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OPERATORS IN VARIABLE EXPONENT AMALGAM SPACES
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(Communicated by S. Samko)

Abstract. Two–weight estimates for maximal and fractional integral operators in variable expo-
nent amalgam spaces (Lp(·), lq) are established under the log– Hölder continuity condition on
the exponent p(·) . Some of the derived results are new even for constant p .

1. Introduction

Our purpose is to derive necessary and sufficient conditions on a weight pair gov-
erning the two–weight inequality for the maximal and fractional integral operators in
variable exponent amalgam spaces (VEAS) (Lp(·), lq) under the log–Hölder continuity
condition on the exponent p(·) . The derived results are new even for constant p in the
case of potential operators defined on R . The derived criteria are of various types.

The boundedness for maximal and fractional integral operators in unweighted and
weighted variable exponent Lebesgue spaces defined on Euclidean spaces was investi-
gated by many authors (see, e.g., the papers [11], [34], [15], [12], [6], [9], [24], [25],
[20], [21], [22], [28], [29], [14], [8] etc). It should be emphasized that in the last two pa-
pers a complete characterization of the one–weight inequality for the Hardy–Littlewood
maximal operator is given under the Muckhenhoupt–type conditions. We refer also to
the monograph [13] for related topics.

Apart from interesting theoretical considerations, the study of variable exponent
spaces was motivated by a proposed application to modeling electrorheological fluids
(see, [32]), to image restoration (see e.g. [1]), etc.

The paper consists of three sections. In Section 2 we recall some well–known facts
about variable exponent Lebesgue spaces and VEAS; also we prove some lemmas and
propositions needed to prove the main results. In Section 3 we give weight characteri-
zations for maximal and fractional integral operators to be bounded in VEAS.

Finally, we mention that throughout the paper constants (often different constants
in the same series of inequalities) will mainly be denoted by c or C ; by the symbol
p′(x) we denote the function p(x)

p(x)−1 , 1 < p(x) < ∞ ; the relation a ≈ b means that
there are positive constants c1 and c2 such that c1a � b � c2a .
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2. Preliminaries

2.1. Variable exponent Lebesgue spaces

Let E be a measurable set in R with positive measure. We denote:

p−(E) := inf
E

p, p+(E) := sup
E

p

for a measurable function p on E . Suppose that 1 < p−(E) � p+(E) < ∞ . Denote
by ρ a weight function on E . We say that a measurable function f on E belongs to

Lp(·)
ρ (E) (or to Lp(x)

ρ (E)) if

Sp(·),ρ( f ) =
∫
E

∣∣ f (x)ρ(x)
∣∣p(x)

dx < ∞.

It is a Banach space with respect to the norm (see e.g., [26], [33], [37])

‖ f‖
Lp(·)

ρ (E)
= inf

{
λ > 0 : Sp(·),ρ

(
f/λ

)
� 1
}
.

If ρ ≡ const , then we use the symbol Lp(·)(E) (resp. Sp(·) ) instead of Lp(·)
ρ (E)

(resp. Sp(·),ρ ). It is clear that ‖ f‖
L

p(·)
ρ (E)

= ‖ f (·)ρ(·)‖Lp(·)(E) .

In the sequel we will denote by Z and N the set of all integers and the set of
positive integers, respectively.

Let us recall some well–known facts regarding Lp(x) spaces.

PROPOSITION A. ([26], [37], [33]) Let E be a measurable subset of R . Then

(i) ‖ f‖p+(E)
Lp(·)(E)

� Sp(·)( f χE) � ‖ f‖p−(E)
Lp(·)(E)

, ‖ f‖Lp(·)(E) � 1;

‖ f‖p−(E)
Lp(·)(E)

� Sp(·)( f χE) � ‖ f‖p+(E)
Lp(·)(E)

, ‖ f‖Lp(·)(E) � 1;

(ii) Hölder’s inequality

∣∣∣∫
E

f (x)g(x)dx
∣∣∣� ( 1

p−(E)
+

1
(p+(E))′

)
‖ f‖Lp(·)(E) ‖g‖Lp′(·)(E)

holds, where f ∈ Lp(·)(E) , g ∈ Lp′(·)(E) .

PROPOSITION B. ([33], [26], [37]) Let 1 � r(x) � p(x) and let E be a bounded
subset of R . Then the following inequality

‖ f‖Lr(·)(E) � (|E|+1)‖ f‖Lp(·)(E)

holds.
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DEFINITION 2.1. We say that p satisfies the weak Lipschitz (log-Hölder conti-
nuity) condition on E ⊂ R (p ∈WL(E)) , if there is a positive constant A such that for
all x and y in E with 0 < |x− y|< 1/2 the inequality

|p(x)− p(y)| � A/(− ln |x− y|)

holds.

The next statement gives another characterization of the weak Lipschitz condition.

LEMMA A. ([11]) Let I be an interval in R . Then p ∈WL(I) if and only if there
exists a positive constant c such that

|J|p−(J)−p+(J) � c

for all intervals J ⊆ I with |J| > 0 . Moreover, the constant c does not depend on I .

LEMMA B. (see, e.g. [4]) Let 1 < q < q < ∞ and 1
s = 1

q − 1
q . Suppose that

{un} and {vn} are sequences of positive real numbers. The following statements are
equivalent:

(i) There exists C > 0 such that the inequality

{
∑
n∈Z

(|an|un)q
}1/q

� C

{
∑
n∈Z

(|an|vn)q
}1/q

holds for all sequences {an} of real numbers.

(ii)

{
∑

n∈Z

(unvn
−1)s

}1/s

< ∞ .

2.2. Amalgam spaces

Let u be a weight function on R and let f be a measurable function on R . Let us
denote

‖ f‖
(Lp(·)

u (R),lq)
:=
(

∑
n∈Z

‖χ(n,n+1)(·) f (·)‖q

L
p(·)
u (R)

)1/q

.

We define the weighted variable exponent amalgam space by

(Lp(·)
u (R), lq) = { f : ‖ f‖

(Lp(·)
u (R),lq)

< ∞}.

If u ≡ const , then (Lp(·)
u (R), lq) is denoted by (Lp(·)(R), lq) .

Let p ≡ pc ≡ const and u ≡ const . Then we have the usual amalgam (see [38]),
which were introduced by N. Wiener (see [40], [41]) in connection with the develop-
ment of the theory of generalized harmonic analysis.

Some properties of variable exponent amalgam space can be derived in the same
way as for usual amalgams (Lp

u(R), lq) , where p is constant.
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THEOREM A. Let p be a measurable function on R with 1 < p(·) < ∞ and q
is constant with 1 < q < ∞ . The variable exponent amalgam space (Lp(·)(R), lq) is a
Banach space whose dual space is (Lp(·)(R), lq)∗ = (Lp′(·)(R), lq

′
) . Further, Hölder’s

inequality holds in the following form∣∣∣∣
∫
R

f (t)g(t)dt

∣∣∣∣� ‖ f‖(Lp(·)(R),lq)‖g‖(Lp′(·)(R),lq′ ).

Proof. Since Lp(·)(R) is a Banach space and
(
Lp(·)(R)

)∗ = Lp′(·)(R) (see [26]),
from general arguments (see [10], [19], [16], [38]) we have the desired result. �

The next statement for more general amalgam (X , lq) , where X is a Banach space,
can be found in [38].

THEOREM B. Let p be measurable function on R and 1 � q1 � q2 , then

(Lp(·)(R), lq1) ⊂ (Lp(·)(R), lq2).

Other structural properties of amalgams are investigated e.g., in [16] and [38].

DEFINITION 2.2. Let J be a bounded interval in R . We say that a measure μ
satisfies the doubling condition on J (μ ∈DC(J)) if there is a positive constant c such
that for all x ∈ J and all r , 0 < r < |J| , the inequality

μ
(
(x−2r,x+2r)∩ J

)
� cμ

(
(x− r,x+ r)∩ J

)
holds.

For a weight function u , we sometimes denote:

u(E) :=
∫
E

u(x)dx, E ⊆ R.

