r[A, B−C ]− r(A)},
where

t1 = 2r(K2)+ r(N)−2r(K1),
t2 = 2r(K2)+ r(B−C )−2r[A, B−C ]−2r(A)−m,

t3 = 2r(K2)+ i−(N)+ i−(B−C )− r(A)− r[A, B−C ]− r(K1),
t4 = 2r(K2)+ i+(N)+ i+(B−C )− r(A)− r[A, B−C ]− r(K1)−m.

In consequence, the following hold.

(a) There exists an X ∈ Cn×m such that C ≺ AX +(AX)∗ � B if and only if i−(N) �
m and B �C.

(b) There exists an X ∈ Cn×m such that AX +(AX)∗ � B and AX +(AX)∗ ≺ C if
and only if i+(N) � m.

(c) There exists an X ∈ Cn×m such that AX +(AX)∗ � B and AX +(AX)∗ � C if
and only if

r(K2)+ i−(N)− r(K1) = 0 and r(K2)+ i+(B−C ) = r[A, B−C ]+ r(A)+m.

(d) There exists an X ∈ Cn×m such that C � AX +(AX)∗ � B if and only if

C � B, i+(N) = r(A) and r(K2) = r[A, B−C ]+ r(A).

6. Concluding remarks

In the previous sections, we started a fundamental work on finding analytical so-
lutions of three types of simple LMIs in (1.2)–(1.4). We first converted the LMIs to
some equivalent quadratic matrix equations and then derive necessary and sufficient
conditions for these LMIs to be feasible and obtained general solutions of these LMIs
by using the theory of generalized inverses of matrices. Since the results obtained in
the previous sections are represented in closed form by using the ranks, inertias and
ordinary operations of the given matrices and their generalized inverses, they can be
easily used to approach various problems related to these basic LMIs in matrix theory
and applications. In particular, they can be used to solve mathematical programming
and optimization problems subject to LMIs in (1.2)–(1.4).

Based on the results in the previous sections, it is not hard to establish analytical
solutions of the following constrained LMIs:

(a) AXB � C (�C, � C, ≺C) subject to PX = Q and/or XR = S;

(b) AXA∗ � B(� B, � B, ≺ B) subject to PX = Q and X = X∗ , or PXP∗ = Q and
X = X∗;



52 YONGGE TIAN

(c) AX +(AX)∗ � C (�C, � C, ≺C) subject to PX = Q .

The results obtained altogether will greatly enrich the fundamental theory of LMIs. In
addition, the work in this paper will also motivate finding possible analytical solutions
of some general LMIs, such as,

(d) AX +YB � C (�C, � C, ≺C) ;

(e) AXA∗+BYB∗ � C (�C, � C, ≺C) ;

(f) AXA∗ � B(� B, � B, ≺ B) and CXC∗ � D(� D, � D, ≺ D) ;

(g) AXB+(AXB)∗ � C (�C, � C, ≺C) ,

which are equivalent to the following linear-quadratic matrix equations:

(d1) AX +YB = C±UU∗ ;

(e1) AXA∗+BYB∗ = C±UU∗ ;

(f1) AXA∗ = B±UU∗ and CXC∗ = D±VV ∗ ;

(g1) AXB+(AXB)∗ = C±UU∗.

A special case of (g) for C � 0 was solved in [32].
In system and control theory, minimizing or maximizing the rank of matrix with

variable entries (partially-specified matrix) over a set defined by matrix inequalities in
the Löwner partial ordering is referred to as a rank minimization or maximization prob-
lem, and is denoted collectively by RMPs. RMPs now are known to be NP-hard in
general case, and a satisfactory characterization of solution set of a general RMP is not
available. Notice, however, from the results in this paper that for some types of ma-
trix inequality in the Löwner partial ordering, their general solutions can be written in
closed form by using the given matrices and their generalized inverses in the inequal-
ities. Hence, it is expected that the results in this paper can be used to solve certain
general RMPs. These further developments are beyond the scope of the present paper
and will be the subjects of separate studies.

After a half century’s development of the theory of generalized inverses of ma-
trices, people now are widely using generalized inverses of matrices to solve a huge
amount of problems in matrix theory and applications. In particular, one can utilize
them to represent solutions of matrix equations and inequalities. Since linear algebra is
a successful theory with essential applications in most scientific fields, the methods and
results in matrix theory are prototypes of many concepts and content in other advanced
branches of mathematics. In particular, matrix equations and matrix inequalities in the
Löwner partial ordering, as well as generalized inverses of matrices were sufficiently
extended to their counterparts for operators in a Hilbert space, or elements in a ring with
involution, and their algebraic properties were extensively studied in the literature. In
most cases, the conclusions on the complex matrices and their counterparts in general
algebraic settings are analogous. Also, note that the results in this paper are derived
from ordinary algebraic operations of the given matrices and their generalized inverses.
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Hence, it is no doubt that most of the conclusions except those on ranks and inertias
of matrices in this paper can trivially be extended to the corresponding equations and
inequalities for linear operators on a Hilbert space or elements in a ring with involution.
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