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Abstract. This article aims to present some unitarily invariant norms inequalities involving Heron
and Heinz means for matrices. We give some refinements for the results presented by R. Kaur
and M. Singh in [Math. Ineq. Appl., 16 (2013) 93–99].

1. Introduction

Let Mm,n be the space of m×n complex matrices and Mn = Mn,n . Let ‖·‖ denote
any unitarily invariant norm on Mn , i.e., a norm with the property that ‖UAV‖ = ‖A‖
for all A ∈ Mn and for all unitary matrices U,V ∈ Mn . A matrix A∗ ∈ Mn,m is called
conjugate transpose of A ∈Mm,n . Two classes of such norms, a class of Ky Fan k-norm
and a class of Schatten p-norm are especially important. These two classes are defined
respectively as

‖A‖(k) = ∑k
j=1 s j(A) , k = 1,2, ...,n ,

and

‖A‖p = (∑n
j=1 sp

j (A))
1
p , 1 � p < ∞ ,

where s j(A)( j = 1,2, ...,n) are singular values of a matrix A with s1(A) � s2(A) �
... � sn(A) , which are the eigenvalues of positive semidefinite matrix | A |= (AA∗)

1
2 ,

arranged in decreasing order and repeated according to multiplicity.
R. Kaur and M. Singh [4] have proved that for A,B,X ∈ Mn , such that A,B are

positive definite, then for any unitarily invariant norm ‖.‖ , 1/4 � v � 3/4 and α ∈
[1/2,∞) , the following inequality holds

1
2
‖AvXB1−v +A1−vXBv‖ �

∥∥∥(1−α)A
1
2 XB

1
2 + α

(AX +XB
2

)∥∥∥. (1.1)
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For any unitarily invariant norm ‖.‖ , R. Kaur and M. Singh, also proved the fol-
lowing result in [4] ∥∥∥A 1

2 XB
1
2

∥∥∥ � 1
2

∥∥∥A 2
3 XB

1
3 +A

1
3 XB

2
3

∥∥∥
� 1

2+ t

∥∥∥AX +XB+ tA
1
2 XB

1
2

∥∥∥, (1.2)

where A,B,X ∈ Mn , A,B are positive definite and −2 < t � 2.
Obviously, for A,B,X ∈ Mn , such that A,B are positive definite, then for any uni-

tarily invariant norm ‖.‖ , 1/4 � v � 3/4 and α ∈ [1/2,∞) , the following inequalities
hold

‖A 1
2 XB

1
2 ‖ � 1

2
‖AvXB1−v +A1−vXBv‖

�
∥∥∥(1−α)A

1
2 XB

1
2 + α

(AX +XB
2

)∥∥∥, (1.3)

for above first inequality (see [1]).
Set

g(v) =
∥∥∥AvXB1−v +A1−vXBv

2

∥∥∥,
and

f (α) =
∥∥∥(1−α)A

1
2 XB

1
2 + α

(AX +XB
2

)∥∥∥.
Then, the inequalities (1.1), (1.2), (1.3), can be simply rewritten as

g(v) � f (α), (1.4)

g
(1

2

)
� g
(2

3

)
� f
( 2

2+ t

)
, (1.5)

and

g
(1

2

)
� g(v) � f (α), (1.6)

respectively.
In Section 2, we give the refinements of the inequalities (1.4), the second inequality

in (1.5), g( 1
2) � f (α) and g( 1

2 ) � f ( 2
2+t ) , respectively.

2. Main results

First, we give a refinement of the inequality (1.4). The function g(v) is a contin-
uous convex function on [0,1] and attains its minimum at v = 1

2 (see [2, p. 265]). We
utilize the convexity of the function g(v) to obtain unitarily invariant norms inequality
that leads to a refinement of the inequality (1.4).

To do this, we need the following Lemma on convex function [3, 5].
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LEMMA 2.1. Let f be a real valued convex function on an interval [a,b] which
contains (x1,x2) . Then for x1 � x � x2 , we have

f (x) � f (x2)− f (x1)
x2− x1

x− x1 f (x2)− x2 f (x1)
x2− x1

.

THEOREM 2.2. Let A,B,X ∈ Mn , with A,B positive definite. Then for any uni-
tarily invariant norm ‖.‖ , 1/4 � v � 3/4 and α ∈ [1/2,∞) ,

g(v) � (4r0 −1)g
(1

2

)
+2(1−2r0) f (α), (2.1)

where g(v) = ‖AvXB1−v+A1−vXBv

2 ‖ , f (α) = ‖(1−α)A
1
2 XB

1
2 + α(AX+XB

2 )‖ and r0 =
min[v,1− v] .

Proof. For 1
4 � v � 1

2 , since g(v) is a convex function then by Lemma 2.1, we
have

g(v) �
g( 1

2)−g( 1
4)

1
2 − 1

4

v−
1
4g( 1

2)− 1
2g( 1

4 )
1
2 − 1

4

,

i.e.,

g(v) � 2(1−2v)g
(1

4

)
+(4v−1)g

(1
2

)
. (2.2)

By (1.4) and (2.2), we have

g(v) � (4v−1)g
(1

2

)
+2(1−2v) f (α).