LEMMA C. ([17], [21]) Let J be a finite interval and let μ be a doubling measure
on J . Suppose that p is an exponent defined on J satisfying the conditions 1 � p−(J)�
p(x) � p+(J) < ∞ and p∈WL(J) . Then there is a positive constant C depending only
on doubling constant d such that for all subintervals I of J ,

(μ(I))p−(I)−p+(I) � C.

Let J be an interval in R , J ⊆ R and let

(M(J)
α f )(x) = sup

I�x
I⊂J

1
|I|1−α

∫
I

| f (y)|dy, x ∈ J,

where x ∈ J and α is a constant satisfying the condition 0 � α < 1.
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When α = 0, then we have the Hardy–Littlewood maximal operator. In this case

we denote M(J)
α by M(J) .

The next statement is a solution of the one–weight problem for the Hardy–Little-
wood maximal operator (see [8]). We formulate the result for a bounded interval.

PROPOSITION 2.1. The operator M(J) is bounded in Lp(·)
w (J) if and only if w ∈

Ap(·)(J) , i.e.

sup
I⊆J

|I|−1‖wχI‖Lp(·)‖w−1χI‖Lp′(·) < ∞

provided that 1 < p−(J) � p(·) � p+(J) < ∞ and p ∈WL(J) .

Now we formulate Sawyer [35] type results for maximal operators in variable
exponent Lebesgue spaces.

The next statements (Propositions 2.2- 2.3 and Corollary 2.1) are taken from [21].

PROPOSITION 2.2. Let an exponent p be defined on a finite interval J and let
1 < p−(J) � p(·) � p+(J) < ∞ . Suppose that v and w are weight functions on J and
that dν(x) = w(x)−p′(x)dx belongs to DC(J). Suppose also that 0 � α < 1 and that
p ∈WL(J) . Then the inequality

‖v(·)M(J)
α f‖Lp(·)(J) � c‖w(·) f (·)‖Lp(·)(J)

holds, if and only if there exists a positive constant c such that for all intervals I , I ⊂ J ,∫
I

(v(x))p(x)(M(J)
α (w(·)−p′(·)χI(·)))p(x)dx � c

∫
I

w−p′(x)dx < ∞.

COROLLARY 2.1. Let J be a bounded interval and let 1 < p−(J) � p(·) � p+(J)
< ∞ . Suppose that 0 � α < 1 . Assume that p ∈WL(J) . Then the inequality∥∥v(·)(M(J)

α f
)
(·)∥∥Lp(·)(J) � c‖ f‖Lp(·)(J) (Trace inequality)

holds if and only if

sup
I,I⊂J

1
|I|
∫
I

(v(x))p(x)|I|α p(x)dx < ∞,

where the supremum is taken over all subintervals I of J .

PROPOSITION 2.3. Let 0 � α < 1 , 1 < p−(R) � p(·) � p+(R) < ∞ , and let p ∈
WL(R) . Suppose that there is a positive number a such that w−p′(·)(·) ∈ DC([−a,a])
and p ≡ pc ≡const outside [−a,a] . Then the inequality

‖vM(R)
α f‖Lp(·)(R) � ‖wf‖Lp(·)(R),

holds if and only if there is a positive constant c such that for all bounded intervals
I ⊂ R ,

‖vM(R)
α (w−p′(·)χI)‖Lp(·)(R) � c‖w1−p′(·)‖Lp(·)(I) < ∞.
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To formulate the next statement we need the following definition.

DEFINITION 2.3. Let μ be a measure on R . We say that μ satisfies the reverse
doubling condition on R (μ ∈ RD(R)) if there is a constant b > 1 such that

μ(x−2r,x+2r) � bμ(x− r,x+ r).

It is well-known that the reverse doubling condition implies the doubling condi-
tion.

PROPOSITION 2.4. ([20]) Suppose that p = const ; 1 < p < q−(R) � q+(R) <

∞; 0 < α < 1 . Assume that w−p′ ∈ RD(R) . Then the inequality

‖vMα f‖Lq(·)(R) � c‖wf‖Lp(R) (2.1)

holds if and only if

sup
I⊂R

‖vχI|I|α−1‖Lq(·)(R)‖w−1χI‖Lp′ (R) < ∞. (2.2)

Let

(Iα f )(x) :=
∫
R

f (y)
|x− y|1−α dy, x ∈ R

be the fractional integral operator defined on R , where 0 < α < 1.
The next statement is a generalization of the result by D. Adams [2] for variable

exponent Lebesgue spaces:

PROPOSITION 2.5. ([20]) Let s be a measurable function on R such that 1 <
s−(R) � s+(R) < ∞ . Suppose that r and α are constants satisfying the conditions:
1 < r < s−(R) , 0 < α < 1/r . Then the following statements are equivalent:

(i) Iα is bounded from Lr(R) to Ls(·)
v (R) ;

(ii)
sup
I;I⊂R

‖χI‖L
s(·)
v (R)

|I|α−1/r < ∞,

where the supremum is taken over all bounded intervals I in R .

Let (
Iα ({gk})

)
n = ∑

k∈Z,k �=n

gk

|n− k|1−α , n ∈ Z

(
Rα({gk})

)
n =

n

∑
k=−∞

gk

(n− k+1)1−α , n ∈ Z,

(
Wα({gk})

)
n =

∞

∑
k=n

gk

(k−n+1)1−α , n ∈ Z,

be discrete fractional integral operators, where 0 < α < 1.
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It is easy to check that

1
2

((
Rα({gk})

)
n−1 +

(
Wα({gk})

)
n+1

)
�
(
Iα({gk})

)
n

=
(
Rα({gk})

)
n−1 +

(
Wα({gk})

)
n+1.

Let {un}n∈Z be a positive (weight) sequence. In the sequel by l p
un(Z) , 1 < p < ∞ ,

will denote the class of all sequences {gk}k∈Z for which

‖gk‖l pun (Z) =
(

∑
k∈Z

|gk|puk

)1/p

< ∞.

If uk is a constant sequence, then we denote l p
uk(Z) by l p(Z) .

Sometimes we use the symbol T ({gk})(n) instead of T ({gk})n for a discrete
operator T .

Let (X ,U ,μ) and (Y,B,ν) be measure spaces with ν being σ - finite. Suppose
that k(x,y) is a non–negative real–valued U ×B– measurable function and that

K f (y) =
∫
X

k(x,y) f (x)dμ(x)

is the kernel operator.
Denote:

eλ (x) := {y ∈ Y : k(x,y) > λ}, eλ (y) := {x ∈ X : k(x,y) > λ},
where λ is a positive number;

Mr(μ)(y) := sup
λ>0

λ rμ
(
eλ (y)

)
; Ms(ν)(x) := sup

λ>0
λ sν

(
eλ (x)

)
,

where r and s are real numbers.
To prove the statements regarding fractional integrals we use the following state-

ment which is a corollary of part (ii) of Theorem A in [2].

THEOREM C. Suppose that 1 < p < q < ∞ , s
q = r

p + 1− r , where r > 0 . If
Mr(μ)(y) � A < ∞ for all y∈Y ; Ms(ν)(x) � B < ∞ for all x∈ X , then the operator K
is bounded from Lp(X ,μ) to Lq(Y,ν) , where Lp(X ,μ) Lq(Y,ν) are Lebesgue spaces
defined with respect to the measures μ and ν , respectively.

PROPOSITION 2.6. Suppose that p, q and α are constants satisfying the condi-
tions: 1 < p < q < ∞ , 0 < α < 1/p. Then the following statements are equivalent:

(i) Rα is bounded from l p(Z) to lqvk (Z) ;
(ii) Wα is bounded from l p(Z) to lqvk(Z) ;
(iii) Iα is bounded from l p(Z) to lqvk (Z)
(iv)

B := sup
m∈Z, j∈N

(
m+ j

∑
k=m

vk

)1/q

( j +1)α−1/p < ∞.
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Proof. (iv)⇒ (i) . Suppose that X =Y = Z , μ is the counting measure on Z and
that dν(n) = vndμ(n) , where {vn}n∈Z is the weight sequence. In our case the kernel
operator is given by

{Rα{gm}}n =
∞

∑
m=−∞

k(m,n)gm, n ∈ Z,

where
k(m,n) = χ{m∈Z:m�n}(n−m+1)α−1.

Let r = 1
1−α and let s

q = r
p +1− r . That is s = q(α−1/p)

α−1 > 0. We have

sup
n∈Z

Mr(μ)(n) = sup
λ�1,n∈Z

λ rμ{m ∈ Z : m � n;(n−m+1)α−1 > λ}

= sup
λ�1,n∈Z

λ r(α−1)μ{m ∈ Z : m � n;n−m+1 < λ}

� sup
k∈N,n∈Z

k−1
n

∑
m=n−k

1 � c.

Further,

sup
m∈Z

Ms(ν)(m) = sup
λ�1,m∈Z

λ sν{n ∈ Z : m � n;(n−m+1)α−1 > λ}

= sup
λ�1,m∈Z

λ s(α−1)ν{n ∈ Z : m � n;n−m+1 < λ}

� sup
k∈N,m∈Z

ks(α−1)
m+k

∑
n=m

vn � cBq.

(i) ⇒ (iv) . Let

(β (m))k =
{

1 if m− j < k � m;
0 otherwise,

where m, j are positive integers such that j � m . Then we have

(
∞

∑
n=1

vn

(
n

∑
k=−∞

(β (m))k

(n− k+1)1−α

)q)1/q

�
(

m+ j

∑
n=m

vn

(
m

∑
k=m− j

1
(n− k+1)1−α

)q)1/q

� c

(
m+ j

∑
n=m

vn

)1/q

jα .

Therefore, by the boundedness of Rα we conclude that

(
m+ j

∑
n=m

vn

)1/q

jα−1/p � c, 1 � j � m.
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(i) ⇒ (ii) . Let

(β (m))k =
{

1 if m− j < k � m;
0 otherwise,

where m ∈ Z and j ∈ Z . Then we have(
∑
n∈Z

vn

(
n

∑
k=−∞

(β (m))k

(n− k+1)1−α

)q)1/q

�
(

m+ j

∑
n=m

vn

(
m

∑
k=m− j

1
(n− k+1)1−α

)q)1/q

� c

(
m+ j

∑
n=m

vn

)1/q

jα .

Therefore, by the boundedness of Rα we conclude that(
m+ j

∑
n=m

vn

)1/q

jα−1/p � c, m ∈ Z, j ∈ Z.

The remaining parts (ii) ⇒ (iv) and (iii) ⇒ (iv) follows similarly; therefore we
omit proofs. �

The next statement gives criteria guaranteeing the trace inequality for the discrete
potential operators in the diagonal case, i.e., when p = q . Criteria are of Maz’ya-
Verbitsky [27] type.

PROPOSITION 2.7. Let 1 < p < ∞ and let 0 < α < 1/p.
(i) The inequality

+∞

∑
i=−∞

(
Rαg j

)p

i
vi � c

+∞

∑
i=−∞

gp
i (2.3)

holds for all non-negative sequences {gi}i if and only if {Wαvi}i < ∞ for all i ∈ Z and{
Wα [Wαv j]p

′}
i
� c
{
Wαvi

}
i
. (2.4)

(ii) The inequality
+∞

∑
i=−∞

(
Wαg j

)p

i
vi � c

+∞

∑
i=−∞

gp
i (2.5)

holds for all non-negative sequences {gi}i if and only if {Rαvi}i < ∞ for all i ∈ Z and{
Rα [Rαv j]p

′}
i
� c
{

Rαvi

}
i
. (2.6)

To prove Proposition 2.7 we need some auxiliary statements.

PROPOSITION C. Let 1 < p < ∞ , and let 0 < α < 1/p. If Rα is bounded from
lp(N) to l p

vi(N) then there exist a positive constant c such that

m+h

∑
i=m

vi � ch1−α p (2.7)

holds for all m ∈ Z and h ∈ N .
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Proposition C follows just in the same way as in the proof of the implication (i)⇒
(iv) of Proposition 2.6; therefore it is omitted.

We will prove the first part of Proposition 2.7. The second part follows analo-
gously.

Proof of (i) of Proposition 2.7. Let us first show that, from (2.3) it follows that
{Wαvk}k < ∞ for all k ∈Z . By the duality arguments (2.3) is equivalent to the inequal-
ity

∞

∑
i=1

(
Wαg j

)p′

i
� c

∞

∑
i=1

gp′
i v1−p′

i . (2.8)

Let v(1)
i = viχ{i:m�i<m+2h} and v(2)

i = viχ{i: i<m or i�m+2h} , where m ∈ Z and h ∈ N .
Note that for k � m+2h−1 and m � i � m+h , we have that k−m+1 � 2(k−

i+1) . Further, by using (2.7), we arrive to the estimates:

{Wαv(2)
j }i �

∞

∑
k=m+2h−1

vk(k− i+1)α−1 � c
∞

∑
k=m+h

vk(k−m+1)α−1

� c
∞

∑
k=m+h

vk

( ∞

∑
j=k−m+1

jα−2
)

� c
∞

∑
j=h+1

jα−2
( j+m−1

∑
k=m

vk

)

� c
∞

∑
j=h+1

jα−2 j1−α p < ∞.

Therefore
(
Wαv(2)

j

)
i < ∞ . The fact that

(
Wαv(1)

j

)
i < ∞ is obvious. Thus,

(
Wαv j

)
i

< ∞ for every i ∈ Z because m and h are taken arbitrarily.
Now we prove that (2.3) yields (2.4). For this we need the next lemmas.

LEMMA D. Let 0 < α < 1 . Then there are positive constants c(1)
α and c(2)

α de-
pending only on α such that for all m ∈ Z the inequality

(Wα βm)m � c(1)
α

∞

∑
j=1

jα−2
(m+ j−1

∑
k=m

βk

)
� c(2)

α (Wα βm)m

holds, where βm � 0 .

Proof. The proof follows easily if we observe that there are positive constants b(1)
α

and b(2)
α independent of k and m such that

∞

∑
j=k−m+1

jα−2 � b(1)
α (k−m+1)α−1 � b(2)

α

∞

∑
j=k−m+1

jα−2.

It remains to change the order of summation. �
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COROLLARY A. Let 0 < α < 1 , βm � 0 . Then there are positive constants c(1)
α

and c(2)
α such that for all m ∈ Z the inequality

{
Wα [Wα βm]p

′}
m

� c(1)
α

∞

∑
j=1

jα−2
(m+ j−1

∑
k=m

{Wαβm}p′
)

� c(2)
α

{
Wα [Wα βm]p

′}
m

holds.

Let v(1)
i and v(2)

i be defined as above. Then by using (2.8) we have that

m+h

∑
i=m

(
Wαv(1)

j

)p′

i
� c

m+h

∑
i=m

vi.

Thus, by Corollary A we conclude that

{
Wα [Wαv(1)

i ]p
′}

i
� c

∞

∑
j=1

jα−2
( i+2( j−1)

∑
k=i

vk

)
� c
{

Wα [Wαvi]
}

i
.

For the estimate of
{

Wα [Wαv(2)
i ]p

′}
i
we need some auxiliary statements.

LEMMA E. Let 0 < α < 1 . Then there is a positive constant c such that for all
natural numbers m,k and an integer j satisfying the condition m � k � m+ j−1 , the
inequality {

Wαv(2)
j

}
k
� c

∞

∑
s= j

sα−2
(m+s−1

∑
t=m

vt

)
holds.