So,

g(v) � (4r0 −1)g
(1

2

)
+2(1−2r0) f (α).

Similarly, for 1
2 � v � 3

4 , we have

g(v) �
g( 3

4)−g( 1
2)

3
4 − 1

2

v−
1
2g( 3

4)− 3
4g( 1

2 )
3
4 − 1

2

,

i.e.,

g(v) � (4v−2)g
(3

4

)
+(3−4v)g

(1
2

)
. (2.3)

By (1.4) and (2.3), we have

g(v) � (3−4v)g
(1

2

)
+(4v−2) f (α).

Which is equivalent to the following inequality,

g(v) � (4r0 −1)g
(1

2

)
+2(1−2r0) f (α).
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The proof is completed. �

REMARK 2.3. We give a comparison between the upper bounds in (1.4) and (2.1).

f (α)− (4r0−1)g
(1

2

)
−2(1−2r0) f (α) = (4r0 −1) f (α)− (4r0−1)g

(1
2

)
� (4r0 −1) f (α)− (4r0−1) f (α)
= 0.

Our following result is a refinement of the second inequality in (1.5).

COROLLARY 2.4. Let A,B,X ∈ Mn , with A,B positive definite. Then for any
unitarily invariant norm ‖.‖ , and −2 < t � 2 , we have

g
(2

3

)
� (4r0 −1)g

(1
2

)
+2(1−2r0) f

( 2
2+ t

)
,

where g( 2
3) = 1

2‖A
2
3 XB

1
3 + A

1
3 XB

2
3 ‖ , f ( 2

2+t ) = 1
2+t ‖AX + XB + tA

1
2 XB

1
2 ‖ , g( 1

2) =

‖A 1
2 XB

1
2 ‖ and r0 = min[v,1− v] .

Proof. By taking v = 2
3 and α = 2

2+t in Theorem 2.2, we get the desired re-
sult. �

Now, we give a refinement of the inequality g( 1
2) � f (α) in (1.6).

THEOREM 2.5. Let A,B,X ∈ Mn , with A,B positive definite. Then for any uni-
tarily invariant norm ‖.‖ , 1/4 � v � 3/4 and α ∈ [1/2,∞) ,

g
(1

2

)
+2

(
2
∫ 3

4

1
4

g(v)dv−g
(1

2

))
� f (α), (2.4)

where g(v) = ‖AvXB1−v+A1−vXBv

2 ‖ and f (α) = ‖(1−α)A
1
2 XB

1
2 + α(AX+XB

2 )‖ .

Proof. For 1
4 � v � 1

2 , from Theorem 2.2, we have

g(v) � (4v−1)g
(1

2

)
+2(1−2v) f (α).

Thus ∫ 1
2

1
4

g(v)dv � g
(1

2

)∫ 1
2

1
4

(4v−1)dv+2 f (α)
∫ 1

2

1
4

(1−2v)dv,

which implies that

∫ 1
2

1
4

g(v)dv � 1
8
g
(1

2

)
+

1
8

f (α). (2.5)

For 1
2 � v � 3

4 , from Theorem 2.2, we have

g(v) � (3−4v)g
(1

2

)
+2(2v−1) f (α).
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Thus ∫ 3
4

1
2

g(v)dv � g
(1

2

)∫ 3
4

1
2

(3−4v)dv+2 f (α)
∫ 3

4

1
2

(2v−1)dv,

which implies that

∫ 3
4

1
2

g(v)dv � 1
8
g
(1

2

)
+

1
8

f (α). (2.6)

By (2.5) and (2.6), we have

4
∫ 3

4

1
4

g(v)dv � g
(1

2

)
+ f (α).

So,

g
(1

2

)
+2

(
2
∫ 3

4

1
4

g(v)dv−g
(1

2

))
� f (α).

The proof is completed. �

REMARK 2.6. Obviously,

(
2
∫ 3

4
1
4

g(v)dv−g( 1
2)
)

� 0, so, Theorem 2.5 is a re-

finement of the inequality g( 1
2 ) � f (α) in (1.6).

Our following result is a refinement of the inequality g( 1
2 ) � f ( 2

2+t ) in (1.5).

COROLLARY 2.7. Let A,B,X ∈ Mn , with A,B positive definite. Then for any
unitarily invariant norm ‖.‖ , and −2 < t � 2 , we have

g

(
1
2

)
+2

(
2
∫ 3

4

1
4

g

(
2
3

)
dv−g

(
1
2

))
� f

(
2

2+ t

)
,

where g( 2
3) = 1

2‖A
2
3 XB

1
3 +A

1
3 XB

2
3 ‖ , f ( 2

2+t ) = 1
2+t ‖AX +XB+ tA

1
2 XB

1
2 ‖ and g( 1

2) =

‖A 1
2 XB

1
2 ‖ .

Proof. By taking v = 2
3 and α = 2

2+t in Theorem 2.5, we get the desired re-
sult. �
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