Proof. We recall that v(2)
k = vkχ{k:k<m or k�m+2 j} . Using the arguments of the

proof of Lemma D and the fact that(
Wαv(2)

j

)
k
=

∞

∑
s=m+2 j

vs(s− k+1)α−1

we have (
Wαv(2)

j

)
k

� c
∞

∑
s=m+2 j

vs(s−m+1)α−1

� c
∞

∑
s=m+2 j

vs

∞

∑
t=s−m+1

tα−2 � c
∞

∑
t= j

tα−2
(m+t−1

∑
s=m

vs

)
. �

LEMMA F. Let 0 < α < 1 . Then there is a positive constant c such that for all
m ∈ Z , {

Wα [Wαv(2)
i ]p

′}
m

� c
∞

∑
t=1

tα−1
( ∞

∑
s=t

sα−2
(m+s−1

∑
j=m

v j

))p′
.
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Proof. Using Lemma E in Corollary A we have that

{
Wα [Wαv(2)

i ]p
′}

m
� c

∞

∑
t=1

tα−2
(m+t−1

∑
k=m

{Wαvk}p′
)

� c
∞

∑
t=1

tα−2
m+t−1

∑
k=m

( ∞

∑
s=t

sα−2
m+s−1

∑
ε=m

vε

)p′

(the inner sum does not depend on k)

= c
∞

∑
t=1

tα−2
( ∞

∑
s=t

sα−2
m+s−1

∑
ε=m

vε

)p′(m+t−1

∑
k=m

1
)

= c
∞

∑
t=1

tα−2
( ∞

∑
s=t

sα−2
m+s−1

∑
ε=m

vε

)p′
. �

LEMMA G. Let 0 < α < 1 . Then there is a positive constant c such that for all
m ∈ Z ,

{
Wα [Wαv(2)

i ]p
′}

m
� c

∞

∑
t=1

tα
( ∞

∑
s=t

sα−2
m+s+1

∑
ε=m

vε

)p′−1(
tα−2

m+t+1

∑
j=m

v j

)
.

Proof. We will deduce the discrete case from the continuous case. Let v(x) = v j ,

j � x < j + 1. Then
∫ j+1

j v(x)dx = v j . Hence, by using lemmas proved above and
integration by parts, we find that

{
Wα [Wαv(2)

i ]p
′}

m
� c

∞

∑
n=1

nα−1
( ∞

∑
j=n

jα−2
(m+2 j

∑
k=m

vk

))p′

� c
∞

∑
n=1

n+1∫
n

xα−1
( ∞

∑
i=2n

i+1∫
i

yα−2
(m+y

∑
k=m

vk

)
dy
)p′

dx

� c

∞∫
1

xα−1
( ∞∫

x

yα−2
(m+y

∑
k=m

vk

)
dy
)p′

dx

= c
[xα

α

( ∞∫
x

· · ·
)p′∣∣∣∞

1
+

∞∫
1

xα
( ∞∫

x

· · ·
)p′−1

xα−2
(m+x

∑
k=m

vk

)
dx
]

� c

∞∫
1

xα
( ∞∫

x

· · ·
)p′−1

xα−2
(m+x

∑
k=m

vk

)
dx

= c
∞

∑
n=1

n+1∫
n

xα
( ∞∫

x

· · ·
)p′−1

xα−2
(m+n+1

∑
k=m

vk

)
dx

� c
∞

∑
n=1

nα
( ∞∫

n

· · ·
)p′−1

nα−2
(m+n+1

∑
k=m

vk

)
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� c
∞

∑
n=1

nα
( ∞

∑
k=n

k+1∫
k

kα−2
(m+k+1

∑
i=m

vi

)
dy
)p′−1

nα−2
(m+n+1

∑
k=m

vk

)

= c
∞

∑
n=1

nα
( ∞

∑
k=n

kα−2
(m+k+1

∑
i=m

vi

))p′−1
nα−2

(m+n+1

∑
k=m

vk

)
. �

Now necessity of Proposition 2.7 follows easily because of Proposition C. Indeed,
by using Proposition C we have that

{
Wα [Wαv(2)

j ]p
′}

m
� c

∞

∑
n=1

nα
( ∞

∑
k=n

kα−2(k+2)1−α p
)p′−1(

nα−2
m+n+1

∑
k=m

vk

)

� c
∞

∑
n=1

nα−2
m+n+1

∑
k=m

vk � c
{
Wαvm

}
m
.

In the last inequality we used Lemma D, in particular, the right-hand side inequality.
Necessity of Proposition 2.7 is proved.
Now we prove sufficiency of Proposition 2.7. We need some auxiliary statements.

LEMMA H. Let 1 < p < ∞ and 0 < α < 1 . Then there exists a positive constant c
such that for all non-negative sequences {gi}i∈Z and all i∈Z , the following inequality
holds

{Rαgk}p
i � c{Rα [Rαgk]

p−1
j gm}i. (2.9)

Proof. First we assume that {Vαgi}i := {Rα [Rαgk]p−1g j}i and

{Vαg j}i � {Rαg j}p
i .

Otherwise (2.9) is obvious for c = 1. Now let us assume that 1 < p � 2. Then we have

{Rαgk}p
i =

i

∑
k=−∞

(i− k+1)α−1gk

( i

∑
j=−∞

(i− j +1)α−1g j

)p−1

�
i

∑
k=−∞

(i− k+1)α−1gk

( k

∑
j=−∞

(i− j +1)α−1g j

)p−1

+
i

∑
k=−∞

(i− k+1)α−1gk

( i

∑
j=k

(i− j +1)α−1g j

)p−1
=: I(1)

i + I(2)
i .

It is obvious that if j � k � i , then k− j +1 � i− j +1. Consequently,

I(1)
i �

i

∑
k=−∞

(i− k+1)α−1gk

( k

∑
j=−∞

(k− j +1)α−1g j

)p−1
= {Vαgi}i.
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Now we use Hölder’s inequality with respect to the exponents 1
p−1 , 1

2−p and measure

dμ(k) = (i− k+1)α−1gk dμc(k) (here μc is the counting measure on Z). We have

I(2)
i �

( i

∑
k=−∞

(i− k+1)α−1gk

)2−p( i

∑
k=−∞

( i

∑
j=k

(i− j +1)α−1g j

)
(i− k+1)α−1gk

)p−1

= {Rαgi}2−p
i (Ji)p−1,

where

Ji ≡
i

∑
k=−∞

( i

∑
j=k

(i− j +1)α−1g j

)
(i− k+1)α−1gk.

Using Fubini’s Theorem we have

Ji =
i

∑
j=−∞

(i− j +1)α−1g j

( j

∑
k=−∞

(i− k+1)α−1gk

)
.

Further, it is obvious that the following simple inequality

j

∑
k=−∞

(i− k+1)α−1gk �
( j

∑
k=−∞

(i− k+1)α−1gk

)p−1{
Rαgi

}2−p

i

� {Rαg j}p−1
j {Rαgi}2−p

i

holds, where j � i . Taking into account the last estimate, we obtain

Ji �
( i

∑
j=−∞

(i− j +1)α−1g j {Rαg j}p−1
j

){
Rαgi

}2−p

i
= {Vαgi}i{Rαgi}2−p

i .

Thus,

I(2)
i � {Rαgi}2−p

i {Rαgi}(2−p)(p−1)
i {Vαgi}p−1

i = {Rαgi}p(2−p)
i {Vαgi}p−1

i .

Combining the estimate for I(1) and I(2) we derive

{Rαgi}p
i � {Vαgi}i +{Rαgi}p(2−p)

i {Vαgi}p−1
i .

As we have assumed that {Vαgi}i � {Rαgi}p
i , we obtain

{Vαgi}i = {Vαgi}2−p
i {Vαgi}p−1

i � {Vαgi}p−1
i {Rαgi}p(2−p)

i .

Hence

{Rαgi}p
i � {Vαgi}p−1

i {Rαgi}p(2−p)
i +{Vαgi}p−1

i {Rαgi}p(2−p)
i

= 2{Vαgi}p−1
i {Rαgi}p(2−p)

i .
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Applying the fact
(
Rαg j

)
i < ∞ we find that

{Rαgi}p
i � 2

1
p−1 {Vαgi}i.

Now we shall deal with the case p > 2. Let us assume again that

{Vαg j}i � {Rαg j}p
i .

Since p > 2 we have

{Rαgi}p
i =

i

∑
k=1

(i− k+1)α−1gk

( i

∑
j=1

(i− j +1)α−1g j

)p−1

� 2p−1
i

∑
k=1

(i− k+1)α−1gk

( k

∑
j=1

(i− j +1)α−1g j

)p−1

+2p−1
i

∑
k=1

(i− k+1)α−1gk

( i

∑
j=k

(i− j +1)α−1g j

)p−1

=: 2p−1I(1)
i +2p−1I(2)

i .

It is clear that if j � k � i , then (i− j + 1)α−1 � (k− j + 1)α−1 . Therefore I(1)
i �

{Vαgi}i . Now we estimate I(2)
i . We obtain

( i

∑
j=k

(i− j +1)α−1g j

)p−1
=
( i

∑
j=k

(i− j +1)α−1g j

)p−2( i

∑
j=k

(i− j +1)α−1g j

)

�
{
Rαgi

}p−2

i

i

∑
j=k

(i− j +1)α−1g j.

Using Fubini’s theorem and the last estimate we have

I(2)
i �

{
Rαgi

}p−2

i

i

∑
k=−∞

(i− k+1)α−1gk

i

∑
j=k

(i− j +1)α−1g j

=
{
Rαgi

}p−2

i

i

∑
j=−∞

(i− j +1)α−1g j

j

∑
k=−∞

(i− k+1)α−1gk

�
{
Rαgi

}p−2

i

i

∑
j=−∞

(i− j +1)α−1g j

j

∑
k=−∞

( j− k+1)α−1gk.

Due to Hölder’s inequality with respect to the exponents
{

p−1, p−1
p−2

}
and the measure

dμ( j) = (i− j +1)α−1g jdμc( j) (μc is the counting measure on Z) we derive
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i

∑
j=−∞

(i− j +1)α−1g j

j

∑
k=−∞

( j− k+1)α−1gk

�
( i

∑
j=−∞

(i− j+1)α−1g j

) p−2
p−1
( i

∑
j=−∞

( j

∑
k=−∞

( j−k+1)α−1gk

)p−1

(i− j+1)α−1g j

) 1
p−1

= {Rαgi}
p−2
p−1
i {Vαgi}

1
p−1
i .

Combining these estimates we obtain

{Rαgi}p
i � 2p−1{Vαgi}i +2p−1{Rαgi}

p(p−2)
p−1

i {Vαgi}
1

p−1
i .

By virtue of the inequality {Vαgi j}i � {Rαg j}p
i it follows that

{Vαg j}i = {Vαg j}
1

p−1
i {Vαg j}

p−2
p−1
i � {Vαg j}

1
p−1
i {Rαg j}

p(p−2)
p−1

i .

Hence

{Rαg j}p
i � 2p−1

(
{Vαg j}

1
p−1
i {Rαg j}

p(p−2)
p−1

i +{Vαg j}
1

p−1
i {Rαg j}

p(p−2)
p−1

i

)
= 2p{Vαg j}

1
p−1
i {Rαg j}

p(p−2)
p−1

i .

Further, from the last estimate we conclude that

{Rαg j}p
i � 2p(p−1){Vαg j}i,

where 2 < p < ∞ . �

LEMMA I. Let 1 < p < ∞ , 0 < α < 1 and vi be a sequence of positive numbers
on Z . Let there exist a constant c > 0 such that the inequality

‖Rα{gi}‖l p

v
(1)
i

(Z) � c1 ‖gi‖l p(Z) , {v(1)
i }i = {Wαvi}p′

i

holds for all sequences gi ∈ l p(Z) . Then

‖Rα{gi}‖l pvi (Z) � c2 ‖gi‖l p(Z) , gi ∈ l p(Z),

where c2 = c1/p′
1 c1/p .

Proof. Let gi � 0. Using Lemma H, Fubini’s theorem and Hölder’s inequality we
derive the following chain of inequalities:

∞

∑
k∈Z

{Rαgk}p
k vk � c

∞

∑
k∈Z

k

∑
i=−∞

{Rαg j}p−1
i gi(k− i+1)α−1vk

= c
∞

∑
i∈Z

{Rαg j}p−1
i gi{Rαv j}i � c

( ∞

∑
i=1

gp
i

)1/p( ∞

∑
i=1

{Rαg j}p
i v(1)

i

)1/p′
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= c‖gi‖l p(Z) ‖Rαgi‖p−1
l p

v
(1)
i

(Z)
� cp−1

1 c‖gi‖l p(Z) ‖gi‖p−1
l p(Z)

= cp−1
1 c‖gi‖p

lp(Z) .

Hence, ∥∥Rαg j
∥∥

l pvi (Z) � c1/p′
1 c1/p

∥∥g j
∥∥

l p(Z) . �

LEMMA J. Let 0 < α < 1 and 1 < p < ∞ . Suppose that {Wαvi}i < ∞ and{
Wα [Wαvi]p

′}
i
� c
{
Wαvi

}
i

for all i ∈ Z . Then we have

‖Rα{gi}‖l p

v
(1)
i

(N) � c‖gi‖l p(Z) , gi ∈ l p(Z), (2.10)

where {v(1)
i }i = {Wαvi}p′

i .

Proof. Let gi � 0 and let gi be supported on the set Em,l := {i : l � i � m} , where

m , l ∈ Z . Let t(n)
i, j = χ{ j: j�i}min{(i− j + 1)α−1,n}, n ∈ Z . Then using Lemma H

(which is true also for the kernel t(n)
i, j ), Fubini’s theorem and Hölder’s inequality we

obtain the following chain of inequalities:

∞

∑
i=−∞

( i

∑
j=−∞

t(n)
i, j g j

)p
v(1)
i � c

∞

∑
i=−∞

( i

∑
j=−∞

t(n)
i, j

( j

∑
k=1

t(n)
j,k gk

)p−1
g j

)
v(1)
i

� c
∞

∑
j=−∞

g j

( j

∑
k=−∞

t(n)
j,k gk

)p−1( ∞

∑
i= j

t(n)
i, j v(1)

i

)

� c‖gi‖l p(Z)

( m

∑
j=−∞

( j

∑
k=1

t(n)
j,k gk

)p{
Rα [Rαv j]p

′}p′

j

)1/p′

� c‖gi‖l p(Z)

( m

∑
j=1

( j

∑
k=1

t(n)
j,k gk

)p{
Rαv j

}p′

j

)1/p′
.

Since ∑ j
k=1 t(n)

j,k gk < ∞ and {W v j} j < ∞ for all j , therefore we have that

( ∞

∑
i=1

( i

∑
j=1

t(n)
i, j g j

)p
v(1)
i

)1/p
� c‖gi‖l p(N) .

Passing now by to the limits as m and n to +∞ , and by l to −∞ we derive (2.10). �
Combining these lemmas we have also sufficiency of Proposition 2.7. Proposition

2.7 is completely proved.
The next lemma will also be useful for us:



140 A. MESKHI, M. A. ZAIGHUM

LEMMA K. Let 1 < r,s < ∞ and let gn be a non-negative sequence. Suppose that
un be a positive sequence on Z .

(i) The following two inequalities are equivalent

(
∑
n∈Z

[ n−1

∑
m=−∞

(n−m)α−1gm

]r

un

)1/r

� c1‖gk‖ls(Z)

and (
∑
n∈Z

(Rαgk)n]run+1

)1/r

� c1‖gk‖ls(Z),

where the positive constant c1 does depend on gk ;
(ii) The following two inequalities are equivalent

(
∑
n∈Z

[ ∞

∑
m=n+3

(m−n)α−1gm

]r

un

)1/r

� c2‖gk‖ls(Z)

and (
∑
n∈Z

(Wαgk)n]run−3

)1/r

� c2‖gk‖ls(Z),

where again the positive constant c2 does depend on gk .

3. Boundedness on VEAS

This section is devoted to the boundedness of maximal operators in VEAS.

3.1. General operators in VEAS

We begin this subsection by the following definition:

DEFINITION 3.1. ([4]) Let T be an operator defined on a set of real measurable
functions f on R . Define a sequence of local operators

(Tn f )(x) := T ( f χ(n−1,n+2))(x), x ∈ (n−1,n+2), n ∈ Z.

Let us assume that there is a discrete operator Td satisfying the following condi-
tions:

(i) There exists a positive constant c such that for all non-negative functions f , all
n ∈ Z and all x ∈ (n,n+1) , the inequality

T ( f χ(−∞,n−1) + f χ(n+2,∞))(x) � cTd
(∫ m

m−1
f

)
(n)

holds.
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(ii) There is c > 0 such that for all sequences {ak} of non-negative real numbers
and n ∈ Z , the inequality

Td({ak})(n) � cT f (y)

holds for all y ∈ (n,n+ 1) and all non-negative f , where
∫ m
m−1 f =: am , m ∈ Z . It is

also assumed that T satisfies the conditions

T f = T | f |, T (λ f ) = |λ |T f , T ( f +g) � T f +Tg, T f � Tg if f � g.

We will say that an operator T satisfying all the above– mentioned conditions is
admissible on R .

For example, Hardy operators, Hardy -Littlewood maximal operators, fractional
integral operators, fractional maximal operators are admissible on R (see [4]). C. Le-
brun, H. Heinig and S. Hofmann [7] established two weighted criteria for the Hardy
transform (H f )(x) =

∫ x
−∞ f (t)dt in amalgam spaces defined on R (see also [30], [18]

for related topics). In [7] the authors derived one–weighted inequality for the Hardy-
Littlewood maximal operator. Y. Rakotondratsimba [31] characterized two–weighted
inequalities for the Hardy–Littlewood and fractional maximal operators and fractional
integrals in amalgam spaces defined on R . In the paper [3] the two–weight problem
for generalized Hardy–type kernel operators including the fractional integrals of order
greater than one (without singularity) was solved. Finally we mention that criteria for

the boundedness of the weighted kernel operator Kv f (x) = v(x)
x∫

−∞
k(x,y) f (y)dy from

(Lp(·), lq) to (Lp(·), lq) were derived in the recent paper [23]. In that paper the authors
studied also the compactness problem for Kv in VEAS.

General type results for admissible operators read as follows:

THEOREM D. ([4]) Let 1 < p, p,q, q < ∞ , and let v and w be weight functions
on R . Suppose that T is an admissible operator on R . Then the inequality

‖vT f‖(Lp(R),lq) � c‖wf‖(Lp(R),l q )

holds for all measurable f if and only if

(i) T d is bounded from lq({wn}) to lq({vn}) , where wn :=
(∫ n

n−1 w−p′
)−q

p′
,

vn :=
(∫ n+1

n v

) q
p

.

(ii) (a) sup
n∈Z

‖Tn‖[Lp
w(n−1,n+2)→Lp

v (n−1,n+2)]
< ∞ for 1 < q � q < ∞ .

(b) ‖Tn‖[Lp
w(n−1,n+2)→Lp

v (n−1,n+2)]
∈ ls , where 1

s = 1
q − 1

q for 1 < q < q < ∞ .

Let X(R) be a Banach function space defined with respect to the Lebesgue mea-
sure on R (see [5], Chapter 1 for the definition and basic properties of a Banach function
space). We establish the statement similar to Theorem D for amalgam spaces defined
with respect to a Banach function space i.e., in the amalgam spaces, where instead of
the ‖ · ‖Lp(·)(R) norm is taken Banach function norm ‖ · ‖X(R) . This general amalgam
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space will be denoted by (X(R), lq) . Associate space of X(R) is denoted by X ′(R) .
In a Banach function spaces Hölder’s inequality holds ([5], P. 9):

∫
| f g| � ‖ f‖X‖g‖X ′ , f ∈ X , g ∈ X ′. (3.1)

Let, as before, T be an operator defined on a set of measurable functions on R

and let Tv,w be an operator defined by

Tv,w f = vT (wf ),

where v and w are a.e. positive functions on R .

THEOREM 3.1. Let X(R) and Y (R) be Banach function spaces. Suppose that
q and q are constants satisfying 1 < q, q < ∞ . Suppose that w and v are weight
functions on R and that T is an admissible operator on R . Then the inequality

‖Tv,w f‖(Y(R),lq) � c‖ f‖(X(R),l q ) (3.2)

holds if

(i) Td is bounded from lq({wn}) to lq({vn}) where wn := ‖χ(n−1,n)(·)w(·)‖−q
X(R) ,

vn := ‖χ(n,n+1)(·)v(·)‖q
Y (R) .

(ii) (a) sup
n∈Z

‖(Tn)v,w‖[X(n−1,n+2)→Y(n−1,n+2)] < ∞ for 1 < q � q < ∞ .

(b) ‖(Tn)v,w‖[X(n−1,n+2)→Y(n−1,n+2)] ∈ ls with 1
s = 1

q − 1
q for 1 < q < q < ∞ .

Conversely, let (3.2) hold. Then
1) conditions (ii) are satisfied;
2) condition (i) is satisfied for w ≡ const .

Proof. Let (i) and (ii) hold. We have

‖vT f‖(Y (R),lq) � c

{
∑
n∈Z

‖T [wf (χ(−∞,n−1) + χ(n+2,∞))]v(·)‖q
Y(n,n+1)

}1/q

+c

{
∑
n∈Z

‖vTn( f w)‖q
Y (n,n+1)

}1/q

=: S1 +S2.

Let am :=
∫ m
m−1 f w . By the hypothesis and Hölder’s inequality (see (3.1)) we have

that

S1 � c

{
∑
n∈Z

(Td({am})(n))q‖χ(n,n+1)v‖q
Y (n,n+1)

}1/q

� c

{
∑
n∈Z

aq
n‖χ(n−1,n)w‖−q

X ′(n−1,n)

}1/q

� c‖ f‖(X(R),lq).



MAXIMAL OPERATORS IN VEAS 143

Let us estimate S2 . Suppose that 1 < q � q < ∞ . Since the operators (Tn)v,w are
uniformly bounded we find that

S2 � c

{
∑
n∈Z

‖ f‖q
X(n−1,n+2)

}1/q

� c

{
∑
n∈Z

‖ f‖q
X(n−1,n+2)

}1/q

� c‖ f‖(X(R),l q ).

If 1 < q < q < ∞ , then by using Hölder’s inequality (see (3.1)) we find that

S2 � c

{
∑
n∈Z

‖(Tn)v,w‖q[
X(n−1,n+2)→Y(n−1,n+2)

]‖χ(n−1,n+2) f‖q
X(R)

}1/q

� c

[{
∑
n∈Z

‖(Tn)v,w‖
qq
q−q

} q−q
q
{

∑
n∈Z

‖χ(n−1,n+2) f‖q
X(R)

} q
q
]1/q

� c‖ f‖(X(R),l q ).

Conversely, let (3.2) holds. Suppose that n ∈ Z and f is a non-negative function
supported in (n−1,n+2) . Then

‖ f‖(X(R),l q ) � 3‖ f χ(n−1,n+2)‖(X(R)).

On the other hand,

‖Tv,w f‖(Y (R),lq) � ‖vχ(n−1,n+2)T ( f w)‖Y (R)

� ‖vTn( f w)‖Y (R).

By the two–weight inequality we conclude that (a) of (ii) holds. Let us now show
that if 1 < q < q < ∞ , then (b) of (ii) is satisfied.

Since ‖(Tn)v,w‖[X(R)→Y (R)] = sup
{ f :‖ f‖X(R)=1}

‖vTn( f w)‖Y (R) we have that for each n ,

there exists a non-negative measurable function fn , with the support in (n− 1,n+ 2)
and with ‖χ(n−1,n+2) fn‖X(R) = 1, such that ‖(Tn)v,w‖X(R)→Y (R) < ‖vTn( fnw)‖Y (R) +
1

2|n| . So it is sufficient to prove that ‖vTn( fnw)‖X(R) ∈ ls .

Let {an} be a sequence of non-negative real numbers and f = ∑
n
an fn . For each

n ∈ Z , f (x) > an fn(x) and then v(x)T ( f w)(x) � anv(x)Tn( fnw)(x) for all x ∈ (n−
1,n+2) .

Thus,

‖Tv,w f‖(Y (R),lq) �
{

∑
n∈Z

caq
n‖χ(n−1,n+2)vTn( f w)‖q

Y (R)

}1/q

= c
{

∑
n∈Z

aq
n‖vTn( fnw)‖q

Y (R)

}1/q
.
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Hence, the two– weight inequality yields that

{
∑
n∈Z

aq
n‖vTn( fnw)‖q

Y (R)

}1/q

� c

{
∑
n∈Z

‖χ(n−1,n+2) f‖q
X(R)

}1/q

� c

{
∑
n∈Z

aq
n‖χ(n−1,n+2) fn‖q

X(R)

}1/q

= c{∑
n∈Z

aq
n}.

Finally, by Lemma B we see that (b) of (ii) holds.
Now let us prove that (i) holds when w ≡ const. If {am} is a sequence of non-

negative real numbers and if f := ∑
m∈Z

amχ(m−1,m) , then
m∫

m−1
f = am , and ‖χ(n,n+1) f‖q

X(R)

= aq
n‖χ(n,n+1)‖q

X(R) = aq
n . By the properties of T we have,

‖vT f‖(Y (R),lq) =
{

∑
n∈Z

‖χ(n,n+1)vT f‖q
Y (R)

}1/q

�
{

∑
n∈Z

‖χ(n,n+1)vT
d
(∫ m

m−1
f

)
‖q
Y(R)

}1/q

� c

{
∑
n∈Z

Td(am)q(n)‖χ(n,n+1)v‖q
Y(R)

}1/q

= ‖vnT
d{am(n)}‖lq .

Applying the two-weight inequality we have that

‖vnT
d{am(n)}‖lq � c

{
∑
n∈Z

‖χ(n,n+1) f‖q
X(R)

}1/q

= c

{
∑
n∈Z

aq
n

}1/q

= ‖an‖l q .

Hence (i) holds. �
Theorem 3.1 implies the following statement:

THEOREM 3.2. Let p(·) , p(·) be measurable functions on R satisfying 1 <
p−(R) � p+(R) < ∞ , 1 < p−(R) � p+(R) < ∞ . Suppose that q and q are con-
stants satisfying 1 < q, q < ∞ . Suppose that w and v are weight functions on R and
that T is an admissible operator on R . Then the inequality

‖vT f‖(Lp(·)(R),lq) � c‖wf‖(Lp(·)(R),l q ) (3.3)

holds if
(i) Td is bounded from lq({wn}) to lq({vn}) where wn := ‖χ(n−1,n)(·)w−1(·)‖−q

Lp′(·) ,

vn := ‖χ(n,n+1)(·)v(·)‖q
Lp(·) .

(ii) (a) sup
n∈Z

‖Tn‖[Lp(·)
w (n−1,n+2)→L

p(·)
v (n−1,n+2)]

< ∞ for 1 < q � q < ∞ .

(b) ‖Tn‖[Lp(·)
w (n−1,n+2)→L

p(·)
v (n−1,n+2)]

∈ ls with 1
s = 1

q − 1
q for 1 < q < q < ∞ .
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Conversely, let (3.3) hold. Then
1) conditions (ii) are satisfied;
2) condition (i) is satisfied for w ≡ const or for p and p being constant outside

some large interval [−m0,m0] , m0 ∈ Z .

Proof. Proof follows from Theorem 3.1. We only need to show that if (3.3) holds,
then condition (i) is satisfied for p and p being constant outside some large interval
[−m0,m0] , m0 ∈ Z .

Suppose now that w is a general weight and there is a positive integer m0 such
that p , p are constants outside [−m0,m0] . Taking

f (x) = ∑
m∈Z

amχ(m−1,m)(x)
( m∫

m−1

w−p′(y)(y)dy

)−1

w−p′(x)(x)

it is easy to see that
m∫

m−1
f = am . Moreover, by Proposition A and the fact that

m∫
m−1

w−p′(y)(y)dy �
m0∫

−m0

w−p′(y)(y)dy < ∞, [m−1,m]⊂ [−m0,m0],

we have for m � m0 +1,

‖χ(m−1,m) f w‖Lp(·) = am

( m∫
m−1

w−p′(y)(y)dy

)−1

‖χ(m−1,m)w
1−p′(·))‖Lp(·)

� cam

( m∫
m−1

w−p′(y)(y)dy

)−1/p+

(
[m−1,m)

)
,

where the positive constant c depends on m0 . Since

‖vT f‖(Lp(·)(R),lq) � C‖vn(Td{am})(n)‖lq ,

using again Proposition A we find that

‖vn(Td{am})(n)‖lq � C

[
∑
m

∥∥χ(m−1,m) f w‖q
Lp(·)(R)

]1/q

� c

[
∑
m

aq
m

( m∫
m−1

w−p′(y)(y)dy

)−q/p+([m−1,m))]1/q

= ‖amwm‖l q . �
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3.2. Maximal operators in amalgams (Lp(·)(R), lq)

In this section we establish criteria for the boundedness of maximal operators in
variable exponent amalgam spaces.

Recall the E. Sawyer [35] result for the discrete fractional maximal operator

Md
α({an})( j) = sup

r� j�k

1
(k− r+1)1−α

k

∑
i=r

|ai|, 0 < α < 1.

which is a consequence of more general result regarding two-weight criteria for maxi-
mal operators defined on spaces of homogeneous type (see [36]).

THEOREM E. Let r and s be constants satisfying the condition 1 < r � s < ∞
and let αn , βn be positive sequences on Z . Then the two–weight inequality

(
∑
n∈Z

(
Md({an})

)s
nαn

)1/s

� c

(
∑
n∈Z

|an|rβn

)1/r

,

holds if and only if there is a positive constant c such that for all r,k ∈ Z with r � k ,

( k

∑
j=r

(
Md({β 1−r′

n }χ[r,k])
)s( j)α j

)1/s

� c

( k

∑
j=r

β 1−r′
n

)1/r

.

COROLLARY B. Let 1 < r � s < ∞ and let αn be a positive sequences on Z .
Then the weighted inequality

(
∑
n∈Z

(
Md

α({an})
)s
nαn

)1/s

� c

(
∑
n∈Z

|an|r
)1/r

(3.4)

holds if and only if

sup
k,r∈Z,r<k

( k

∑
j=r

α j

)1/s

(k− r+1)α−1/r � c, (3.5)

where the positive constant c is independent of {an} .

THEOREM F. ([39]) Let s and r be constants satisfying the condition 1 < s < r <
∞ and let αn be a positive sequence on Z . We set h j := supr�i�k

1
(k−r+1)1−αr ∑k

i=r α j .

Then the inequality (3.4) holds if and only if {h j} ∈ l
s

r−s
α j .

Now we formulate our result regarding variable exponent amalgam spaces.

THEOREM 3.3. Let p be continuous function defined on R satisfying the condi-
tions 1 < p−(R) � p(x) � p+(R) < ∞ . Suppose that p ∈WL(R) . If

(a) w ∈ Ap(·)([n−1,n+2)) uniformly with respect to n ;
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(b) the pair of discrete weights ({wn},{vn}) satisfies the condition: there is a
positive constant c such that for all r,k ∈ Z with r � k ,

k

∑
j=r

(
Md({w1−q′

n }χ[r,k])
)q( j)v j � c

k

∑
j=r

w1−q′
j , (3.6)

where

wn := ‖χ(n−1,n)(·)w−1(·)‖−q

Lp′(·)(R)
, vn := ‖χ(n,n+1)(·)w(·)‖q

Lp(·)(R)
.

Then M(R) is bounded in (Lp(·)
w (R), lq) .

Conversely, let M(R) be bounded in (Lp(·)
w (R), lq) . Then (a) holds. If, in addition,

there is a large positive integer m0 such that p is constant outside [−m0,m0] , then
condition (b) is also satisfied.

Proof. Observe that the Hardy–Littlewood maximal operator M(R) is admissible
(see [31]) and associated discrete operator is given by

Md({an})( j) = sup
r� j�k

1
k− r+1

k

∑
i=r

|ai|.

Also, (M(R) f )n = (M([n−1,n+2) f )(x) , x ∈ [n−1,n+2) .
Now by Theorems E, 3.2 and Proposition 2.1 we have the desired result. �

THEOREM 3.4. Let p be a continuous function defined on R satisfying the condi-
tion 1 < p−(R) � p+(R) < ∞ . Let 0 � α < 1 . Suppose that v, w are weight functions
on R and that dν(x) := w(x)−p′(x)dx belongs to DC([n−1,n+2)) uniformly with re-

spect to n. Suppose also that p ∈WL(R) . Then the operator M(R)
α is bounded from

(Lp(·)
w (R), lq) to (Lp(·)

v (R), lq) if
(i) there is a positive constant c such that for all n and all intervals I ⊆ [n−1,n+

2) the inequality∫
I

(v(x))p(x)M[n−1,n+2)
α

(
w(·)−p′(·)χI(·))

)p(x)
dx � c

∫
I

w−p′(x)dx < ∞

holds;
(ii) there is a positive constant c such that for all r,k ∈ Z with r � k ,

k

∑
j=r

(
(Mα)d({w1−q′

n }χ[r,k])
)q( j)v j � c

k

∑
j=r

w1−q′
j , (3.7)

where

wn := ‖χ(n−1,n)(·)w−1(·)‖−q

Lp′(·)(R)
, vn := ‖χ(n,n+1)(·)v(·)‖q

Lp(·)(R)
.



148 A. MESKHI, M. A. ZAIGHUM

Conversely, let M(R)
α be bounded from (Lp(·)

w(·)(R), lq) to (Lp(·)
v(·) (R), lq) . Then (i)

holds. If, in addition, there is a large positive integer m0 such that p is constant outside
[−m0,m0] , then condition (ii) is also satisfied.

Proof. It is known (see [31]) that the operator MR
α is admissible and that its dis-

crete analog is Md
α .

By Proposition 2.2 and Theorems E, 3.2 we have the desired result. �

THEOREM 3.5. Let p be a continuous function defined on R satisfying the con-
dition 1 < p−(R) � p(x) � p+(R) < ∞ . Assumed that 0 < α < 1 . Suppose that v is

a weight function on R . Suppose also that p ∈ WL(R) . Then the operator M(R)
α is

bounded from (Lp(·)(R), lq) to (Lp(·)
v (R), lq) if and only if

(i) in the case 1 < q � q < ∞ ,

sup
n∈Z

I⊂(n−1,n+2)

1
|I|
∫
I

(v(x))p(x)|I|α p(x)dx < ∞

and

sup
k,r∈Z,r<k

( k

∑
j=r

v j

)
(k− r+1)αq−1 � c, (3.8)

where vn = ‖χ[n,n+1)v‖q
Lp(·)(R)

;

(ii) in the case 1 < q < q < ∞ , {Jn} ∈ ls , where 1
s = 1

q − 1
q , and {Hj} ∈ l

q
q−q
v j ,

where

Jn := sup
n∈Z

I⊂(n−1,n+2)

1
|I|
∫
I

(v(x))p(x)|I|α p(x)dx,

Hj := sup
r�i�k

1

(k− r+1)1−αq

k

∑
i=r

v j, vn := ‖χ(n,n+1)(·)v(·)‖q
Lp(·)(R)

.

Proof. Part (i) follows in the same way as Theorem 3.4 was proved. We observe
that in this case we use Corollary B. The proof of Part (ii) is similar by applying
Theorems 3.2, F and Corollary 2.1. �

THEOREM 3.6. Let p be a measurable function on R such that 1 < p−(R) �
p+(R) < ∞ . Let p , q , q and α be constants satisfying the condition 1 < p < p− ,
1 < q � q < ∞ , 0 < α < 1 . Suppose that w−p′ ∈ RD(R) . Then the Mα is bounded

from (Lp
w(R), lq) to (Lp(·)

v (R), lq) if and only if
(i)

sup
n∈Z

I⊂[n−1,n+2)

‖vχI|I|α−1‖Lp(·)(R)‖w−1χI‖Lp′ (R) < ∞. (3.9)
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(ii) ( k

∑
j=r

(
Md({w1−q′

n }χ[r,k])
)q( j)v j

)1/q

� c

( k

∑
j=r

w1−q′
j

)1/q

, (3.10)

where

wn := ‖χ(n−1,n)(·)w−1(·)‖−q

Lp′ (R)
, vn := ‖χ(n,n+1)(·)w(·)‖q

Lp(·)(R)
.

Theorem 3.6 is a direct consequence of Proposition 2.4 and Theorems E, 3.2.

3.3. Fractional integrals: trace inequality

In this subsection we discuss trace inequality criteria for the fractional integrals
operators Iα , Rα and Wα in weighted VEAS defined on R . In particular, we show that
the following statement holds.

LEMMA L. (see the proof of Theorem 3.1 in [31]) The following equivalences hold:

(Iα f χ(−∞,n−1))(x) ≈
n−1

∑
m=−∞

(n−m)α−1G (m); (3.11)

(Iα f χ(n+2,∞))(x) ≈
∞

∑
m=n+3

(m−n)α−1G (m) (3.12)

where x ∈ [n,n+1) and G (m) =
∫ m
m−1 f (y)dy.

THEOREM 3.7. Let p be a measurable function on R such that 1 < p−(R) �
p+(R) < ∞ . Let p , q , q and α be constants satisfying the condition 1 < p < p−(R) ,
1 < q < q < ∞ , 0 < α < min{1/p,1/q} . Then the following statements are equivalent:

(i) Iα is bounded from (Lp(R), lq) to (Lp(·)
v (R), lq) ;

(ii) (a)
sup
n∈Z

I⊂[n−1,n+2)

‖χI‖L
p(·)
v (I)

|I|α−1/p < ∞; (3.13)

(b)

sup
m∈Z, j∈N

(
m+ j

∑
k=m

vk

)1/q

( j +1)α−1/q < ∞, (3.14)

where vn := ‖χ[n,n+1)(·)‖q

L
p(·)
v (R)

.

THEOREM 3.8. Let p be a measurable function on R such that 1 < p−(R) �
p+(R) < ∞ . Let p , q and α be constants satisfying the condition 1 < p < p−(R) ,
1 < q < ∞ , 0 < α < min{1/p,1/q} . Then the following statements are equivalent:

(i) Iα is bounded from (Lp(R), lq) to Lp(·)
v (R)), lq) ;
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(ii) (a)
sup
n∈Z

I⊂[n−1,n+2)

‖χI‖Lp(·)
v (I)

|I|α−1/p < ∞;

(b) {Wα vi}i < ∞ for all i ∈ Z and there is a positive constant c such that{
Wα [Wα(v j)]q

′}
k
� c
{

Wα(v j)
}

k
(3.15)

for all k ∈ Z , where vn is the same as in Theorem 3.7;
{Rα vi}i < ∞ for all i ∈ Z and there is a positive constant c such that{

Rα [Rα(v j)]q
′}

k
� c
{

Rα(v j)
}

k
(3.16)

for all k ∈ Z , where vn is defined in Theorem 3.7.

Proof of Theorem 3.7. First observe that

(Iα)n f (x) =
∫ n+2

n−1

f (t)
|x− t|1−α dt, x ∈ [n−1,n+2).

Due to Proposition 2.5, uniform boundedness of (Iα)n is equivalent to (3.13).
Further, it is easy to check that condition (3.14) is equivalent to each of the following
two conditions:

sup
m∈Z, j∈N

(
m+ j

∑
k=m

v(i)
k

)1/q

( j +1)α−1/q < ∞, i = 1,2, (3.17)

where v(1)
k = vk+1 , v(2)

k = vk−3 .
Since (see [31])

(Iα)d({a j})(n) ≈
n−1

∑
k=−∞

ak

(k−n)1−α +
+∞

∑
k=n+3

ak

(k−n+1)1−α , (3.18)

by Theorem 3.2, Lemma L, Lemma K and Proposition 2.6 we have the desired re-
sult. �

Proof of Theorem 3.8. Follows similarly by applying Proposition 2.5, Proposition
2.7, Lemma L, Lemma K and Theorem 3.2. �
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[14] L. DIENING AND P. HÄSTÖ, Muckenhoupt weights in variable exponent spaces, Preprint, Available

at http://www.helsinki.fi/ pharjule/varsob/publications.shtml.
[15] D. E. EDMUNDS AND A. MESKHI, Potential-type operators in Lp(x) spaces, Z. Anal. Anwendungen

21 (2002), 681–690.
[16] J. F. FOURNIER AND S. WATSON, Amalgams of Lp and lq , Bull. Amer. Math. Soc. (N.S.). 13, 1

(1985), 1–21.
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